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A Phase-Field Approach to Damage Modelling in Open-Cell Foams

A. Geringer, S. Diebels

Foams are complex and challenging materials. The damage process of the foam materials takes place on multiple
scales changing several physical and structural properties of the material. In this study, the topology-based vari-
able describing the connectivity state of a cell is introduced to formulate a non-variational phase-field model for
the damage evolution in an open-cell foam. The material is considered consisting of the damaged and unimpaired
phase with the proposed phase-field variable describing the separation of phases. The performance of the compu-
tational model is examined by means of the standard benchmarks such as tensile and simple shear test. The results
show a qualitative correspondence with the two-dimensional artificial foam model used as a reference. Further-
more, the influence of the directional data extracted from the microstructure is investigated. The utilisation of the
connectivity-based damage variable turns out to be a suitable choice for the simulation of the damage evolution in
open-cell foam materials.

1 Introduction

The metallic foams are an advanced material which is becoming more and more attractive due to the unique
combination of the mechanical properties such as high stiffness and low weight they offer. The increasing ac-
knowledgement of the foams as an engineering material requires appropriate models for each aspect of this highly
interesting material. The modelling of the damage effects is one of the challenges related to cellular materials.

Several material properties are affected as a consequence of the damage process. The modelling of these effects is
carried out using an auxiliary continuous variable representing the damage state. The field of continuum damage
mechanics was pioneered by Kachanov (1958) who introduced the effective stress concept, describing a virtual
state of the material without damage. The further development of the theoretical framework has taken place a
few decades later. Lemaitre (1985), Murakami and Ohno (1981) extended the framework by defining the damage
modelling for ductile materials. The works by Krajcinovic et al. deal with the modelling of the effects of damage
on brittle materials (Krajcinovic and Fonseka (1981), Krajcinovic and Srinivasan (1983)). The damage evolution
in plasticity was formulated by Kattan and Voyiadjis (1990). The multiscale nature of the damage is addressed in
the works considering the description of failure mechanisms using a framework of extended continuum theories
(Steinmann (1995), Ebinger et al. (2004), Grammenoudis et al. (2009), Forest (2009), Rinaldi and Placidi (2013)).

The mechanical properties of foam materials are mainly defined by the material structure on the microscopic
level. The characterisation of the cellular material microstructure can be made based on the porosity, mean cell
diameter, dispersion of cell size, symmetry, the edge-connectivity, etc. (Gibson and Ashby (1999)). In the present
contribution, the topological information obtained from the microstructure is used to define a damage evolution
approach for an open-cell foam structure. Hereby the material is considered containing two distinct phases: the
phase containing undamaged material and the phase with the material in damaged state. The damage variable is,
therefore, used to describe the separation of these two phases together with the interface development.

The solution of interfacial problems is the subject of the phase-field modelling. The evolution of the interface
position is characterised by the evolution of the continuous phase-field variable, which takes two different values
depending on the phase domain. In the interface area, the value of the phase-field variable is changing gradually so
that a diffuse interface is formed. The phase-field method allows for the description of the microstructure evolu-
tion in a wide range of applications such as solidification process (Artemev et al. (2001), Boettinger et al. (2002),
Siquieri et al. (2007)), fracture mechanics ( Miehe et al. (2010a), Miehe et al. (2010b)), nucleation kinetics (Em-
merich and Siquieri (2006)) and many others. The contributions provided by Qin and Bhadeshia (2010), Steinbach
(2009), Moelans et al. (2008) and Chen (2002) offer an overview of the recent developments and applications of
phase-field method.
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Open-cell foam structures can be modelled using beam elements on the microscale. The reference model used
in the present contribution to incorporate the directional data from the microstructure is provided by the two-
dimensional artificial lattice structure consisting of standard finite elements (Mangipudi and Onck (2011), Onck
et al. (2001), Tekŏglu and Onck (2008), Reis and Ganghoffer (2010, 2012)). This level of microstructure dis-
cretization provides a detailed description of the foam material, resulting, however, in an inevitable large number
of degrees of freedom and consequential computational limitations.

The utilisation of the phase-field approach in the context of damage mechanics as proposed in the current contribu-
tion offers the advantage of modelling the damage zone propagation in an open-cell foam without full discretization
of the microstructure.

2 Phase-Field Model

In the damage modelling approach described here in following the isotropic and linear elastic material behaviour
is assumed. The edge-connectivity characteristic for cellular materials, among numerous material properties, is
affected by the damage process taking place on multiple scales.

Ze = 4

Ze = 1

Figure 1: Edge-connectivityZe in an open-cell foam

For the sake of convenience, we consider a two-dimensional open-cell lattice structure shown in Figure (1). Each
cell is connected with the neighbouring cells through struts. The number of the neighbour cells depends on the
foam morphology. The edge-connectivityZe is one of the properties characterising cellular materials and is defined
as the average number of edges linked to a vertex (Gibson and Ashby (1999)).

In the structure depicted in Figure (1) the edge-connectivity exhibits four connections within the bulk material
and one connection on the specimen boundary, resulting in edge-conductivities ofZe = 4 andZe = 1. Figure
(2(a)) shows a three-dimensional example of a foam structure and a corresponding distribution of the average
edge-connectivity (Figure 2(b)). Similar connectivity distribution is observed for each direction of the specimen.

The microstructure-specific property of the edge-connectivity allows for the definition of a topology-based damage
variable. Since the mechanical stability of an open-cell foam is directly linked to the number of connections
between cells and the edge-connectivity is deteriorating with the ongoing damage process, the measure based on
the edge-connectivity can be used to reproduce the damage state of the foam material.

In damage mechanics it is useful to utilise the continuity function defined as

Ψ = 1 − ξ . (1)

We formulate the continuity relationship from Equation (1) as a function of edge-connectivityZe

Ψ =
Ze

‖Ze‖
. (2)
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(a) Artificial foam structure
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(b) Edge-connectivityZe over normalised specimen length

Figure 2: Foam structure and the corresponding average edge-connectivity distribution

Regarding Equation (1) the topology-based damage variable reads as follows

ξ = 1 −
Ze

‖Ze‖
. (3)

The damage variable takes the values0 ≤ ξ ≤ 1, with ξ = 0 for the material without damage (i. e. the cell has full
number of connections) andξ = 1 for fully damaged material (i. e. most of the connections to neighbouring cells
are lost).
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Figure 3: Approximation of the edge-connectivity using a differential equation

In the following we consider a domainΩ with a boundary denoted by∂Ω. The boundary consists of two non-
overlapping regionsΓD andΓN with ΓD

⋃
ΓN . The average connectivity distribution of a foam structure can be

approximated using a phenomenological approach based on a partial differential equation of the Helmholtz type

−div (β grad u) + α u − f = 0 . (4)

The structure of the Equation (4) exhibits the structure of the general balance equation (cf. Steeb and Diebels
(2004)). This framework allows for a general thermodynamically consistent formulation of field equations. An
example for a solution of Equation (4) is shown in Figure (3). The shape of the solution curve depicted in Figure (3)
can be adjusted to reproduce the connectivity distribution curve by solving Equation 4 with a set of the appropriate
parameters.

Combining the definition of the topology-based damage variable from Equation (2) and extending Equation (4)
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with the time derivative the evolution equation of the damage for an open-cell foam is governed

∂ξ

∂t
= −div (β grad ξ) + α(1 − ξ) ξ − f , (5)

with boundary conditions

ξ = gξ on ΓD
ξ (6)

∂ξ

∂n
= hξ on ΓN

ξ , (7)

with n as an outward unit normal vector on boundary∂Ω. In the following examples the Dirichlet boundary
condition is chosen to describe the influence of free boundaries on the connectivity, i. e. to take into account the
reduced connectivity close to free boundaries. In contrast the Neumann boundary condition is chosen in the sense
of a symmetry condition. In this casehξ = 0 preserves the connectivity close to these boundaries. The second
term on the right hand side of the Equation (5) represents the contribution to the damage field arising from the
local interactions.

To complete the formulation of the proposed damage model the evolution Equation (5) is coupled with the defor-
mation field which is the result of the solution of the linear elastic problem. The coupling is accomplished using the
third term of Equation (5) which is, therefore, defined as a function of the strain energyW and the first principal
strain

f = f(W, ε1) , (8)

with the strain energy defined as

W =
1
2

T̃ : ε . (9)

The damage affects the deformation field through the effective stressT̃ which describes a virtual state of the
material without damage

T̃ =
T

(1 − ξ)
. (10)

The linear elastic problem coupled with the damage evolution is given by an equilibrium equation with neglected
body forces in static case

div T = 0 , (11)

and the constitutive relation for the Cauchy stress tensor

T = 2μ ε + λ (tr ε) I , (12)

with μ andλ as the classical Laḿe parameter. The linear strain tensor is provided in terms of the displacement
vectoru by

ε =
1
2
(gradu + grad T u) . (13)

The boundary conditions of the linear elastic problem are given by the displacement and stress vectors on respective
boundaries

u = gu on ΓD
u (14)

T ∙ n = hu on ΓN
u . (15)
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(b) Shear test

Figure 4: Single-edge notched specimen

3 Results and Discussion

The governing equations of the damage model presented here are the evolution Equation (5), the displacement-
strain relation (13), the equilibrium Equation (11), and the constitutive Equation (12). The combination of these
equations leads to a two-way coupled problem in the fieldsu andξ. The numerical solution of this problem is
accomplished by means of the finite element method. The set of coupled equations is solved using COMSOL
Multiphysics (2009) for a given boundary conditions.

In the following examples, the performance of the proposed damage modelling approach is demonstrated. For this
purpose we consider two standard benchmark problems such as a tensile and a pure shear tests performed on a
single-edge notched square specimen with equal-length sides of100mm. The geometry of the specimen and the
boundary conditions used for the tests are depicted in Figures (4(a)) and (4(b)). The computations in both examples
are performed with monotonic driven displacements with a constant increment ofΔu = 0.02 mm. The maximum
prescribed displacement amounts tou = 1mm.

The value ofξ = 1 is given as the boundary condition for the free boundaries of the specimen since the cells on
these boundaries exhibit the small edge-connectivity values resulting in values ofξ → 1. The boundaries with
constraints originating from the mechanical part of problem are marked as Neumann boundaries with∂ξ

∂n = 0.

The computed propagation of the damage zone resulting from the tensile test is shown in Figures (5(a) - 5(c)). The
red colour corresponds to the state of the total damage where only one connection to the neighbour cells is left and
the blue colour displays the undamaged state of the structure where all of the connections to the neighbours are
present. The tensile test leads to the propagation of the damage zone in horizontal direction.

(a) u = 0.34mm (b) u = 0.38mm (c) u = 0.42mm

Figure 5: Damage field distribution in a single-edge notched tensile test

The second example explores the evolution of the damage resulting from the shear test performed on a specimen
displayed in Figure (4(b)). The resulting damage evolution is depicted in Figures (6(a) - 6(c)). The evolution of
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(a) u = 0.72mm (b) u = 0.80mm (c) u = 0.92mm

Figure 6: Damage field distribution in a single-edge notched shear test

the damage field is different from the one in a tensile test case. The damage zone takes the path from the notch
down to the right bottom corner of the specimen.

The effect of the model parametersα andβ on the damage variable evolution is evaluated in a standard tensile test
performed with different parameter values. The values of the damage variableξ are computed in a point close to
the notch tip. From Figure (7(a)), one can clearly recognise that both parameters have significant influence upon
the evolution of the damage zone. While the increasing values of the parameterβ are speeding up the damage
progression, performing the same with the values of the second parameterα forces the damage zone propagation
to slow down.
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(a) 0.001 ≤ α ≤ 1000 , β = 1.0
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Figure 7: Parameter study

The influence of the microstructure on the damage zone evolution can be additionally increased by considering
the local strut orientation of the foam cell. The orientation distribution function (ODF) is a generalisation of
the directional data, representing the fraction of single elements with particular direction (Kanatani (1984)). The
orientation distribution functionρ(n)

ρ = ρ(n) = Fij ni nj , (16)

corresponding to the microstructure, is approximated using the fabric tensor of the second kindF and the fabric
tensor of the first kindN (Kanatani (1984), Voyiadjis and Kattan (2006))

Fij =
15
2

(

Nij −
1
5
δij

)

, (17)

Nij =
1
N

N∑

k=1

n
(k)
i n

(k)
j , (18)

with n as a unit vector indicating the strut orientation. The distribution function determined using the fabric tensor
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is then incorporated into the evolution equation

∂ξ

∂t
= −div (β grad ξ) + α(1 − ξ) ξ − f(W, ε1, ρ) , (19)

with f = Wε1 (1 − ρ).

As an example, we consider a tensile test performed on a single-edge notched specimen constructed as a two-
dimensional artificial foam structure. Each strut of the specimen is discretized using standard Timoshenko beam
elements. The computations are performed using the FE-solver RADIOSS (Altair Engineering RADIOSS (2012)).
During the tensile test computation the beam elements with the highest values of the von Mises stress are consid-
ered failed foam struts which are consequently deleted. Figures (8(a) - 8(c)) depict the crack propagation in the
artificial foam structure.

(a) t = 0.01 (b) t = 0.5 (c) t = 1

Figure 8: Single-edge notched shear test performed on an artificial foam structure (normalised time values)

The directional data of the beams in the reference microstructure model is transferred to the phase-field model
using the orientation distribution functionρ(n), (Equation 16). Now, the tensile test is performed using modified
phase-field formulation (Equation 19). The obtained damage zone distribution is shown in Figures (9(a) - 9(c)).

(a) u = 0.38mm (b) u = 0.46mm (c) u = 0.50mm

Figure 9: Damage field distribution resulting from the model incorporating directional data

The comparison of the damage zone distribution acquired with phase-field model incorporating the directional data
and crack path from the reference model demonstrates a qualitative similarity of the results.

The presented phase-field formulation is constructed without a variational minimisation of a free energy functional
providing the advantage of a high flexibility in the description of microstructure evolution in open-cell foams.
The model can be further extended with regard to different constitutive models as well as finite strain theory.
Apart from, the coupling of the damage phase-field with the deformations, other coupling mechanisms (chemical,
temperature, etc.) can also be incorporated into the model formulation.

The phase-field formulation used in this study describes the evolution of connectivity which is linked directly to the
damage state of an open-cell foam material. As a matter of fact, with the ongoing damage process the connectivity
between the cells of a foam material is getting irrecoverably lost. Hence, the variable based on this topological
property features the character of a non-conserved variable of the corresponding phase-field formulation. The
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inspection of the evolution Equation (5) and the Cahn-Hillard or Allen-Cahn equations often used in the phase-
field formulations (Qin and Bhadeshia (2010), Moelans et al. (2008) ) reveals these three equations as a reaction-
diffusion equations, described in terms of an order-parameter and its gradients. This categorisation and also the
non-conserving character of the connectivity-based phase-field variable emphasise the similarity of the proposed
formulation with the equations used in variational phase-field formulations.

4 Conclusions

In the present contribution a non-variational phase-field approach is presented which allows for the description of
the damage evolution in the open-cell foam materials. The topological property characterising the microstructure
such as the edge-connectivity is used as the basis for the development of the proposed approach. The numerical
results show that the connectivity-based variable drives the evolution of the damage phase field. The presented
approach provides advantages in the description of the microstructural changes resulting from the damage process
in open-cell structures. The possibility of incorporating the directional data of the microstructure by means of the
orientation distribution function approximated with fabric tensors is examined. The performance of the proposed
formulation and the effects of the model parameters on the overall behaviour of the model are shown by means of
the respective numerical examples and parameter studies.
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