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Crystal Plasticity and Martensitic Transformations - A Phase Field
Approach

R. Schmitt, C. Kuhn, R. M̈uller, K. Bhattacharya

A phase field model for martensitic transformations considering crystal plasticity effects is introduced. The evo-
lution of microstructure is studied for two dimensions in detail, taking into account the transformation induced
eigenstrain of the different martensitic orientation variants, as well as the activity on various slip systems of the
different phases. With aid of the model, comprehensible numerical examples are evaluated, to understand the
correlations of the different processes on the microscale. The numerical implementation is performed with finite
elements. For the transient terms related to the evolution of microstructure, an implicit time integration scheme is
applied on a global level, while for the crystal plasticity setting an implicit time integration scheme on the element
level is employed.

1 Introduction

In manufacturing processes, surface hardening is often performed by thermal treatments. Cryogenic turning allows
end shape machining and simultaneously attaining a hardened surface due to the martensitic transformation, (Sko-
rupski et al. (2013a,b)). A longterm goal of this work is to contribute to a better understanding of the processes on
the microscale induced by cryogenic turning.
During the martensitic transformation in austenitic steel, the atom lattice changes from the face centered cubic
(fcc) phase to the body centered cubic (bcc) phase, i.e. the phase transition from austenite to martensite. The trans-
formation of the atomic lattice leads to the transformation induced eigenstrain. Differing in their orientations to the
austenitic lattice, there are several martensitic orientation variants with identical crystal structure, (Bhattacharya
(2003)). This is depicted in Fig. 1 for a plane problem schematically. Additionally, the martensitic transforma-
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Figure 1: Orientation variants of the product phase.

tion is accompanied by dislocation movement which can be inherited by the martensitic phase and thus influences
the microstructure evolution. To study these interactions, a continuum model for martenstitic transformations and
plasticity is introduced in this work.
The continuum mechanics concerning phase transformations in solids can be found in Fischer et al. (1994). A
micromechanical model for martensitic transformations is proposed by Bartel and Hackl (2008) and Bartel et al.
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(2011), using the concept of energy relaxation, in combination with evolution equations derived from inelastic po-
tentials. Cherkaoui and Berveiller (2000) assume in a conventional approach sharp interfaces between the different
phases and model the martensitic transformation with the concept of moving boundaries. However, the tracking of
those interfaces may become cumbersome. To circumvent these difficulties, an order parameter which regularizes
discontinuities can be employed in the phase field approach. Based on Chen et al. (1992) and Wang and Khachatu-
ryan (1997), there are several works, introducing the phase field method for martensitic transformations, e.g. Jin
et al. (2001), Artemev et al. (2000), Kundin et al. (2011) which are based on fast Fourier transformation (FFT).
Alternatively, finite differences (e.g. Yamanaka et al. (2008)) or finite elements (e.g. Hildebrand and Miehe (2011),
Levitas et al. (2009)) are applied to solve the field equations. Equally there is literature, where crystal plasticity is
considered for a phase field model for martensitic transformations. For example Yamanaka et al. (2009) examine
with aid of a 3D model the growth of precipitates in elastoplastic materials. Hildebrand and Miehe (2012) apply
finite gradient crystal plasticity for a variational phase field model, which focuses on the formation of plastic lam-
inate deformation microstructure. In another work, Richards et al. (2013) study the complex correlations between
the martensitic transformation and plastic slip for shape memory alloys on the mesoscale, employing FFT.
In this work an idealized problem motivated by microstructure evolution of steel is analysed, focussing on the
impact of the transformation strain on the activation of different slip systems, and vice versa. The goal of this work
is to model these interactions. Therefore, some basic examples are studied in detail.
The model introduced here is based on the phase field model for martensitic transformations proposed in Schmitt
et al. (2013a) and Schmitt et al. (2013c). It considers the transformation induced eigenstrain, as a function of the
order parameter. For this work, dislocation movement during the phase transformation is taken into account in the
framework of crystal plasticity, using distinctive slip systems for the austenitic and the martensitic phase. Differing
from the former ansatz, for the present approach a three well function is used to model the metastable and stable
states of the system so that two martensitic orientation variants can be considered using a single order parameter.
The idealized setting of two variants is reasonable since the model is limited to 2D. For the numerical realization,
a finite element scheme is employed. It is noted that plasticity and phase transformation can interact in two ways -
through kinetics and through the driving force, i.e. through the stresses. The former is well-studied in the literature
(e.g. Olson and Cohen (1975)). However, the latter is also important but often overlooked. Therefore, in this work,
the first is explicitly turned off to isolate the interactions through the stresses. This can easily be generalized.
The continuum phase field model for crystal plasticity and martensitic transformations is introduced in section 2.
In section 3, the numerical realization is explained, considering the two different time scales of the model. The
numerical results are examined in section 4, while basic examples are chosen to gain a better understanding for the
correlations between the different processes on the microstructure. In the last section the main results and methods
are summarized which finally leads to some comments referring to future work.

2 Continuum Phase Field Model Combining Crystal Plasticity and Martensitic Transformations

In this section, the continuum phase field model for crystal plasticity and martensitic transformations is devel-
oped, starting with the kinematics in subsection 2.1. The constitutive equations and evolution laws are given in
subsection 2.2.

2.1 Kinematics

The total strain tensorε = ∇symu is split up into the elastic strainεe , the transformation induced eigenstrainε0

and the plastic strainεp,
ε = εe + ε0 + εp. (1)

The global plastic strainεp is calculated from the slipγk in thekth slip system,

εp =
N∑

k=1

γk P k, P k =
1
2

[sk ⊗ nk + nk ⊗ sk] , (2)

wheresk is the slip direction andnk the normal of thekth slip system. In (2), the projectorP k is the strain
(direction) associated with thekth slip system, see for example Richards et al. (2013). For the 2D analysis in this
work, two slip systems are considered for the austenitic phase (k = 1, 2) and the martensitic phases (k = 3, 4),
respectively. These slip systems are identical in pairs, slip systemk=1 corresponds tok=3 andk=2 corresponds
to k=4.
In the phase field model the phase is indicated by an order parameter: Herec = 0 for the austenitic phase, and
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c=±1 for the two martensitic phases, the first (c=1) and the second (c=−1) martensitic orientation variant.
Depending on the order parameterc, the elastic energyW (ε, c) is defined as

W (ε, c) =
1
2

(
ε − ε0(c) − εp

)
:
[
C(c)

(
ε − ε0(c) − εp

)]
. (3)

The eigenstrain tensorε0(c) is taken into account in a way that it considers the transformation shearε0
12 on the off-

diagonal entries and a volumetric transformation strainε0
vol on the diagonal entries. For the eigenstrain tensorε0(c)

under plane strain conditions and the elasticity tensorC(c) the following dependencies on the order parameterc
are assumed

ε0(c) =

[
c2 ε0

vol c ε0
12

c ε0
12 c2 ε0

vol

]

, C(c) = Cfcc + c2 (Cbcc− Cfcc) . (4)

In order to consider for both orientation variants the same volumetric transformation strainε0
vol and the same

elasticity tensorCbcc, the dependence on the order parameter for these quantities is quadratic. The transformation
shear changes sign for the different orientation variants and therefore dependes linearly on the order parameter.

2.2 Energetic Setting and Constitutive Laws

The local energy densityψ considered for this model consists of four parts, the elastic energy densityW , the
isotropic hardening potentialW h, the gradient energy densityψgrad and the separation potentialψsep,

ψ(ε, c, ∇c, γk, αk) = W (εe, c) + W h(αk) + ψgrad(∇c) + ψsep(c)

= W (εe, c) + W h(αk) +
1
2
κgGL||∇c||2 + κs

G

L
f(c), (5)

whereαk is the hardening variable of thekth slip system. Based on Cahn and Hilliard (1958), in Schrade et al.
(2008, 2013), the calculation of the calibration constantsκg andκs is derived, which results inG corresponding
to the free interface energy density, while the parameterL controls the width of the transition zone. The function
f(c) which appears in the separation potentialψsep is a Landau polynomial expansion, see Roumi (2010),

f(c) =
(3 A2 − 1 − 2 c2)(1 − c2)2

3 A2 − 1
, (6)

where the coefficientA determines the height of the energy barrier. The plot off(c) in Figure 2 shows that the

Figure 2: Landau polynomial expansionf(c)

function has a local minimum wheref(c) = 1 for c = 0 which corresponds to the metastable austenitic phase, and
two global minima wheref(c) = 0 for c = ±1 corresponding to the stable martensitic phases.
As the driving force for the phase transformation, the variational derivative of the local total free energyψ with
respect to the order parameterc

dc = −
δψ

δc
(7)

is taken into account. Assuming linear dependence of the microstructure evolution - and thus the temporal evolution
of the order parameterc - on the driving force leads to the time-dependent Ginzburg-Landau equation (TDGL)

ċ = −M
δψ

δc
= −M

[
∂W

∂c
+ G

(
κs

L

∂f

∂c
− κg LΔc

)]

, (8)
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where the mobility parameterM influences the velocity of the martensitic transformations. Ignoring inertia effects
and in absence of body forces, the balance of linear momentum reduces to the equilibrium condition

divσ = 0, (9)

for the Cauchy stress tensorσ, given by the constitutive relation

σ =
∂ψ

∂ε
= C(c)

(
ε − ε0 − εp

)
. (10)

The equations (8) and (9) complete the set of field equations, where the mechanical balance equation (9) is coupled
to the evolution equation of the order parameter (8) through the constitutive relation (10).
The isotropic hardening potential, which is part of the local energy densityψ in (5), is introduced by

W h =
1
2

N∑

k=1

Hk α2
k (11)

with the hardening modulsHk. The slipγk and the harding parameterαk are implemented as internal variables.
If the yield criterion

φk = |τk| − τ cr
k > 0 with τ cr

k (c) = dcr
k (c) + Hk αk, (12)

is satisfied, the slip system becomes active. In an active slip system, the slipγk and the hardeningαk are assumed
to evolve as follows

γ̇k =
1
η
〈|τk| − τ cr

k 〉 sgn(τk), α̇k = |γ̇k|, (13)

whereη is the viscosity coefficient, and the symbol〈∙〉 represents the Macaulay brackets. With the help of the
projectorP k the resolved shear is given by

τk = P k : σ = σ : P k. (14)

In (12), the critical driving force for plasticitydcr
k (c) depends on the order parameterc since only the slip systems

of the present phase can be activated. For austenitic material (c = 0), the critical shear stress of the austenitic
phaseτ cr

fcc is taken into account for the austenitic slip systems (k=1, 2). The criticial shear stress of the martensitic
phaseτ cr

bcc is set to a sufficiently high value for the martensitic slip systems (k=3, 4), so that these remain inactive.
Analogously, forc = ±1, τ cr

bcc is taken into account fork = 3, 4 andτ cr
fcc is set to a high value fork = 1, 2 by the

following relation

dcr
k (c) =






k∞

[
τ cr

fcc

k∞
+ 1 + tanh(k1 c − k2) + 1 − tanh(k1 c + k2)

]

k = 1, 2 (c = 0)

k∞

[
τ cr

bcc

k∞
+ tanh(k1 c + k2) − tanh(k1 c − k2)

]

k = 3, 4 (c = ±1)

. (15)

Figure 3 shows the plot of the functiondcr
k (c), where the dotted line corresponds to the austenitic phase, i.e. for

c = 0 the slip systemsk = 1, 2 can be activated; the continuous line corresponds to the martensitic phase, where
for c =±1 the slip systemsk = 3, 4 are available.

3 Numerical Procedures

The model is implemented in a 2D-FEM framework with the mechanical displacementsu and the order parameterc
as nodal degrees of freedom, considering two time scales. For the transient terms related to the evolution of the
order parameterc, a backward Euler scheme is applied on the global level, solving for each time step the set
of coupled field equations. The numerical realization is explained in subsection 3.1. To evaluate the evolution
equations of the slip and the hardening, a backward Euler scheme is used on the element level, which is discussed
in subsection 3.2.

3.1 Numerical Implementation: The Global Time Scale

On the global time scale the transient terms are discretized in time using the Euler backward time integration
scheme. The numerical implementation is explained in detail in Schrade et al. (2007). The starting point are the
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Figure 3: Critical driving force for plasticitydcr
k (c)

weak formulations of the field equations (8) and (9) using the test functionsηu, ηc

∫

V

∇ηu : σ dV =
∫

∂Vt

ηu ∙ t∗ dA, (16)

and ∫

V

ηc
ċ

M
dV −

∫

V

∇ηc q dV +
∫

V

ηc

(
∂W

∂c
+ G

κs

L

∂f

∂c

)

dV = −
∫

∂V

ηc q∗ dA, (17)

with q = −κg GL ∇c. The boundary conditions for the stressesσ is the tractiont∗ = σn and forq the normal
flux q∗ = q ∙ n with q∗ = 0, wheren is the outer normal vector to the volumeV . The rateċ is computed by a
time discretization. Ifj denotes the time steptj the difference formula

ċ =
c(j+1) − c(j)

Δt

is used.
Using the shape functionsNI for nodeI, the fieldsu, ε andc, ∇c andċ are discretized with Voigt notation denoted
by an underbar(∙):

u =
N∑

I=1

NI ûI , ε =
N∑

I=1

Bu
I ûI , (18)

c =
N∑

I=1

NI ĉI , ∇c =
N∑

I=1

Bc
I ĉI , (19)

ċ =
N∑

I=1

NI =
N∑

I=1

NI
ˆ̇cI , (20)

where

Bu
I =




NI,x 0

0 NI,y

NI,y NI,x



 and Bc
I =

[
NI,x

NI,y

]

. (21)

The nodal quantities are denoted by the superimposed hat(̂∙). In a next step, these discretizations are applied to
equations (16) and (17) to obtain the nodal residuals as a function of the nodal degrees of freedomd̂J = (ûJ , ĉJ )T
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and the rateṡ̂dJ ,

RI

(
d̂J ,

˙̂
dJ

)
=

[
Ru

I (d̂J )

Rc
I(d̂J ,

ˆ̇
dJ )

]

=

=









∫

V

(Bu
I )T

σ dV

∫

V

NI
ċ

M
dV −

∫

V

Bc
I
T q dV +

∫

V

NI

(
∂W

∂c
+ G

κs

L

∂f

∂c

)

dV









. (22)

Note that in the derivation of (22) boundary tractionst∗ and boundary fluxesq∗ have been neglected. The derivative
of the nodal residuals with respect to the nodal degrees of freedom yields the entries of the tangent matrixKIJ

given by

KIJ =
∂RI

∂d̂J

=

[
Kuu

IJ Kuc
IJ

Kcu
IJ Kcc

IJ

]

, (23)

with

Kuu
IJ =

∫

V

(Bu
I )T CBu

J dV

Kuc
IJ = Kcu

IJ =
∫

V

(Bu
I )T (

σ̃ − σ0
)
NJ dV

Kcc
IJ =

∫

V

(

κgGL (Bc
I)

T
Bc

J + NI

(
(
ε0
)T (

σ0 − 2σ̃
)

+ κs
G

L

∂2f

∂c2

)

NJ

)

dV

whereσ̃ = 2 c (CM − CA)
(
ε − ε0(c) − εp

)
andσ0 = C(c)

∂ε0(c)
∂c

.

Furthermore, the damping matrixDIJ reads

DIJ =
∂RI

∂
ˆ̇
dJ

=
∫

V






0 0 0
0 0 0

0 0
1
M

NI NJ




 dV. (24)

The integrals are evaluated using Gauß quadrature. With the knowledge ofKIJ andDIJ the implicit time inte-

gration can be performed. This results in a system matrixSIJ =
1

Δt
DIJ + KIJ after time discretization. The

matrix SIJ is used in a global Newton iteration to compute the increments ofd̂J for the new time stept(j+1)

(implicit scheme).

3.2 Local Time Discretization Algorithm

The algorithm for the time integration of the evolution equations of the crystal plasticity setting is also based on
an implicit Euler backward scheme, in form of a predictor corrector method, where the time interval[t(n), t(n+1)]
is considered. Furthermore, the variables att = t(n) are known. In the first predictor step, an elastic trial value for
the strains is given withεp,tr = εp(n), so the resolved shear stress on all slip systemsk can be calculated for the
trial state

σtr = C(c)
(
ε − ε0(c) − εp(n)

)
, (25)

τ tr
k = σtrT ∙ P k. (26)

Subsequently, for each slip systemk the yield criterion is checked by the trial state

φtr
k = |τ tr

k | − τ cr,
k

tr(c), (27)

whereαtr
k = α

(n)
k . If φtr

k > 0, k is an active slip system. For active slip systems the update formula for

γ
(n+1)
k = γ

(n)
k + Δγ

(n+1)
k sgn(τ tr

k ) with Δγk =
Δt

η
φ

(n+1)
k (28)
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results from the time discretization of the evolution law (13). To obtainΔγ
(n+1)
k , the update formula for the yield

function can be recast according to a similar procedure as in Schröder and Miehe (1997) in the format

φ
(n+1)
k = φtr

k −
Nact∑

l=1

(Rkl + Hkl δkl) Δγl, (29)

where
Rkl = PT

k C(c) P l sgn(τk
tr) sgn(τl

tr), (30)

with the identity tensorδkl, and the diagonal matrixHkl = diag(Hk). Furthermore,l ∈ {1, ..., N act} denotes the
lth of Nact active slip systems. Together with the definition ofΔγk in (28), (29) forms a set of linear equations for
theΔγl

Nact∑

l=1

[

δkl +
Δt

η
(Rkl + Hkl)

]

︸ ︷︷ ︸
Akl

Δγl =
Δt

η
φtr

k.

︸ ︷︷ ︸
bk

(31)

Finally, the values for the stressesσ and the tangent moduliC(c) are computed for the time stept = t(n+1)

σ(n+1) = C(c)

[

ε(n+1) −
N∑

k=1

γ
(n+1)
k P k

]

, (32)

Ctan(n+1)
(c) = C(c) −

Nact∑

k=1

Nact∑

l=1

[

C(c) P k sgn(τ tr
k )

Δt

η
(Akl)

−1 PT
l C(c) sgn(τ tr

l )

]

, (33)

where the tangential stiffnessCtan(c) is given by the derivative
∂σ(n+1)

∂ε(n+1)
.

4 Numerical Examples

The idealized model is implemented into a four-node quadrilateral plane element with bilinear shape functions.
For all calculations, the elasticity tensors

Cfcc =




1.40 0.84 0.0
0.84 1.40 0.0
0.0 0.0 0.28



 10 5 N
mm2

, Cbcc = 1.1Cfcc, (34)

are considered in Voigt notation, where the stiffnessCfcc is taken from Yamanaka et al. (2008). Using Voigt
notation, the eigenstrain is set to

ε0(c) =




c2ε0

vol
c2ε0

vol
c 0.1



 , (35)

where the volumentric entriesε0
vol = 0 unless otherwise specified. Withε0

vol = 0, the eigenstrain corresponds
to a pure shear loading on the martensitic phase. The calibration constants are determined to beκs = 2.4521
andκg = 2.1808 so thatG = 0.1 J

m2 is the interface energy density. This value lies within the range of the free
energy densities of other phase field models, (see Schrade et al. (2009)). The parameterL = 5 nm is chosen
sufficiently large, so that the transition zone can be resolved by several elements. Furthermore, the mobility
constantM = 1.0 ∙ 10 6 m3

J s is used. For all simulations, the microstructure evolution through the eigenstrainε0(c)
is studied in the absence of external loads. Assuming an isothermal setting, the boundaries of the computation
domain are stress free. In order to avoid rigid body movement, the bottom left corner is fixed in both the horizontal
and the vertical directions; the bottom right corner is fixed in vertical direction. Furthermore, the following slip
systems are taken into account

s1 = s3 =

[
1
0

]

, n1 = n3 =

[
0
1

]

, ⇒ P 1 = P 3 =
1
2

[
0 1
1 0

]

, (36)

s2 = s4 =
1
√

2

[
1
1

]

, n2 = n4 =
1
√

2

[
−1

1

]

, ⇒ P 2 = P 4 =
1
2

[
−1 0

0 1

]

. (37)

The slip systemsk =1 andk =3 correspond to pure shear, i.e. compression and tension parallel to the diagonals
of the quadratic computation domain. The slip systemsk = 2 andk = 4 are associated with simple shear, i.e.
compression parallel to the horizontal edges and tension parallel to the vertical edges of the quadratic specimen.
The slip directions and the slip normals are depicted schematically in Fig. 4.
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s1, s3

n1, n3

slip systemsk=1, 3 slip systemsk=2, 4

s2, s4n2, n4

Figure 4: Slip normals and slip directions of the slip systems.
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(f) t = 0 (g) t = 100 (h) t = 120 (i) t = 140 (j) t = 200

Figure 5: First row: evolution of the martensitic phase for a single circular nucleus (variant 1, black) in austenitic
matrix (grey), elastic material behavior, deformed configuration.
Second row: normal strain componentσx

4.1 Single Circular Martensitic Nucleus, Elastic Material

In a first example a single circular martensitic nucleus in an austenitic matrix is modeled with purely elastic material
(no plasticity). This simple example does not feature complicated interactions so the results are comprehensible.
The evolution of the martensitic phase can be seen in the first row of Figure 5, where the austenitic phase is depicted
in grey (c=0) and the first martensitic orientation variant in black (c=1). Due to the initial configuration, for this
example the second martensitic orientation variant does not appear. In Fig. 5 the transition zone is shown in order
to illustrate its length scale compared to the specimen size. To present more complicated microstructures clearly,
it is neglected in the following plots and the martensitic phase is shown for a valuec ≥ 0.6.

Figure 5(b) shows the martensitic nucleus growing without external load applied since martensite is the stable
phase. Thus, the growing nucleus reduces the global separation energyEsep =

∫
V

ψsepdV . Initially, the marten-
sitic phase grows in almost circular shape which leads to a small interface between the phases and is therefore
favorable for the system as it results in a low contribution of the global gradient energyEgrad =

∫
V

ψgraddV .
After some time steps, however, due to the transformation induced eigenstrainε0(c), a martensitic plate is built
(Figure 5(c)). The eigenstrainε0(c) induces shear stress on the martensitic nucleus with main shear directions in
horizontal and vertical direction. This leads to a martensitic plate, which evolves either in horizontal or vertical
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direction, depending on the exact initial position of the nucleus. In this case a plate in horizontal direction forms.
When the plate has grown through the austenitic material, it widens in vertical directions until the matrix consists
of exclusively martensitic material (Figure 5(e)), which yields the minimal global total energyE tot =

∫
V

ψ dV .
The martensitic phase growing in a plate-like shape is confirmed by other theoretical studies, e.g. Yamanaka et al.
(2008).

In the second row of Fig. 5, the normal stress componentσx is plotted. For the initial configuration (Fig. 5(f))
it illustrates, that the stress induced by the eigenstrain within the martensitic nucleus decays in radial direction so
that the boundaries are stress free. Hence, there is no influence of the boundary for the initial configuration. When
the martensitic plate has grown through the matrix, the stress is considerably smaller (Fig. 5(j)). In this context,
Fig. 5(e) shows that the stress is reduced due to a deformation of the specimen on the macroscale. Subsequently,
in the following example the impact of the eigenstrain on the different slip systems is examined.

4.2 Single Circular Martensitic Nucleus, Elastoplastic Material

In the next example the single circular martensitic nucleus is studied again, now taking crystal plasticity into
account. For the austenitic slip systems, the critical shear stressτ cr

fcc = 200 MPa is considered. The yield strength
of the martensitic phase is about two to three times higher than that of the austenitic phase (Roumi (2010)), for this
example the value ofτ cr

bcc = 450 MPa is used. Figure 6 shows in the first column the evolution of the martensitic
phase. Comparing Figure 6(f) with Figure 5(c), which both show the evolution of the martensitic phase for time
stept = 120, reveals the martensitic plate growing slightly faster in purely elastic material. The plastic zone seems
to constrain the martensitic transformation. This result is reasonable since the slip additionally dissipateselastic
energy which is not available for the phase transition. Energetic considerations for this model are carried out in
detail in Schmitt et al. (2013a,b).
Columns two to five of Figure 6 depict the norm of the slip for all slip systems; the first row refers to the initial
configuration (t = 0). In Figure 6(b), it can be seen that the first slip systemk = 1 is activated in the austenitic
material around the nucleus, where the highest amount of slip can be seen in the directions rotated by45◦ referring
to the horizontal and vertical directions. It is an austenitic slip system which corresponds to a pure shear loading.
This explains the formation of the plastic zone: Inside the nucleus, the eigenstrain acts as a pure shear loading with
principal directions in45◦-directions. Since the nucleus is initially growing in circular direction, the amount of slip
is higher in these areas. However, there is slip visible in horizontal and vertical directions around the nucleus, too.
These are the main shear directions of the eigenstrain which lead to the plate propagating in horizontal direction.
Therefore, the slip systemk = 1 can be seen activated in horizontal and vertical directions in the following time
steps. For time stept = 140, the martensitic plate has grown almost completely through the matrix. Figure 6(k)
shows the slip systemk=1 additionally activated at the plate tips. This becomes intuitive, keeping the eigenstrain
of the martensitic phase in mind, which corresponds to a pure shear loading. It leads to high resolved shear stresses
in the austenitic material at the plate tips. For the vertically widening plate at time stept = 200, the plastic zones
at the plate tips are slightly vertically elongated (Figure 6(q)). When the plate has grown completely through the
austenitic domain, the system is able to reduce the elastic energy on the macro level through deformation so that
the stresses are lower. Hence, the amount of the additional slip in systemk=1 in Figure 6(q) is very small.
The slip of the second austenitic systemk = 2 is considerably higher than that of slip systemk = 1. Figure 6(c)
shows the slip systemk=2 activated in radial direction around then martensitic nucleus since the nucleus is initially
growing in a circular shape. The strain direction associated with this slip system corresponds to a compression in
horizontal direction and tension in vertical direction by the same amount, which explains the radial activation of slip
systemk =2. As the plots show the norm of the slip, there is no distinction between expansion and compression
visible. For the following time steps, the slip systemk = 2 remains activated around the horizontally growing
plate. Equally to slip systemk = 1, there is slip at the plate tips, when the growing plate has almost reached the
borders of the austenitic matrix (Figure 6(m)). For time stept = 200, there is no additional activation of slip in
the systemk =2, however, a small part of the slip in Figure 6(r) is inherited by the martensitic phase: Figure 6(t)
shows the slip systemk=4 activated at the vertical borders of the matrix, (where the material for that time step is
martensitic). So the plastification of the austenitic slip systemk =2 proceeds in the martensitic slip systemk =4.
Apart from that, the slip systemk = 4 is not activated. The resolved shear stress of that slip system is below the
critical shear stressτ cr

bcc.
The martensitic slip systemk=3 is activated within the nucleus, with the highest amount of slip in horizontal and
vertical directions (Figure 6(d)), which is again due to the martensitic eigenstrain, acting as a pure shear loading
with main shear directions in horizontal and vertical direction. After the first time step, the slip of the martensitic
systemk = 3 does not evolve further since the growing plate reduces the stresses within the nucleus (see column
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austenitic
︷ ︸︸ ︷

martensitic
︷ ︸︸ ︷

c |γ1| |γ2| |γ3| |γ4|

−1 0 1 0 6.7∙10−6 0 2.5∙10−5 0 1.5∙10−5 0 0.006

(a) t = 0 (b) k= 1 (c) k=2 (d) k=3 (e)k=4

c |γ1| |γ2| |γ3| |γ4|

−1 0 1 0 0.0013 0 0.019 0 0.001 0 0.006

(f) t = 120 (g) k= 1 (h) k=2 (i) k=3 (j) k=4

(k) t = 140 (l) k= 1 (m) k=2 (n) k=3 (o) k=4

(p) t = 200 (q) k= 1 (r) k=2 (s)k=3 (t) k=4

Figure 6: Single circular martensitic nucleus withε0
vol = 0.

Left: Martensitic evolution with crystal plasticity (variant 1: black, austenite: grey);
Right: Norm of the slip|γk| for k = 1, .., 4.
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four of Figure 6).
Hence, the results show strong interactions between the transformation induced eigenstrain in the martensitic
phase and the behavior of the different slip systems while the slip constrains the evolution of the martensitic phase.
Furthermore, the inheritance of slip from the austenitic to the martensitic phase can be observed. In a next step, the
influence of a volumetric part of the transformation strain tensorε0 on the activation of slip systems is considered.

4.3 Single Circular Martensitic Nucleus with Volumetric Eigenstrain, Elastoplastic Material

In this section, again a single circular martensitic nucleus is studied, taking crystal plasticity into account. However,
here the volumetric eigenstrain in (35) is set toε0

vol = 0.04. Figure 7 shows in the first column the evolution of
the martensitic phase. Employing the initial configuration of the previous examples, the volumetric part of the
eigenstrain leads to a martensitic plate, growing in diagonal direction. This can be explained by considering the
eigenstrain tensorε0(c) applied in this example: The pure shear part leads due to its main shear directions to a
horizontally growing martensitic plate. The volumetric part of the eigenstrain tensor yields a nucleus growing in
circular direction. The superposition of both parts results in the martensitic plate propagating in diagonal direction.
The diagonal growing direction of the martensitic plate coincides with crystallographic theories of the martensitic
transformation, e.g. Wechsler et al. (1953). For this example the diagonal direction is not preset by the nucleus
but results from the volumetric part of the eigenstrain tensorε0(c). So evidently, the volumetric part of the the
eigenstrain tensorε0(c) has to be taken into account for the modeling of martensitic transformations.
The first column of Figure 7, additionally depicts the evolution of the martensitic phase for a purely elastic material
in white. At time stept=10, the difference is hardly visible (Figure 7(f)). Yet as in section 4.2, the following time
steps show, that the slip constrains the growth of the martensitic plate since additional elastic energy is dissipated.
Therefore, in Figures 7(k) and (p), the martensitic plate of the purely elastic material in white is larger than the
martensitic phase depicted in black, where crystal plasticity is taken into account.
The impact of the volumetric part of the eigenstrain tensorε0(c) becomes evident, when considering the norm of
the slip for the four slip systems (columns two to five in Figure 7). Generally, the additional volumetric part in the
eigenstrainε0(c) yields higher stresses, so that the amount of slip in the austenitic slip systems is higher, compared
to the example in Figure 6, where the same nucleus is studied withε0

vol = 0. Furthermore, all four slip systems are
activated in a similar way compared to section 4.2. However, the slip system activation is rotated by45◦ since the
martensitic plate is growing in diagonal direction.
In the previous section4.2 with ε0

vol = 0, the slip systemk = 4 is initially not activated (Figure 6(e)). With
ε0

vol = 0.04, the martensitic slip systemk=4 shows a small amount of slip (Figure 7(e)) for the initial configuration.
The strain direction associated with this slip system corresponds to a compression in horizontal direction and an
expansion in vertical direction by the same amount with main shear directions in diagonal directions. Therefore, it
is activated at the borders of the martensitic nucleus due to the volumetric part of the transformation strain in the
martensitic phase. There is no additional activation of slip systemk=4 in the following time steps as the stresses
in the nucleus are reduced by the martensitic evolution.
Another observation concerns the austenitic slip systemk = 2. The initial configuration leads to ring-shaped slip
of systemk=2 around the nucleus (Figure 7(c)). For time stept = 10, Figure 7(h) shows within the ring of slip a
small martensitic plate. This is depicted enlarged in Figure 8(a), indicating the martensitic phase in white. When
the tip of the martensitic plate reaches the area of plasticity, the slip systemk = 2 is activated at the sides of the
plate tip (Figure 8(b), (c) and (d)). This leads to the two lines of plasticity in direction of the growing plate which
can be seen for time stepst = 100 andt = 150 in Figure 7(m) and (r), respectively. The slip activated by the
martensitic plate demonstrates the correlations between plasticity and the martensitic transformation.
Thus, the volumetric part of the eigenstrain tensorε0(c) leads to a martensitic plate growing rotated about45◦ in
diagonal direction which also results in a change in the areas of plastic slip. This influences the evolution of the
martensitic phase. On the other hand, slip induced by the propagating martensitic plate is observed, too, which
indicates strong interactions between plasticity and the martensitic tansformation. In the next section additionally
the second martensitic orientation variant is studied, which differs in eigenstrain from the first variant.

4.4 Two Martensitic Nuclei with Volumetric Eigenstrain, Elastoplastic Material

The initial configuration applied for this section is depicted in Figure 9(a): an austenitic matrix with two circular
nuclei, one of each orientation variant. As in section 4.3, crystal plasticity is considered and the volumetric part
of the transformation strain is set toε0

vol = 0.04. Again, the first column of Figure 9 shows the evolution of the
martensitic phase where the second martensitic orientation variant is illustrated in white. The nuclei can be seen
growing in a plate-like shape in diagonal directions. Since the eigenstrain in (35) depends on the sign of the order
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austenitic
︷ ︸︸ ︷

martensitic
︷ ︸︸ ︷

c |γ1| |γ2| |γ3| |γ4|

−1 0 1 0 7.7∙10−5 0 1.3∙10−4 0 2.6∙10−5 0 4∙10−5

(a) t = 0 (b) k= 1 (c) k=2 (d) k=3 (e)k=4

c |γ1| |γ2| |γ3| |γ4|

−1 0 1 0 0.0034 0 0.011 0 5∙10−4 0 3.6∙10−4

(f) t = 10 (g) k= 1 (h) k=2 (i) k=3 (j) k=4

(k) t = 100 (l) k= 1 (m) k=2 (n) k=3 (o) k=4

(p) t = 150 (q) k= 1 (r) k=2 (s)k=3 (t) k=4

Figure 7: Single circular martensitic nucleus withε0
vol = 0.04.

Left: Martensitic evolution with crystal plasticity (variant 1: black, austenite: grey), elastic martensitic evolution
white framed (for comparison); Right: Norm of the slip|γk| for k = 1, .., 4.
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|γ2|

0 0.011 (a) t = 10 (b) t = 60 (c) t = 70 (d) t = 100

Figure 8: Norm of slip|γ2| for single circular martensitic nucleus (white) withε0
vol = 0.04, enlarged.

parameterc, the shearε0
12 is positive for the first martensitic orientation variant (c=1) and negative for the second

variant (c =−1). As a result, the different variant plates evolve perpendicular to each other. When the maximal
extension in diagonal direction is reached, the plates start to widen, (Figure 9(u)). Analogously to the previous
section, the martensitic evolution for purely elastic material is depicted as a white frame around the elasto-plastic
plates which again indicates the elastic plate growing slightly faster. Thus, also for this example, the crystal plas-
ticity affects the evolution of the martensitic phase since additional elastic energy is dissipated.
Furthermore, the amount of slip in the systemsk = 1, ..., 4 is shown in columns two to five of Figure 9. The dif-
ferent signs of the transformation shearε0

12 for the two variants lead to different areas of slip for the corresponding
slip systems. Since the shear directions of the different variants are perpendicular to each other, the areas, where
the slip systems are activated in response to each variant are perpendicular to each other, too. Apart from that,
the observations of the previous section 4.3, can be found again in Figure 9: The martensitic slip systemk =4 is
activated due to the volumetric strain in the initial nuclei. Figure 9(e) shows the different directions of slip result-
ing from the different signs in transformation shear of the nuclei. The evolution of slip around the first nucleus is
rotated by90◦ referring to that of the second nucleus. Concerning the austenitic slip systemk = 2, the lines of
plasticity induced by the martenitic plates evolve in both diagonal directions (Figure 9(r),(w)), in turn influencing
the martensitic evolution: The elastic and the elasto-plastic martensitic plate do not only differ in size but also in
shape, see Figure 9(p). At the left upper corner, the black elasto-plastic plate is sharper than the white frame of the
elastic plate. In Figure 9(m) slip systemk = 2 is activated around plate tip, which constrains the widening of the
martensitic phase. This is also observed at the tips of the variant two plate. Furthermore, the slip at the plate tips
of the austenitic systemk=2 is inherited by the corresponding martensitic slip systemk=4 (Figure 9(t)).
In Figure 9(u) it can be seen, that the black martensitic variant one plate has almost reached the white plate of
variant two. In the narrow austenitic area between the plates slip systemk=1 is activated around the white variant
two plate. The high resolved shear stress results from the transformation shear which acts in different directions
within the appraoching plates.
For this section, it can be concluded, that the plates of the different orientation variants grow perpendicular to each
other in diagonal direction, caused by the different signs in transformation shear in combination with the volumet-
ric part of the transformation strain. Therefore, the slip in response of the different variants evolves perpendicular
to each other, too. The general evolution of plasticity is plausible, indicating strong interactions between the slip
and the martensitic transformation.

5 Conclusion

A phase field model for martensitic transformations considering crystal plasticity effects is introduced with the rate
of the order parameter assumed to follow the time-dependent Ginzburg-Landau equation. Distinctive slip systems
for the different phases are considered. The simulations show, that these are activated in a reasonable manner. In
addition, the model is able to capture the inheritance of slip from one phase to another.
With aid of the model the interactions between the martensitic formation including the transformation induced
eigenstrain and the plasticity of different slip systems are studied. Resorting to basic examples, the evolution of
slip as a result of the transformation strain could be understood. The crystal plasticity is found to influence the
formation of the martensitic phase since additional elastic energy is dissipated. On the other hand, slip induced
by the martensitic transformation is observed, too. In this context, more realistic results are attained if not only
transformation shear but also volumetric transformation strain are taken into account.
With the interactions understood, for future work more realistic examples will be considered. In this context, using
a 3D model with a real crystallographic relations would enable the verification by experiments. Futhermore, it
is assumed that slip comparable to the eigenstrains will lead to more realistic results. Another task is to include
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austenitic
︷ ︸︸ ︷

martensitic
︷ ︸︸ ︷

c |γ1| |γ2| |γ3| |γ4|

−1 0 1 0 8∙10−5 0 1∙10−4 0 2∙10−5 0 4∙10−5

(a) t = 0 (b) k= 1 (c) k=2 (d) k=3 (e)k=4

c |γ1| |γ2| |γ3| |γ4|

−1 0 1 0 0.0037 0 0.023 0 3∙10−4 0 5∙10−4

(f) t = 18 (g) k= 1 (h) k=2 (i) k=3 (j) k=4

(k) t = 45 (l) k= 1 (m) k=2 (n) k=3 (o) k=4

(p) t = 77 (q) k= 1 (r) k=2 (s)k=3 (t) k=4

(u) t = 126 (v) k= 1 (w) k=2 (x) k=3 (y) k=4

Figure 9: Two circular martensitic nuclei withε0
vol = 0.04.

Left: Martensitic evolution with crystal plasticity (variant 1: black, variant 2: white, austenite: grey), elastic
martensitic evolution white framed (for comparison); Right: Norm of the slip|γk| for k = 1, .., 4.
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additionally the interactions of phase transformations and plasticity through the kinetics.
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