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Wave Propagation Analysis using High-Order Finite Element Methods:
Spurious Oscillations excited by Internal Element Eigenfrequencies

D. Schmicker, S. Duczek, S. Liefold, U. Gabbert

From a computational point of view, the numerical analysis of ultrasonic guided waves is still a very demanding
task. Because of the high-frequency regime both a fine spatial and temporal discretization is required. To minimize
the numerical costs, efficient and robust algorithms ought to be developed. One promising idea is therefore to
focus on high-order finite element methods (ho-FEM).
The current article investigates the behavior of thep-version of the finite element method (p-FEM) and the spectral
element method (SEM) with respect to the existence of spurious oscillations in the solution. Convergence stud-
ies have shown that it is possible to observe non-physical oscillations under certain conditions. These parasitic
vibrations, however, significantly deteriorate the accuracy of the simulation. For this reason, we analyse this phe-
nomenon in detail and propose solutions to avoid its occurrence.
Without loss of generality, we employ a two-dimensional plane strain model to derive a guideline as to how to
avoid these spurious oscillations, placing a special emphasis on the relation between the element size, the polyno-
mial degree of the high-order shape functions and the excitation frequency.
Our results show that accurate simulations are possible if the model is generated according to the proposed
methodology. Moreover, the implementation of the guideline into an existing finite element software is straightfor-
ward; these properties turn the method into a useful tool forpractical wave propagation analyses.

1 Introduction

Wave propagation analysis can be divided into three main groups: (i)seismic wave propagation, (ii) acoustic wave
propagation, and (iii) guided wave propagation. This article addresses the third topic, since it is closelyrelated
to structural health monitoring (SHM), which is of special interest to the authors. We expect, however, that the
findings of the current article are applicable, without lossof generality, to the other classes of wave propagation
problems.
The continuous monitoring of a structure aims to provide information on the structural integrity of the monitored
region and to predict its residual life. The first step is to register the presence of a damage. The second step is to
gather information on the possible location. The third stepis accordingly to determine the extent and/or type of
the damage before any details can be given about the residuallife of the structure in the fourth and last step. SHM
systems should, therefore, enable an online examination ofsafety-relevant structural components during operation.
According to Worlton (1961) the application of ultrasonic waves for this purpose can be traced back to the early
60’s. The development of suitable computational methods topredict and to evaluate the responses of ultrasonic
waves interacting with defects is one of the major tasks in this area of research. Such models are of great impor-
tance, since they facilitate a better understanding of the interaction of guided waves with boundaries as well as with
damages and support the design of reliable and robust signalprocessing methods. A finite element simulation of
ultrasonic waves, however, calls for both a fine spatial discretization and temporal one (high frequency regime→
short wavelengths). As a consequence, a large number of degrees-of-freedom is required, resulting in dispropor-
tionate numerical costs. To this end, we have investigated alternative numerical approaches to solve the governing
equations more efficiently. These methods comprise the mass-spring lattice model (MSLM) proposed by Baek
and Yim (2011), the local interaction simulation approach (LISA) published by Lee and Staszewski (2007a,b), the
spectral element method (SEM) presented by Patera (1984), Komatitsch and Tromp (2002), Ha and Chang (2010),
and thep-version of the finite element method (p-FEM) proposed by Babuška et al. (1981) and further developed
by Düster (2002), Willberg et al. (2012), and Duczek and Gabbert(2013). By way of reference, Willberg et al.
(2012) introduced some discussions about high-order finiteelement methods seeming to be the most viable choice
to deal with practice-oriented problems including ultrasonic guided waves. The following paragraphs will there-
fore take a closer look at the properties ofho-FEM in the context of wave propagation analysis.
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During the past few decades, several authors analyzed the accuracy and the numerical/grid dispersion inherent to
finite element approaches when solving the wave equation (both acoustic and elastic). Grid dispersion describes
a phenomenon where numerical noise related to the grid spacing causes dispersion. This, of course, has a detri-
mental effect on the accuracy of the wave propagation analysis (De Basabe and Sen, 2007). The reason for the
described numerical dispersion is the mismatch between theactual velocity of high-frequency waves in the grid
and the true velocity. As the grid is the source of this error,the name numerical or grid dispersion was coined
for this phenomenon. We also wish to point out that it also occurs when the physical problem being solved is not
dispersive. It can only be controlled by choosing an appropriate element size and time-step (De Basabe and Sen,
2007).
The first systematic studies of the properties of finite element methods (p-FEM) for high wavenumber applications,
however, were carried out in a series of papers by Ihlenburg and Babǔska (1995a,b, 1997b,a). They present new er-
ror estimates for solving the wave equation and conclude that it is not possible to totally eliminate the phase error. It
is, however, still possible to achieve significant error reductions by means of a suitable discretization depending on
the wavenumber. The same authors also state that the choice of shape functions is irrelevant from the point of view
of the dispersive characteristics of the numerical solution, again highlighting the importance of high-order shape
functions. They found that high-order finite elements exhibit a greater degree of accuracy than low order finite
elements for the same number of degrees-of-freedom. According to Ihlenburg and Babuška (1995a,b, 1997b,a),
the most significant improvements in accuracy are obtained when transferring the standardh-version (withp = 1)
to approximation orderp = 2 or p = 3.
Seriani and Priolo (1994) made similar observations regarding the spectral element method. They found that the
results are more accurate compared to those of low-order finite elements. Based on their research, Seriani and
Priolo (1994) concluded that there is a theoretical limit tothe number of nodes per minimum wavelength ofπ for
an increasing polynomial degree. In this case, the accuracyremains almost unchanged even for long propagation
times. For practical applications they recommend 4.5 nodesper wavelength deploying a polynomial degree of
p = 8. As a practical rule of thumb, they state that using at least 4nodes per wavelength for the spatial resolution
and a polynomial degree ofp = 4 significantly reduces the numerical dispersion error. If longer wave propagation
periods are to be investigated, higher polynomial orders are needed to avoid error accumulation and numerical
anisotropy (Seriani, 1998; Seriani and Oliveira, 2008a). De Basabe and Sen (2007) compare the dispersion prop-
erties of FEM and SEM. Both formulations are used to discretize the acoustic and elastic wave equation. The
analysis reveals that the dispersion error can be reduced below 0.2% for SEM of order four or greater with at least
5 nodes per wavelength.
Jensen (1996), Dauksher and Emery (1999, 1997), Christon (1999) and Ainsworth and Wajid (2010a,b) comment
on the influence the mass matrix has on the numerical results.Jensen (1996) deploys the spectral element method
with a diagonalized mass matrix. He concludes that mass lumping does not introduce additional errors. In the case
of spectral elements based on a Gauss-Lobatto-Legendre (GLL) grid, a simple nodal quadrature (GLL-quadrature
rule) provides an elegant way to diagonalize the mass-matrix. Komatitsch and Tromp (2002) offer similar conclu-
sions and recommend a polynomial degree ofp = 4/5 since, from their point of view, it provides the best trade-off
between accuracy and integration stability. By way of reference, Christon (1999) showed that the higher order
mass matrix - a linear combination of lumped and consistent mass matrices - can improve the dispersion character-
istics of both reduced and fully integrated finite elements.Ainsworth and Wajid (2010a,b) also utilized a weighted
average of the consistent and diagonalized mass matrices. They demonstrate that the optimal blending parameter
for finite elements of orderp is given by the ratio1 : p. Compared to the pure schemes additional two orders of
accuracy can be gained independent of the spatial dimensions. An efficient implementation of the higher order
mass matrix can be achieved by nonstandard integration rules. An explicit construction of the nodes and weights
is given in Ainsworth and Wajid (2010b). Ainsworth and Wajid(2010a) also findπ as a theoretical limit for the
number of nodes per wavelength if the polynomial degree is increased accordingly (previously stated by Seriani
and Priolo (1994)). Dauksher and Emery (1999, 1997) demonstrated that a row-summing procedure can result
in accurate solutions with spectral elements based on Chebyshev points (GLC). This row-summing procedure is
only performed on the global mass matrix. Nonetheless, the solution characteristics are relatively unaffected by
the diagonalized mass matrix but the numerical costs of solving of the equation system is drastically reduced when
applying an explicit time-integration scheme. The authorsopt for deploying row-summed mass matrix spectral
elements with central time differencing to solve the wave equation.
The angle-dependency of the wave propagation properties has been studied by Mullen and Belytschko (1982),
Christon (1999) and De Basabe and Sen (2007) for example. Mullen and Belytschko (1982) noticed the angle-
dependency for linear two-dimensional finite elements and observed a higher dispersion error when the stiffness
matrix is underintegrated. De Basabe and Sen conclude that SEM is clearly advantageous and that the dispersion
results gathered for the acoustic case can be transferred tothe elastic case.
Mulder (1999) investigates spurious or parasitic modes that can occur if high-order finite elements are used to
discretize the wave equation (SEM:p = 2, . . . , 6). The Fourier analysis is used to study the aforementioned phe-
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nomenon. No deleterious effects are produced for a high enough polynomial degree. He recommends employing
spectral elements based on a GLL grid with a diagonalized mass matrix. Park and Flaggs (1984) defined spuri-
ous mechanisms as non-physical oscillatory components that are intrinsic in the spatial discretization regardless
of the uniformity of the mesh spacing. They are often associated with rank deficiencies of the element stiffness
matrix. The goal of their investigations is to develop a technique to identify these phenomena as intrinsic element
properties. These studies were carried out on a one-dimensional axial bar. Abboud and Pinsky (1992) investigated
standard finite elements (8-node trilinear element, 20-node serendipity element, 27-node tri-quadratic element).
The results of their analysis indicate that the serendipityelement is not suitable for wave propagation analysis
in terms of simplicity and accuracy. It is more complex and does not offer the same numerical economy as the
8-node element, nor does it exhibit the same accuracy as the 27-node tri-quadratic finite element. Seriani and
Oliveira (2008b) study spectral elements based on a GLL and GLC grid. They observe the following properties:
spectral elements using a GLC grid exhibit a phase lead, while GLL-based spectral elements produce lagging er-
rors. Ainsworth and Wajid (2010b) and Thompson and Pinsky (1994) recorded similar findings for lumped and
consistent mass matrix formulations. Thompson and Pinsky employ the Fourier analysis technique to examine
the dispersion inp-version finite elements up to orderp = 5. They use the termp-version of FEM differently
than it is normally understood. They considered hierarchicLegendre basis functions (p-FEM), hierarchic Fourier
basis functions (Fourierp-FEM Leung and Chan (1997); Leung and Zhu (2003)) and spectral basis functions based
on Gauss-Lobatto-Legendre points (SEM). Thompson and Pinsky again confirm the well-known fact that clearly
high-orderp-type elements exhibit increased accuracy compared to low order finite elements, for the same number
of degrees-of-freedom. To resolve the wavefront, they claim that two elements per wavelength are sufficient for
polynomial degrees ofp ≥ 4. Conclusions from their study are that, for well-resolved waves, SEM produces
better results in terms of phase error when compared to hierarchic elements. For higher frequencies, however, both
dispersion and amplitude attenuation errors increase the most. Ainsworth (2004) proves that the error decay is
quasi-optimal when the number of nodes per wavelength is greater thanπ.
Regarding the literature survey on dispersion errors and spurious modes, we note that no practical guidelines have
been proposed to circumvent these deleterious effects. Thegiven error estimates are necessary for adaptive solution
techniques but are hard to use for an a priori determination of the appropriate discretization set-up. The articles
dealing with spurious effects concentrate almost exclusively on one-dimensional structures. Provided we accept
the definition of spurious waves given by Park and Flaggs (1984), we will show in the course of the investigations
throughout the current paper that the described effect is very different in nature from what has previously been
reported in literature.
The effect we describe in this paper is of practical importance when examining typical thin-walled structures (aero-
nautics, aerospace). We therefore propose to use an engineering approach instead of a mathematically thorough
treatment of the observed effect. The present paper deals with a phenomenon that was discovered in Willberg et al.
(2012), who observed that stationary, non-physical oscillations occur in specific cases. The following sections
investigate the reasons for this effect in detail. The said phenomenon can be of crucial importance, particularly
when thinking about designing signal-processing algorithms for SHM-systems on the basis of numerical high-
order models. Consequently, following comprehensive investigations, we propose a guideline to determine an
appropriate discretization to avoid this special kind of spurious oscillations.
The outline of the paper is as follows: Section 2 briefly recalls the basic principles of the finite element method and
introduces two types of high-order shape functions relatedto thep-version of FEM and SEM. A short introduction
to ultrasonic guided waves, especially Lamb waves, is givenin Section 3. This is followed by a description of
the numerical model in Section 4, which serves to illustratethe observed phenomenon. To determine the cause of
these spurious oscillations, an eigenvalue analysis is conducted in Section 5, after which we elaborate a guideline
to avoid this phenomenon. Finally, Section 6 summarizes themain points and provides conclusions.

2 High-Order Finite Element Methods

The following section briefly recalls the fundamentals of the finite element methods. All fundamental principles
are identical. The only difference is to be seen in the shape functions employed. In the current article, however,
we confine our analysis to wave propagation problems in linear elastic, isotropic and homogeneous materials. All
quantities are given in Voigt-notation. Therefore, the here applied matrix notation understands vectors as com-
ponent representations of physical quantities or numerical parameters being arranged to column format. Hence,
products of vectors and/or matrices are abbreviations of component sums according to Falk’s scheme. The product
a
T
b, for instance, refers to the scalar product

∑

i aibi.
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2.1 Basic Principles

The finite element developments are based on the variationalformulation corresponding to Navier’s equations,
namely Hamilton’s principle. It states that the motion of the system within the time interval[t1, t2] is such that,
under infinitesimal variations of the displacements, the Hamiltonian actionSH vanishes, meaning that the motion
of the system follows the path of the stationary action (Hamel, 1967)

δSH = δ

t2∫

t1

(L+WE) dt = 0 . (1)

HereL represents the Lagrangian function, andWE the work done by the external forces. The Lagrangian is the
difference between the kinetic energyK and the elastic strain energyWI (L = K −WI ). After some calculations
and the substitution of Hooke’s law into Eq. (1), the variational formulation takes the following form

0 = −

∫

Ω

[
ρδuT

ü+ δεTCε
]

dΩ

︸ ︷︷ ︸

δL

+

∫

Ω

δuT
FV dΩ+

∫

Γ

δuT
FS dΓ

︸ ︷︷ ︸

δWE

, (2)

whereρ is the mass density,ε andσ are the vectors of mechanical strains and stresses in Voigt notation, re-
spectively (Zienkiewicz and Taylor, 2000a).C denotes the elasticity matrix and̈u represents the acceleration
vector. The external forces can be divided into surface loads FS and volume loadsFV . Ω andΓ represent the
computational domain and its boundary, respectively. If wedivide the domain of interest into several elements,
then the displacement fieldu(x, t) in each finite element, denoted bye, is approximated by the product of the
space-dependent shape function matrixNe(x) and a time-dependent vector of unknownsUe(t),

u(x, t) = Ne(x)Ue(t). (3)

The mechanical strain is defined as

ε = DNeUe = BeUe, (4)

by introducing the strain-displacement matrix asBe = DNe, whereD is a linear differential operator relating
strains and displacements. With the aid of Eqs. (2), (3) and (4) and the reasoning that Hamilton’s principle has to
be satisfied for all variationsδue = Ne δUe, we obtain the well-known equation of motion

MgÜg +KgUg = fg (5)

where the system matrices are obtained by assembling all element matrices

Mg =
ne

A
e=1

Me, (6)

Kg =
ne

A
e=1

Ke, (7)

fg =
ne

A
e=1

fe. (8)

The elemental mass and stiffness matrix as well as the elemental load vector are given as

Me =

∫

Ωe

ρNT
e NedΩ, (9)

Ke =

∫

Ωe

Be

T
CBedΩ, (10)

fe =

∫

Ωe

N
T
e FeV dΩ+

∫

Γe

N
T
e FeSdΓ, (11)

whereΩe andΓe are the domain of a single element and its corresponding boundary. For further explanations, such
as including the influence of damping in the finite element method, the reader should refer to standard text-books
on this subject by Zienkiewicz and Taylor (2000a,b,c), Wriggers (2009), Bathe (2002), Fish and Belytschko (2007)
and Hughes (1987), for instance.
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2.2 Shape Functions

This section discusses two different types ofp-extensions. We begin by introducing the hierarchic Legendre basis
functions (Weinberg, 1996; D̈uster, 2002; Solin et al., 2004; Demkowicz, 2006; Demkowiczet al., 2008), before
presenting the Lagrange interpolation polynomials definedon a Gauss-Lobatto-Legendre grid (GLL) (Komatitsch
and Tromp, 2002; Ha and Chang, 2010; Zak et al., 2006; Kudela et al., 2006; Peng et al., 2009). The first approach
is commonly referred to as thep-version of the finite element method (p-FEM) while the latter one is known as
spectral element method (SEM). Both methods are very accurate and suitable for wave propagation analysis. It has
been thoroughly demonstrated that under certain conditions these approaches exhibit an exponential convergence
rate in the energy norm (D̈uster, 2002; Pozrikidis, 2005; Fichtner, 2011).

2.2.1 Hierarchic Legendre Polynomials

The definition of the shape functions, based on the normalized integral of the Legendre polynomials, follows the
procedure described in the monograph by Szabó and Babǔska (1991, 2011). We start with the standard linear shape
functions, also referred to as nodal shape functions

NLegendre
i (ξ) =

1

2
(1 + ξiξ) , i = 1, 2, (12)

whereξi is the local coordinate of theith node. High-order shape functions are added to the set in a hierarchical
fashion. They are defined in terms of the normalized integrals of the Legendre polynomials

NLegendre
i (ξ) =

1

‖Li−2‖

ξ∫

x=−1

Li−2(x) dx, i = 3, 4, . . . , p+ 1, (13)

with the norm of the Legendre polynomial

‖Li−2‖ =

√

2

2i− 3
. (14)

These functions have the property thatNLegendre
i (∓1) = 0. The corner nodes (i = 1, 2) consequently retain a

physical meaning, whereas the internal variables (i = 3, 4, . . . , p + 1) cannot be interpreted physically. The
degrees-of-freedom are therefore connected to modes. Moreover, we have to keep in mind that this set of shape
functions is hierarchic, cf. Fig. 1. The resulting element matrices and vectors are accordingly likewise hierarchic
in the sense that the matrix corresponding to polynomial degreep is a sub-set of the matrix corresponding to order
p+1. This property is of great help in adaptivep-refinement procedures. The first four shape functions are depicted
shown in Fig. 1 by way of an example.
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Figure 1: One-dimensional shape functions for thep-version of the finite element method. Normalized integrals
of the Legendre polynomials.
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2.2.2 Lagrange Polynomials

The presentation of the spectral shape functions is based onthe implementation discussed in the monograph by
Ostachowicz et al. (2011). Thesep-type elements (Thompson and Pinsky, 1994) are based on Lagrange interpo-
lation polynomials defined on a GLL nodal distribution. The Gauss-Lobatto points (ξj , j = 1, . . . , (p + 1)) are
defined in such a way that

ξj =







−1 if j = 1

ξLo,p−1

0,j−1 if 2 ≤ j ≤ p

+1 if j = p+ 1

. (15)

HereξLo,p−1

0,n (n = 1, . . . , (p− 1)) denotes the roots of the(p− 1)th-order Lobatto polynomial

Lop−1(ξ) =
1

2pp!

dp+1

dξp+1

[(
ξ2 − 1

)p
]

. (16)

Therefore, the basis functions based on Lagrange polynomials are given by

NLagrange, p
i (ξ) =

p+1
∏

j=1, j 6=i

ξ − ξj

ξi − ξj
, i = 1, 2, . . . , p+ 1. (17)

In this case, all degrees-of-freedom retain their physicalmeaning. The degrees-of-freedom are therefore connected
to nodes. If a GLL grid is used in conjunction with the Gauss-Lobatto quadrature, the elemental mass matrix
is under-integrated and diagonalized. This is due to the fact that the integration points coincide with the nodal
coordinates. We wish to point out, however, that this set of shape functions is not hierarchical by construction. The
first four shape functions are shown in Fig. 2 by way of an example.
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Figure 2: One-dimensional shape functions for the spectralelement method. Lagrange interpolation polynomials
through Gauß-Lobatto-Legendre points.

For a detailed discussion of the spectral methods the interested reader is referred to the monographs by Ostachowicz
et al. (2011), Fichtner (2011) and Pozrikidis (2005).

3 Ultrasonic guided Wave

The propagation of elastic waves in solid media is the subject of many textbooks: Viktorov (1967); Graff (1975);
Achenbach (1987); Rose (1999); Giurgiutiu (2008); Su and Ye(2009); Eds.: Boller et al. (2009); Raghavan and
Cesnik (2005). This treatise is of particular interest in guided elastic waves. Lamb waves are one important
representative of this class of waves. They propagate in plate- and shell-like structures with free surfaces and are
a type of ultrasonic, dispersive waves. The term was coined in honor of its discover Horace Lamb, who was the
first to describe them mathematically in his seminal work “OnWaves in an Elastic Plate” Lamb (1917). The first
comprehensive book on this subject was published by Viktorov (1967) and is now regarded as the standard text on
Lamb wave propagation.

56



(a)S0-mode with a phase velocity ofcp = 5.248 km/s (b)A0-mode with a phase velocity ofcp = 2.464 km/s

Figure 3: The two fundamental Lamb wave modes encountered inan aluminum plate (material data: Tab. 1) at
fd = 1.25 MHz mm.

Through multiple reflections on the plate’s lower and upper surfaces, and through constructive and destructive
interference, pressure waves (primary/P-waves) and shearwaves (secondary/S-waves) give rise to Lamb waves,
which consist of a pattern of standing waves in thez-(thickness)-direction (Lamb wave modes) behaving like
travelling waves in thex-direction Giurgiutiu (2008). Accordingly, two differenttypes of Lamb waves can be
distinguished; symmetricSi- and anti-symmetricAi-modes, cf. Fig. 3. The terms symmetric and anti-symmetric
refer to theuz displacement component, cf. Figs. 3. The out-of-plane displacement is symmetric with respect to
the mid-plane for symmetric modes and anti-symmetric for anti-symmetric modes. Besides being multi-modal,
Lamb waves also display a dispersive behaviour, i.e. their properties - such as the group velocity - are frequency-
dependent, cf. Fig. 4. To be exact, the velocity does not onlydepend on the frequency but on the product of the
excitation frequency and the thickness (f · d) of the structure. For a more detailed review of ultrasonic guided
waves the reader is referred to the aforementioned literature.
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Figure 4: Group velocity dispersion diagram for a linear elastic, isotropic material (λL = 5.1084 · 1010 N/m2,
µ = 2.6316 ·1010 N/m2 andρ = 2700 kg/m3; aluminum). Dashed lines denote anti-symmetric Lamb wave modes,
while solid lines represent symmetric modes.

4 Benchmark Problem

During the investigation of the convergence properties of different high-order finite element methods, distinct
peaks in the convergence curves have been observed, cf. Willberg et al. (2012). Therefore, the main objective of
the current article is to investigate the reasons for their occurrence. In doing so, we are able to propose measures
to avoid this phenomenon.
At this point, for the sake of completeness, we briefly describe the numerical model employed by Willberg et al.
(2012). Without loss of generality, a two-dimensional plane strain model is used. The geometry and boundary
conditions are depicted in Fig. 5.
Generally, a mono-modal excitation is favored. This technique allows us to study the properties and the behavior
of symmetric and anti-symmetric Lamb waves separately. To this end, the excitation is conducted using a pair
of collocated point forces. This, however, makes it easier to interpret the signal. These loads are applied at the
top and bottom surfacex = 0. Depending on the choice of parameterν = ±1 either only symmetric or only
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anti-symmetric wave packets are excited. The excitation signal is a windowed (Hann-window) sine burst signal

F (t) =

{

F̂ sin(2πfDt) sin2
(

πfDt
nD

)

if 0 ≤ t ≤ nD

fD

0 if t > nD

fD

, (18)

wherenD is the number of cycles,̂F represents the signal amplitude andfD denotes the center frequency.

x

y

F (t)

νF (t)

A B

a

b

d

λL, µL, ρ

Figure 5: Analytical model for the convergence study.

Due to the symmetry of the model, we only discretize one half of the plate using high-order finite elements and
apply symmetry boundary conditions, cf. Fig. 6. The plate length is chosen in such a way that reflections at the right
boundary do not interfere with the signals measured at the evaluation points A and B. The spatial discretization is
characterized by the polynomial degree of the shape functions in propagation directionpx, the polynomial order
in thickness directionpy and the element widthbe.

be

A

a

B

b
l = ne · be

F (t)

νF (t)

Figure 6: Numerical model for the convergence study.

The time-of-flighttc between points A and B is evaluated. Since the distance between these points is known a
priori, tc corresponds to the group velocitycg of the simulated wave packet. The analytical valuescg,exact can be
taken from Achenbach (1987).
To determine the time-of-flight for the numerical models, weemploy the Hilbert-transform. First, we calculate the
envelopes of the time signals at points A and B. Secondly, we compute the centroids of those curves, cf. Fig. 7.
Proceeding in this way, we determine the times-of-flight from the origin to the evaluation points. The relevant
values suggest thetc,num (Willberg et al., 2012; Xu et al., 2009). The relative error can, therefore, be determined
by

Erel =
|cg,num − cg,exact|

cg,exact
. (19)

Each simulation uses a distinct polynomial degree templatepx andpy, while the element widthbe is successively
decreased (h-refinement). In order to gain a dimensionless refinement parameter to evaluate the results, we intro-
duce the number of modes/nodes per wavelength (χS0

)

χS0
=

px
be

λ. (20)
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Here,λ is the wavelength,cg stands for the group velocity and is a function off · d, λL andµ represent the two
Lamé constants and the mass density is denoted byρ. The model parameters are compiled in Table 1.
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Figure 7: Computation of the time-of-flight between points Aand B.

Table 1: Model parameter for the convergence study.

Parameter name Symbol Value

1st Laḿe constant λL 5.1084 · 1010 N/m2

2nd Laḿe constant µL 2.6316 · 1010 N/m2

Center frequency fD 477465 Hz
Group speed cg,sym,exact 5147.9 m/s
Group speed cg,asym,exact 3130.0 m/s
WavelengthS0-Mode λsym 0.0111362 m
WavelengthA0-Mode λasym 0.00481439 m
Amplitude F̂ 1 · 107 N
Number of cycles nD 32
Mass density ρ 2700 kg/m3

Plate thickness d 0.002 m
Distance to point A a 0.03 m
Distance to point B b 0.1 m

Time integration is performed with a Runge-Kutta algorithmof fourth order including an adaptive time-step con-
trol. A time-integration scheme from the Runge-Kutta family is deployed in order to demonstrate that the said
effect occurs independently of the numerical time-marching algorithm. Note that the numerical quadrature of
stiffness and mass matrices is exact due to the fact that a regular mesh with undistorted rectangular elements is
employed. Mass matrix diagonalization (lumping) methods are not applied in this investigation.
In the remainder of the current section only the results for the symmetric Lamb wave mode are discussed. Without
loss of generality, theh-refinement is conducted for several polynomial degree templatespx andpy. The results
of the convergence study for the SEM are depicted in Fig. 8. Aswe can see, the convergence behavior is signifi-
cantly disrupted at points where the amount of nodes per wavelengthχS0

is a multiple of the shape function degree
px. Similar observations are made by studying the anti-symmetric Lamb wave mode, other polynomial degrees in
thickness direction, or different excitation frequenciesfD , respectively. These statements also hold if thep-version
of FEM is employed to discretize the benchmark problem, cf. Fig. 9. Willberg (2013) shows that these peaks can
also be observed for C0-continuous isogeometric finite elements. So it is safe to say that this problem is inherent
to all C0-continuous finite elements regardless of the chosen polynomial degree.
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Figure 8: Results of the convergence study for the fundamental symmetric Lamb wave mode are depicted. The
model has been discretized using spectral elements. The relative error in group velocity is given over the number
of nodes per symmetric wavelength (λS0

).
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Figure 9: Results of the convergence study for the fundamental symmetric Lamb wave mode are depicted. The
model has been discretized usingp-version finite elements. The relative error in group velocity is given over the
number of modes per symmetric wavelength (λS0

).

Even if the polynomial degree is increased top = 8 the non-physical oscillations are not notably reduced. The
results of the convergence analysis forp = 6, 7, 8 are illustrated in Fig. 10. Different ideas need to be developed
therefore in order to avoid these disturbances.
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Figure 10: Results of the convergence study for the fundamental symmetric Lamb wave mode are depicted. The
model has been discretized using spectral element method. The relative error in group velocity is given over the
number of nodes per symmetric wavelength (λS0

). An isotropic Ansatz space with higher polynomial degreesis
testes.

Fig. 11 illustrates the displacement history recorded at point A (ux,A). The results are based on computations em-
ploying the spectral element method using the polynomial degree templatepx = 3, py = 4 and the different values
of the number of nodes/modes per wavelengthχS0

= 5, 6 and 7. Considering Figs. 8 and 9 the displacement signal
atχS0

= 6 is expected to be significantly distorted. Studying the second diagram of Fig. 11 (χS0
= 6) we observe

stationary oscillations over time. That is to say that pointA experiences a standing wave similar to that familiar
from a modal analysis. As the group velocity of the fundamental symmetric Lamb wave mode is known a priori,
we can conclude that aftert = 7 · 10−5 s no oscillations ought to occur at point A. This behavior canaccordingly
be described as non-physical.
We would like to mention, however, that even simulations using a coarser gridχS0

= 5 result in accurate displace-
ment histories. To sum up, if the discretization is refined orcoarsened, accurate signals are computed. In principle,
therefore, the shape functions are able to resolve the wave form correctly for all three meshes. Moreover, Fig. 11
suggests that the group velocity is not affected by the observed phenomenon. That is to say, signal processing
methods, such as the continuous wavelet transform, do not see this effect. From a modelling point of view, how-
ever, it is interesting to investigate the source of these oscillations and to devise a remedy. In this way, the analyst
can be sure that the results obtained are accurate and there are no numerical artefacts to pollute the simulation
results.
In order to identify the source of the described phenomenon,it is helpful to consider the mode shape of the re-
maining vibrations. Fig. 12 depicts a contour plot of the displacement field forχS0

= 6. In view of the mode
shape of the oscillations, the analyst might be reminded of the well-known hourglass phenomenon. This effect is
usually seen in low orderh-type finite elements. In this case, efforts are made to avoidshear-locking by integrating
special terms of the stiffness matrix deliberately using too few quadrature points. This procedure is called under-
integration and is itself another source of errors resulting in zero-energy modes or hourglass modes (Zienkiewicz
and Taylor, 2000a). In other words, no energy is needed to achieve the deformed shape for different displacement
configurations. As these oscillations are not suppressed byadding an artificial damping, we can conclude that
zero-energy modes do not cause the described effect.
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Figure 11: Displacement signal at point A. This depicts the in-plane displacement componentux. The results were
obtained using the spectral element method with the following polynomial degree template:px = 3 andpy = 4.
Please note, however, if the amount of nodes per symmetric wavelength is chosen to be twice the polynomial
degree in propagation direction,χS0

= 6, the solution is evidently corrupted.

After ruling out hourglass modes as a possible source of these errors, a second obvious idea is that the eigen-
dynamics of the numerical model might cause such vibrations. In order to prove this assumption, we conduct
several modal analyses in the following sub-sections.
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Figure 12: Snapshot of the spurious oscillation componentsremaining in the plate after the primary wave has
already passed. The simulation was conducted using the SEM with px = 3, py = 4 andχS0

= 6. Contour plot
corresponding to the graph in the middle row of Fig. 11.
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5 Modal Analysis of Single Elements and Sub-Models

As a next step in the investigation of this effect, we conducta modal analysis of a single finite element. It seems
likely that elemental eigenfrequencies are excited. Owingto the fact that no physical damping is introduced and
that the chosen time integration scheme does not add any numerical damping, the observed vibrations do not vanish.
Taking the connection between adjacent finite elements intoaccount, we apply symmetry boundary conditions to
its left-hand and right-hand side boundaries. All subsequent considerations are therefore based on the numerical
model depicted in Fig. 13. It consists of one element with a variable element widthbe. The natural frequencies are
calculated to solve the well-known linear eigenvalue problem

(
K− ω2

M
)
v̂ = 0 (21)

with v̂ describing the mode shape.

Modal analysis of a single finite element The results presented in this section are obtained with the aid of the
spectral element method. We wish to mention, however, that the same conclusions can be drawn in cases where
thep-version of the finite element method is used.

be

Figure 13: Model for the modal analysis is a single finite element with symmetric boundary conditions.

(a) The first two symmetric mode shapes.

(b) The first two asymmetric mode shapes.

Figure 14: The first two symmetric and asymmetric mode shapesbelonging to non-zero eigenvalues of one spectral
element with symmetry boundary conditions, cf. Fig. 13. Thepolynomial degrees are chosen as:px = 3, py = 4.
The element size isbe = 5.568 · 10−3 m.
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Fig. 14a depicts the first two symmetric mode shapes of one individual spectral element using the polynomial
degreespx = 3, py = 4 and having an element size ofbe = 5.568 · 10−3 m corresponding toχS0

= 6. A visual
inspection of the results, in which the mode shapes are compared with the displacement field in Fig. 12, reveals a
qualitative agreement between the first eigenvector and thevibrations. This can be taken as an initial clue to verify
the stated assumption. Fig. 14b displays the first two asymmetric mode shapes. As they do not coincide with the
oscillations, we just disregard them in the following investigations.
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Figure 15: The relation between the first two symmetric element eigenfrequencies of a single spectral element and
the element size is illustrated. The polynomial degree template is:px = 3 andpy = 4.

Fig. 15 plots the symmetric element eigenfrequenciesfrsymi
as a function of the element widthbe and the number

of nodes per wavelength, respectively. For the sake of clarity, we give both abscissas although they can be easily
converted, cf. Eq. (20). At the chosen excitation frequencyof fD = 477 kHz a horizontal line is plotted in the
diagram. The intersection of this line with the graphs of thesymmetric element eigenfrequenciesfrsymi

(be) gives
the critical element sizes at which non-physical vibrations are to be expected. The first critical element width is
be = 5.61 mm (χS0

= 2.899) and the second isbe = 11.53 mm (χS0
= 5.956). These points coincide with the

locations of the peaks seen in Figs. 9 and 8. Consequently, the discovered phenomenon is referred to asthe internal
element eigenfrequency effect.

Frequency dependency of the internal element eigenfrequency effect The following paragraphs investigate
two different excitation frequencies. The wave is excited at fD = 4.77 · 105 Hz andfD = 1.59 · 105 Hz,
respectively. The polynomial degrees are chosen aspx = 4 andpy = 4.
Figs. 16b and 16c depict the relative error in group speed forthe chosen excitation frequencies and polynomial
degree template. We conclude thatχS0

= 3.9 andχS0
= 8 are critical discretization settings. However, it is

surprising that the excitation frequency does not seem to have any influence on the critical number of nodes per
wavelength. Since thex-direction is discretized with a shape function of polynomial orderpx = 4 the connection
between the polynomial degree in wave propagation direction and the criticalχS0

-value is again evident.
For this reason, we introduce three abscissas that correspond to the element sizebe andχS0

for the two excitation
frequencies (cf. Eq. (20)). Despite the change in the excitation frequency, the locations of the peaks are hardly
influenced. Again, the locations of the peaks in the convergence plots for the group velocity are in excellent
agreement with the predicted element size due to the elemental eigenfrequency effect.
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The polynomial degree template is:px = 3 andpy = 4. Where the eigenfrequencies correspond to the excitation frequency, distinct
peaks in the convergence curves are observed, cf. Figs. 16a and Fig. 16b.
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(b) Convergence curve of the relative error in group velocity for the fundamental symmetric Lamb wave mode. The polynomial degree template
is: px = 4, py = 4. The excitation frequency isfD = 1.59 · 10

5 Hz.
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Figure 16: Relation between elemental eigenfrequencies and peaks in the convergence curves.
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Modal analysis of a group of finite elements So far, it has been implicitly assumed that the structure under
investigation is discretized using a regular Cartesian mesh. This can often be the case where thin-walled plate-like
structure are concerned . To be applicable for a wider range of problem classes, however, it is necessary to add
one last step to the current studies and to look at periodic meshes. This means that adjacent finite elements do not
necessarily have to have the same element sizes. Nonetheless, it is possible to extract representative sub-structures
from the model. To this end, we proceed to analyze the sub-model depicted in Fig. 17. This sub-structure consists
of three spectral elements with varying dimensions[1.0 · be, 0.7 · be, 1.3 · be].

1, 0 · be 0, 7 · be 1, 3 · be

Figure 17: Numerical model for the modal analysis of a periodic sub-structure.

To facilitate the comparison between the results, we use thesame mean number of nodes/modes per wavelength
as with the simulations discussed in the previous sections.The polynomial degrees arepx = 3 andpy = 4,
cf. Fig. 17. As explained before, we begin by computing the symmetric eigenfrequencies of the sub-model as a
function of the element widthbe. The results are illustrated in Fig. 18a. The critical values ofχS0

are determined
to be5.92, 8.98 and18.00. We then proceed to extend the sub-model periodically and study its convergence
behavior. As predicted in the modal analysis, irregularities arise atχS0

= 5.92, 8.98 and18.00, cf. Fig. 18b. We
can therefore conclude that, even in cases where adjacent elements do not share the same dimensions, the wave
propagation analysis can be corrupted. Consequently, the analyst also has to be aware of the eigenfrequency effect
described above when employing a periodic mesh. This phenomenon is more pronounced if a coarse discretization
is chosen in conjunction with a mono-frequent excitation. Looking at Fig. 18b, we notice that the effect of the
disturbed convergence behavior is minimized for a fine spatial discretization. However, this is only the case in a
nodes/modes per wavelength range that is of no interest to the practical engineer. The required discretization is
too fine so the computational costs are too high. An accuracy of approximately1% is normally sufficient from an
engineering point of view. It is accordingly very importantto ensure that the external excitation frequency does
not coincide with any internal eigenfrequency.

Guideline to avoid the internal element eigenfrequency effect The steps given below are designed to help
analysts to avoid non-physical oscillations in wave propagation analyses:

1. Determine the size of a single finite element (Cartesian grid) or the size of the smallest representative sub-
structure.

2. Apply symmetry boundary conditions to the left-hand and right-hand boundaries.

3. Conduct a modal analysis of the representative sub-structure where the element size is an independent pa-
rameter.

4. Extract the symmetric eigenfrequencies.

5. Find the intersection of the excitation frequency with the first symmetric eigenfrequencies. This step deter-
mines the critical element sizesbe,crit.

6. Ensure that the element dimensionsbe are not coincidental with the critical one.

The analyst can easily avoid the internal element eigenfrequency effect and achieve accurate simulations if he
adheres to the proposed guideline. If commercial mesh generators and unstructured discretizations are used it is
improbable that the observed effect will play a significant role. From the authors’ point of view at least, it is
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nonetheless essential to be aware of all the pitfalls that may be encountered when dealing with the analysis of
guided ultrasonic waves.
It should be mentioned however, that the described phenomenon can also be prevented if unstructured meshes are
deployed. Concerning the quality of the simulations it is nonetheless recommended to use finite elements with low
aspect ratios. Cartesian grids are accordingly preferred.The analyst consequently tries to partition the model under
investigation in order to create regions where a structured, mapped mesh can be applied. It is therefore advised to
adhere to the proposed guideline.
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(a) The relation between the first three symmetric element eigenfrequencies of a periodic SEM sub-model and the element size isillustrated.
The polynomial degree template is:px = 3 andpy = 4. Where the eigenfrequencies correspond to the excitation frequency, we
observe distinct peaks in the convergence curves, cf. Fig. 18b
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(b) Convergence curve of the relative error in group velocity for the fundamental symmetric Lamb wave mode. The polynomial degree template
is: px = 4, py = 4. The excitation frequency isfD = 4.77 · 10

5 Hz. A periodic sub-model is used.

Figure 18: Relation between elemental eigenfrequencies and peaks in the convergence curves for the sub-model
[1.0 · be, 0.7 · be, 1.3 · be].

It could be argued, however, that the peaks seen in the convergence curves are merely the results of an offset
of the time signal envelope’s centroid that was computed using the Hilbert-transform. The phenomenon under
investigation has no effect on either the group and phase velocity or on the signal amplitudes. This is true and the
eigenfrequency effect could indeed be suppressed by introducing different signal processing schemes, such as the
CWT. This is not satisfactory from a numerical point of view, however, as the time signal is nevertheless disrupted.
We accordingly believe that such effects should be taken into account whenever wave propagation analysis is
conducted. Since the remedy for the eigenfrequency effect is fairly simple, it should be the goal of every analyst
to avoid such numerical disturbances.
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6 Conclusions

The current paper investigates the effect of spurious oscillations caused by elemental eigenfrequencies. Using
high-order finite element approaches such as the SEM or the hierarchicp-FEM, we have illustrated that non-
physical oscillations can occur under certain conditions.Various modal analyses have shown that these numerical
oscillations can be suppressed once the element dimensionsfall below a critical maximum element size, which
is smaller than would be inferred from the convergence behavior. To determine these critical mesh sizes, it is
necessary to calculate the smallest eigenfrequencies of one element or the smallest periodical sub-model supported
by a symmetry boundary conditions. For a proper finite element simulation of the ultrasonic wave propagation in
thin-walled structures, it is therefore important to avoidthe effects described above, as they may seriously disrupt
the accuracy of the solution.
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