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Microscale Modeling of Magnetoactive Composites Undergoing Large
Deformations

C. Spieler, P. Metsch, M. K̈astner, V. Ulbricht

This paper is concerned with the development of a material model for the constituents of a magnetoactive compo-
site. Special attention is paid to magnetorheological elastomers which are synthesized from a soft polymeric matrix
material with embedded magnetizable particles. Because the particles interact under an applied magnetic load,
a coupled magneto-mechanical field problem has to be solved. The mechanical properties of the polymer matrix
motivate the consideration of large deformations. We present the balance equations with boundary conditions and
an appropriate material model. The corresponding boundary value problems are solved by the Finite-Element-
Method. A weak numerical coupling scheme enables the staggered solution of two subproblems, the stationary
magnetic and mechanical one. The coupling between both is realized by a surrounding iterative loop.

1 Introduction

Magnetoactive composite materials are in great demand from science, medicine and technology with a special
interest on their macroscopic properties. To simulate and predict the effective material properties which are es-
sentially determined by the properties of the individual components and their geometrical arrangement in the
composite, a microscopic model accounting for material nonlinearities under the consideration of large deforma-
tions is to be provided. The proposed modeling strategy is suitable to capture the behavior of magnetorheological
elastomers (MRE) (Davis (1999); Carlson and Jolly (2000)). On the microscale, MRE consist of a cured polymeric
matrix with embedded magnetizable particles. During the manufacturing process, before curing the elastomer, the
particles are disordered in the absence of an external magnetic load. When a magnetic field is applied, mechanical
interactions between the individual particles result in the formation of particle clusters, which are aligned with
the direction of the external magnetic field. These microstructural formations influence the effective magnetic and
mechanical properties of the composite and motivate their incorporation into the simulation process.
The underlying magneto-mechanical coupling can be classified into three parts. If deformations occur, regard-
less if they are caused by magnetic or mechanical loads or both, the associated geometry changes influence the
magnetic field. On the other hand magnetic terms enter the mechanical subproblem as loads and result in varia-
tions of the displacement field. In addition, there is a further coupling effect caused from the material behavior
itself. An essential part of modeling MRE is the formulation of proper constitutive relations, both macroscopic
and microscopic ones. There are several works focusing on the macroscopic material behavior of MRE obtained
by phenomenological observations, see, e.g., Dorfmann and Ogden (2004) or Bustamante (2007). In contrast,
the present contribution provides the basis to predict the macroscopic behavior taking into account microscopic
aspects by means of a scale transition process. For the computational homogenization a numerical model of a
representative volume element accounting for the microstructure has to be generated. In Spieler et al. (2013) we
utilize the extended Finite-Element-Method and present a homogenization scheme for magnetoactive composite
materials in the context of small deformations. As a preliminary stage for extending this approach to large defor-
mations, this paper focuses on the constitutive modeling and discretization of the local material structure by the
Finite-Element-Method (FEM).
Starting with some standard relations of continuum mechanics for large deformations, the balance equations to-
gether with jump conditions for the coupled magneto-mechanical boundary value problem (BVP) are formulated in
Section 2. Based on thermodynamic considerations a constitutive model is proposed and its parameters are identi-
fied by available experimental data. In Section 3 the numerical implementation into a FEM code is explained. The
solution of the resulting nonlinear systems of equations requires a linearization. Hence, we specify the expressions
needed for the material and geometric tangent stiffness matrices. A comparison with our former small deformation
model of two simple problems in Section 4 points out the consequences of the present contribution. The paper is
closed by some concluding remarks and an outlook to necessary future work in Section 5.
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2 Continuum Formulation of the Problem

In the following section the basic equations of the underlying field problem are presented in a continuum based,
phenomenological way. At first the kinematic relations are specified in the context of finite deformations. Based
on this, the essential magnetic and coupled mechanical balance equations are formulated with respect to the cur-
rent configuration together with appropriate jump conditions. In the last part of this section a constitutive model
accounting for geometric as well as material nonlinearities for the different constituents of the aforementioned
magnetoactive composite material is introduced. Index notation with respect to a Cartesian frame and the EIN-
STEIN summation convention are applied. Some alternative models describing the microscopic behavior of MRE
can be found, e.g., in Galipeau and Ponte Castañeda (2013a,b) as well as Rudykh and Bertoldi (2013).

2.1 Kinematic Relations

A material bodyK occupies the domainB0 with volumeV0 and the boundary∂B0 at timet = t0 in its reference
configuration. Material points are identified by the coordinates of their position vectorX. If loading and defor-
mation occur, the body reaches a current configuration at timet with the domainB, boundary∂B and volumeV
governed by the bijective and continuous mappingχk = xk(XL, t). The material particleX is then located at
the spatial positionx. The transformation of a differential line element between its reference and current state is
described by the deformation gradient

FkL =
∂xk(XM , t)

∂XL
= xk,L , (1)

where partial derivatives with respect to coordinates are abbreviated by∂(∙)
∂xk

= (∙),k. The determinant of the
deformation gradient

J = det(FkL) > 0 (2)

is always positive. To get rid of rigid body motions, i.e. rotations still included inF, a polar decomposition is
performed yielding the left and right CAUCHY-GREEN deformation tensors

bkl = FkMFlM and CKL = FmKFmL . (3)

In the limit case of small deformations, the ALMANSI -EULER and GREEN-LAGRANGE strain tensors

ekl =
1
2

(
δkl − b−1

kl

)
and EKL =

1
2

(CKL − δKL) (4)

coincide with the infinitesimal strain tensor

εkl =
1
2

(uk,l + ul,k) , (5)

which is the symmetric part of the gradient of the displacement vectoru.

2.2 Stationary Magnetic Boundary Value Problem

The continuum formulation of the stationary magnetic field problem is given by the MAXWELL equations (Jackson
(2006))

Bk,k = 0 and (6)

eklmHm,l = Jk (7)

with the magnetic inductionB, the magnetic fieldH and the vector of free current densityJ as well as the third
order permutation symboleklm. The magnetizationM is related to the magnetic induction, the magnetic field and
the permeability of free spaceμ0 = 4πe− 72 by

Bk = μ0(Hk + Mk) . (8)

At a surface of discontinuitySd, e.g., a material interface, the magnetic field quantities change according to the
equations of jump

JBkKnk = 0 (9)

eklmnlJHmK = kk . (10)
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In the equations aboveJφK = φ+ − φ− is the jump of the physical quantityφ acrossSd with the unit normal
vectorn pointing from the subdomainB− to B+. A detailed derivation of the equations of jump is given in the
not yet published work Brummund (2013). Equation (9) mathematically represents the continuity of the normal
component of the magnetic induction. If no current densityk is present onSd, the tangential component of the
magnetic field also has to be continuous according to equation (10).
Following Eringen and Maugin (1990), the magnetic field quantities in the reference configuration are given by a
set of pull back operations

BK = FlKBl (11)

HK = JF−1
Kl Hl (12)

MK = JF−1
Kl Ml . (13)

It should be mentioned that neither the field equations (6) and (7) nor the relation (8) are invariant to the transfor-
mations (11)–(13).
One possibility to solve both equations (6) and (7) is the use of the magnetic vector potentialA. Its rotation is
given by

Bk = eklmAm,l . (14)

Together with the COULOMB gaugeAk,k = 0, the vector potential is well-defined. By using the ansatz (14)
equation (6) is fulfilled and only equation (7) has to be considered for the solution of the stationary magnetic
BVP. Equation (14) and the COULOMB gauge result in the continuity of the vector potential across a surface of
discontinuityJAkK = 0. The vector potential serves as a primary variable in the FE implementation. On the part
∂BA of the external boundary the essential condition

Ak = Âk (15)

is imposed for thekth coordinate of the vector potential. The part of∂B with the natural boundary condition (BC)

eklmHmnl = −k̂k (16)

is labeled∂Bk. The prescribed valuêk has to represent the effects of any external magnetic field outside the
domainB and of a surface currentk applied on∂Bk. For the well-posed definition of the boundary conditions
∂BA ∩ ∂Bk = ∅ and∂BA ∪ ∂Bk = ∂B have to be valid for each coordinate direction.

2.3 Coupled Mechanical Boundary Value Problem

For the stationary coupled mechanical case the balance of linear momentum

ttot
kl,k + %fl = 0 (17)

and angular momentum
eklmttot

lm = 0 (18)

equilibrate the total stress tensorttot. In equation (17)%f is the mechanical body force density with the mass
density of the current configuration%. According to equation (18) the total stress tensor is symmetric. It can be
split additively in the sum of the mechanical stress tensort and a magnetic contributiontm, i.e. ttot

kl = tkl + tm
kl.

This decomposition is not free of arbitrariness. We use the magnetic stress tensor

tm
kl =

1
μ0

BkBl −
1

2μ0
BmBmδkl −BkMl + BmMmδkl , (19)

which is microscopically motivated by de Groot and Suttorp (1972). In the absence of any magnetization, i.e. vac-
uum withMk = 0, tm reduces to the MAXWELL stress tensor. Furthermore, the used decomposition is compatible
with phenomenological requirements. In general, i.e. for anisotropic magnetic material behavior, equation (18)
results in an unsymmetric mechanical stress tensoreklm(tlm −BlMm) = 0.
Based on the continuity of the displacement field and the jump equation of the total traction vector

JukK = 0 (20)

Jttot
klKnk + pl = 0 , (21)

the following boundary conditions are specified. On∂Bu the essential condition

uk = ûk (22)
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is formulated for thekth coordinate of the displacement vector. The natural boundary condition

ttot
klnk = p̂l (23)

is prescribed on∂Bp, where the effective surface load̂p has to account for any contribution from mechanical and
magnetic tractions outsideB as well as an applied mechanical surface loadp. In addition∂Bu ∩ ∂Bp = ∅ and
∂Bu ∪ ∂Bp = ∂B hold for each coordinate.
Introducing the mass density with respect to the reference configuration%0, the local form of the balance of mass
results in the relation

J =
%0

%
. (24)

A thermodynamically consistent constitutive model, presented in the following subsection, is derived on the basis
of the CLAUSIUS-DUHEM inequality

−%
(
ψ̇ + Ṫ s

)
+ tklF

−1
MkḞlM −MkḂk −

qk

T
T,k + JkEk ≥ 0 , (25)

whereψ is the specific free energy,T the absolute temperature,s the specific entropy,q the heat flux vector andE
the electric field. The material time derivative is abbreviated by˙(∙). A detailed discussion leading to equation (25)
is presented, e.g., in Eringen and Maugin (1990) as well as Dorfmann and Ogden (2003).

2.4 Constitutive model

To conform with the principle of material objectivity, we choose the specific free energy to depend on the right
CAUCHY-GREEN deformation tensorC, the reference magnetic inductionB0 and the absolute temperatureT .
There is no internal structure to be considered for the microscopic material point which confirms with the as-
sumption of isotropic material behavior. In this situation the dependency onC can be expressed in terms of
its three principal invariantsIC

α with α ∈ {1, 2, 3} and IC
1 = CKK , IC

2 = 1
2 (CKKCLL − CKLCKL) and

IC
3 = det (CKL) = J2. Assuming that the material behavior is independent of the electric field and the tempera-

ture gradient, the CLAUSIUS-DUHEM inequality is reformulated to

−%

[
∂ψ

∂FlM
ḞlM +

∂ψ

∂BK
ḂK +

∂ψ

∂T
Ṫ + Ṫ s

]

+ (tkl + MkBl) F−1
MkḞlM −

1
J

MKḂK ≥ 0 (26)

and
−

qk

T
T,k + JkEk ≥ 0 . (27)

According to the procedure of Coleman and Noll (1963) the constitutive relations

Etkl = %FkM
∂ψ(IC

α , BQ, T )
∂FlM

= tkl + MkBl , (28)

MK = −%0
∂ψ(IC

α , BQ, T )
∂BK

and (29)

s = −
∂ψ(IC

α , BQ, T )
∂T

(30)

are derived from the inequality (26) and define the material behavior in a proper way, if the potentialψ exists.
Henceforth only isothermal processes are to be considered and the relations (27) and (30) are out of discussion.
Bustamante et al. (2008) point out constitutive equations differing from the one presented above and mention the
diversity of equivalent formulations in literature. Equation (28) motivates an alternative split of the total stress
tensor into two symmetric parts

ttot
kl = Etkl + t̂kl . (31)

The stress tensor̂t is related to the magnetic stress by

t̂kl = tm
kl −MkBl . (32)

In the present work we assume an additive decomposition of the specific free energy which can be expressed by

ψ(IC
α , BQ) = ψmag(BQ) + ψmech(IC

α ) . (33)

In equation (33)ψmag is independent of any deformation andψmech is not influenced by a magnetic field. The
embedded magnetizable particles are very stiff compared to their surrounding matrix. The expected strains in the
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particles due to loading of the magnetoactive composite will be very small. On the other hand the elastomer mate-
rial is supposed to be nonmagnetizable. These assumptions approximately agree with the analytical description of
rigid magnetizable inclusions in a nonmagnetizable elastomer, see Ponte Castañeda and Galipeau (2011).

Magnetic part of the potential
The material modeling is motivated by experimental data covering the magnetization behavior of the carbonyl iron
powder BASF CIP CC illustrated in Figure 1. These particles are used in the mentioned MRE. The analyzed mate-
rial exhibits a nonlinear magnetization curve with negligible hysteresis effects. It is assumed that the measurement
represents the behavior of the referential valuesM0 andB0. During the experimental characterization with a
vibration sample magnetometer no relevant deformation of the magnetic specimen is generated and measured. An
appropriate nonlinear phenomenological model is then given by the isotropic relation

MK = Ms tanh (δB0)
BK

B0
, (34)

whereMs is the saturation magnetization,δ a scaling parameter andB0 =
√

BKBK the absolute value of the
reference magnetic induction. A linearization of equation (34) in the neighborhood ofB0 = 0, yields the linear
relation

MK = χBBK (35)

with the susceptibilityχB = Msδ. Both, the nonlinear and the linearized model are plotted in Figure 1. The
linear model is able to represent the experimental data within a range ofB0 . 0.5. After that, the saturation
becomes dominant which is captured by the proposed nonlinear model (34). Integrating the expressions (34) and
(35) according to the constitutive relation (29) results in the potential

ψmag = −
Ms

%0δ
ln [cosh (δB0)] (36)

for the magnetic nonlinear case and

ψmag = −
1

2%0
χBB2

0 (37)

for linear magnetic material behavior. Because%0 and B0 are fixed referential values, the derivative ofψmag

with respect to the deformation gradientF according to equation (28) is, as implied, not connected to any stress
contribution.
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Figure 1. Magnetization behavior of BASF CIP CC

Mechanical part of the potential
In order to capture finite deformations, which can occur in the magnetoactive composite, a hyperelastic material
model is proposed. By insertingψ according to equation (33) in equation (28), the relation

Etkl = 2%

[
∂ψmech

∂IC
1

bkl +
∂ψmech

∂IC
2

(
IC
1 bkl − bkmbml

)
+

∂ψmech

∂IC
3

IC
3 δkl

]

(38)

is obtained. A very general and commonly used functionψmech describes the OGDEN material (Ogden (1997)).
In the present work a compressible form of the neo-HOOKEan material, which is a special case of the OGDEN
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material, with the potential

ψmech =
1

2%0

[

μ
(
IC
1 − ln IC

3 − 3
)

+
λ

2

(
IC
3 − ln IC

3 − 1
)
]

(39)

and the LAM É parametersμ andλ is used. The symmetric stressEt is then given by

Etkl =
1
J

[

μ (bkl − δkl) +
λ

2

(
IC
3 − 1

)
δkl

]

, (40)

which reduces to the classical HOOKEan law

Etkl = 2μεkl + λεmmδkl (41)

in the case of small deformations, see also Eringen and Maugin (1990). It has to be remarked that only for
nonmagnetizable materials the stress tensorEt according to equation (40) or (41) equals the mechanical stress
tensort.

3 Finite Element Formulation of the Problem

The numerical solution of the underlying systems of partial differential equations is accomplished by the FEM.
In this section first the implemented numerical coupling scheme is explained, followed by the weak forms of the
corresponding BVP. A linearization of the resulting nonlinear systems of equations enables an iterative solution
procedure with the NEWTON-RAPHSONmethod. Vectors and matrices in the FE formulation are labeled by single
and double underlined bold symbolsa anda, respectively.

For simplicity and demonstration purposes, only problems homogeneous in the third direction will be considered.
In this two-dimensional caseA1 = A2 = 0 is an appropriate choice and the vector potentialA contains only one
nonzero componentA3. Since there are no gradients in the third direction, the COULOMB gauge is fulfilled and
has not to be considered furthermore.

3.1 Numerical Coupling Scheme

There are different approaches to treat the coupled field problem numerically. In the present work a weak numerical
coupling, also known as load vector, sequential, partitioned or staggered coupling, is adopted. The underlying
algorithm is schematically presented in Figure 2. An incremental analysis starts by prescribing the boundary
conditions and solving the magnetic BVP with respect to the undeformed reference configuration. With this known
solution the mechanical BVP is analyzed. After each pass of both calculations a convergence criterion is checked,
i.e. the corrections of the primary field variables vector potentialΔA and displacementΔu are compared to their
incremental changes. If these relative changes are smaller than a termination value, the solution is said to be in
equilibrium and the analysis continues with the next increment by updating the BC. Otherwise the configuration
is updated and both field problems are solved again. To reach a converged state, at least two cycles have to be
passed. In the mechanical subsystem magnetic variables are assumed to be fixed and vice versa in the magnetic
subproblem the deformation does not change. The benefits of this coupling scheme are the ease of implementation
and the smaller symmetric system matrices compared to a monolithic or strongly coupled approach. In our previous
works (Kästner et al. (2013) and Spieler et al. (2013)), which are limited to small deformations, no update of the
configuration is performed and the check for convergence is dispensable.

Magnetic BVPStart of
analysis Mechanical BVP

No

Yes
Next increment (update of BC)

Update of configuration (fixed BC)

Convergence?
u← u + ΔuA← A + ΔA

Figure 2. Implemented numerical coupling scheme with staggered solution strategy
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3.2 Linearization of the Weak Forms and Discretization

Starting with equation (7) multiplied by a weight function, i.e. the virtual potentialδAk which fulfills δAk = 0 on
∂BA, integration by parts and using the relations (14) and (16), the weak form of the magnetic subsystem

∫

B

HkδBk dV −
∫

B

jkδAk dV −
∫

∂Bk

k̂kδAk dS = 0 (42)

is derived. For an iterative solution of the underlying FE system, a linearization of equation (42) is required. It is
assumed that the external loads, expressed by the last two terms in the equation above, are independent of changes
in A but in general the magnetic field strengthH depends nonlinearly on the vector potential. By applying the
chain rule of differentiation the expression

∂Hk

∂Bl
=






1
μ0

δkl −
1
J

χBbkl for linear material (35)

1
μ0

δkl −
Ms

JB0
tanh(δB0)bkl

+
Ms

JB2
0

[
tanh(δB0)

B0
−

δ

cosh2(δB0)

]

bkmblqBmBq for nonlinear material (34)

(43)

defines the magnetic material tangentCmag.
Using a standard isoparametric FE approximation with the matrix of shape functionsNmag and their partial deriva-

tives according to equation (14) expressed byBmag, the weak form (42) ofne assembled elements is now given by

the discrete RITZ formulation

δAT






ne⋃

i=1






∫

Be
i

BmagT

H dV






︸ ︷︷ ︸
jint

−
ne⋃

i=1






∫

Be
i

NmagT

j dV




−

ne⋃

i=1






∫

∂Be
i

NmagT

k̂ dS




− j∗

︸ ︷︷ ︸
−jext




 = 0 . (44)

In the equation above the vectorj∗ accounts for discrete nodal loads typically applied in FE analysis. From
the argument of arbitrary but admissible virtual potentialsδA, finally the nonlinear FE system is defined by the
vanishing difference of the internal and external loadsjint − jext = 0. Its incremental and iterative solution with
the NEWTON-RAPHSONmethod is based on the linearized relation

KmagΔA = jext− jint , (45)

where the magnetic tangent stiffness matrix

Kmag =
ne⋃

i=1






∫

Be
i

BmagT

CmagBmagdV




 (46)

contains the deformation dependent material tangent (43).
The weak form of the coupled mechanical subsystem

∫

B

Etklδul,k dV −
∫

B

(
%fkδuk − t̂klδul,k

)
dV −

∫

∂Bp

p̂kδuk dS = 0 (47)

is obtained from equations (17) and (23) with the split of the total stress tensor according to equation (31). In the
equation aboveδuk is the virtual displacement satisfyingδuk = 0 on ∂Bu. Again we assume that the external
forces, expressed through the last two integrals in equation (47), are independent of changes in the primary field
variableu. The approximation and FE discretization with the matrices of shape functionsNmech and their partial

derivatives included inBmat (according to the kinematic relations) and the afterwards used matrixBgeo (contains
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the partial derivatives ofNmechwith respect to the spatial coordinates) yields

δuT






ne⋃

i=1






∫

Be
i

BmatT
Et dV






︸ ︷︷ ︸
f int

−
ne⋃

i=1






∫

Be
i

(
NmechT%f −BmatT t̂

)
dV




−

ne⋃

i=1






∫

∂Be
i

NmechT p̂ dS




− f∗

︸ ︷︷ ︸
−f ext




 = 0

(48)
for the weak form (47) of the coupled mechanical subsystem. Because the proposed constitutive model (40)
for the stress tensorEt is equivalent to the ordinary neo-HOOKEan material for large deformation processes, the
standard procedure of linearization within the FEM is applied, see among others Zienkiewicz and Taylor (2005)
or Belytschko et al. (2000). The linearization of the first term in equation (47) is performed according to the
concept of directional derivatives proposed by Hughes and Pister (1978). It is therefore reasonable to express the
integral and the stress tensorEt with respect to the reference configuration. Performing the linearization under
consideration of the product rule of differentiation results in two contributions to the tangent, a geometrical and
material part. Further details are to be found in the aforementioned literature. Finally the iterative solution of the
nonlinear system of equationsf int − fext = 0 is based on the linearized expression

[
Kmat + Kgeo

]
Δu = fext− f int (49)

with the material part of the tangent stiffness matrix

Kmat =
ne⋃

i=1






∫

Be
i

BmatTCmechBmatdV




 , (50)

where the material tangent is defined by

Cmech =
1
J






2μ + λ λJ2 0
λJ2 2μ + λ 0

0 0 μ−
λ

2

(
J2− 1

)




 (51)

for the assumption of plane strain. The corresponding three-dimensional material tangent can be found in Wriggers
(2008). Submatrices of the geometrical tangent stiffness matrixKgeo are computed from the relation

Kgeo
ab =

ne⋃

i=1

IHab , (52)

with the two by two identity matrixI and the matrix

H =
∫

Be
i

BgeoT

EtBgeodV . (53)

The described element formulation is implemented for two-dimensional quadrilateral elements with bilinear and
biquadratic shape functions.

4 Numerical Examples

In the following section the proposed modeling strategy is applied to two heterogeneous microstructural arrange-
ments which are schematically depicted in Figures 3 and 4. Both BVP are defined and their numerical solutions
are obtained with the FE formulation presented in the preceding Section 3 under the assumptions of plane strain.
A comparison of selected results with the ones of a small deformation model (Kästner et al. (2013); Spieler et al.
(2013)) for magnetic linear and nonlinear material behavior points out the need and advantage of the present
contribution.
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û1 = û2 = 0
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0

Figure 3. Two interacting circular inclusions with
linear vector potential BC

û1 = û2 = 0

B+
0

B−
0

û1 = û2 = 0

ϕ
ΔÂ3

X3

X2

X1

Figure 4. Reorientation of an elliptic inclusion
with linear vector potential BC

4.1 Two Interacting Circular Inclusions

Motivated by chain-like particle structures occurring in oriented magnetorheological elastomers, the interaction
between two circular inclusions is investigated under the consideration of large deformations. The domain of
interest, which is illustrated in Figure 3, has a size of 20×10. Both embedded circular inclusions have a radius of
2.49 and an initial distance of 10. They are characterized by the parametersE− = 210, ν− = 0.3, M−

s = 868 and
δ− = 0.883 or χ−

B = 767 for the magnetic nonlinear or linear case, respectively.E+ = 75, ν+ = 0.4 andχ+
B = 0

are assigned to the soft matrix material.
On the whole boundary the displacement is fixed and a linear vector potential with a difference ofΔÂ3 = 14
(bounded by the range of experimental magnetization data for the nonlinear material model, see Figure 1) between
the upper and lower boundary is prescribed within 20 equidistant increments, resulting in an effective magnetic
field pointing into theX1-direction. The inclusions become magnetized inhomogeneously. As a consequence a
resultant force, acting on each particle, causes their attraction. Figure 5 (a) shows the computed displacementu1

of the point with the material coordinatesX1 = −5 andX2 = 0 depending on the external loadΔÂ3. There
is a significant difference between the curves distinguished by the magnetic linear and nonlinear behavior. This
material nonlinearity, caused by magnetic saturation effects, bounds the attractive forces and consequently the
displacement of the inclusions. In both cases the large deformation model yields larger deformations because
the smaller the distance between the particles will be, the larger the net attractive forces become. This change
of configuration is not incorporated in the small deformation model. An impact of the different models on the
magnetic field variables is expressed by the magnetic inductionB1 of the pointX1 = X2 = 0 in Figure 5 (b).
Again the influence of the saturation is obvious. If the particles get closer, the field lines between them are more
concentrated which is an effect of the present configuration dependency.

0 2.5 5 7.5 10 12.5
0

0.1

0.2

0.3
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ΔÂ3/T µm

u
1
/µ

m

(a)

0 2.5 5 7.5 10 12.5
0

0.5

1

1.5

ΔÂ3/T µm

B
1
/T

(b)

Large deformations + magnetic linear
Large deformations + magnetic nonlinear
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Figure 5. Numerical results of attracting inclusions: (a) horizontal displacement of the left particle’s center and (b)
magnetic inductionB1 at the pointX1 = X2 = 0
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4.2 Reorientation of an Elliptic Inclusion

Beside the geometric arrangement, another important aspect of real microstructural particle compounds is the
shape of each individual inclusion, e.g., if it differs from an often assumed idealized sphere. As a first step, the
behavior of an elliptic inclusion with an external magnetic field nonparallel to the major axis is to be analyzed
and explained, see also Siboni and Ponte Castañeda (2012); Galipeau and Ponte Castañeda (2013a). Figure 4 il-
lustrates the considered problem schematically. The quadratic computing domain has an edge length of 2 with an
embedded ellipse having a major axis of 1 and a minor axis of 0.4 length. In accordance to the previous example
of Section 4.1 the parametersE− = 210, ν− = 0.3, M−

s = 868 andδ− = 0.883 or χ−
B = 767 characterize the

material of the inclusion.E+ = 1, ν+ = 0.4 andχ+
B = 0 are assigned to the nonmagnetizable matrix.

Again, the displacement is set to zero and a linear vector potential with a difference ofΔÂ3 = 2, 5 is prescribed
on the whole boundary. Because the magnetic load is not in parallel with the effective field inside the inclusion,
a resultant torque is present and tends to align the ellipse with the external magnetic field. This torque, which is
equilibrated by the surrounding matrix material, results in a clockwise rotation of the inclusion. The evaluation of
the deformation is presented in Figure 6 (a) by means of the angleϕ, which is defined in Figure 4. In contrast to
the first example, the small deformation model predicts larger rotations, for both the magnetic nonlinear and linear
case. This is caused by the proportionality of the torque to the angle between the external magnetic field and the
major axis, which decreases with increasingϕ. In the small deformation model all calculations are performed with
respect to the undeformed reference configuration and thus the net torque is higher. However, the magnetic linear
behavior is linked to a high overestimation of the deformation due to the lack of saturation. Figure 6 (b) shows the
dependence of the magnetic inductionB1 at the pointX1 = X2 = 0 on the incremental load. The magnetization
into theX1-direction inside the inclusion rises with the alignment and reaches its configuration dependent maxi-
mum at an angle ofϕ = 45, theoretically. But since the torque becomes smaller and the elastic restoring torsional
moment larger with an increasingϕ, this state is not achievable.
Altogether the magneto-mechanical coupling effects of the reorientation problem are higher compared to the at-
traction example. Hence, to limit the deformations the elastic matrix modulus is more than ten times stiffer than
the one used in Section 4.1.
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Figure 6. Numerical results for reorientation of an elliptic inclusion: (a) rotation angle of major axis and (b)
magnetic inductionB1 at the pointX1 = X2 = 0

5 Conclusion

The main outcome of the present contribution is the constitutive model presented in Section 2.4. It combines
the features of finite deformations and large magnetic fields which require a geometric and material nonlinear
modeling of MRE at their microscale. Although the considered matrix material is nonmagnetizable and the strains
to be expected in the particles are small, a common model facilitates the implementation and enables a further
extension, e.g., to a macroscopic material model identified by means of homogenization. Based on magnetization
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experiments of carbonyl iron powder, a nonlinear and isotropic phenomenological model is introduced in addition
to a linearized approximation. The proposed FE formulation of the nonlinear model for MRE, is an efficient
tool for solving coupled magneto-mechanical BVP at the microscopic length scale. Some convergence problems
associated with the implemented staggered numerical coupling scheme may be overcome, e.g., by the prediction
of incremental changes and numerical relaxation methods as proposed by Erbts and Düster (2012).
The presented results show that there is no significant difference between the small and the large deformation
model when using the more sophisticated nonlinear magnetic material (see the corresponding curves in Figures
5 and 6). But in real life situations MRE undergo finite strains mainly induced by mechanical loadings. Under
such conditions the internal structure, determined by the arrangement and orientation of particles and clusters
of them, changes and must be considered when solving magnetic and coupled mechanical field problems. For
small loadings, i.e. values of the magnetic field intensity, the afore shown results coincide. This is a minimum
requirement on the extension of our previous work to large deformations. Thus the linear magnetic material
behavior seems to be sufficient under such loading conditions.
Current and ongoing work is related to the implementation of the model within an extended FE formulation. It is
to be used for solving local BVP of representative volume elements in a homogenization framework in the context
of large deformations.
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