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Wave Propagation Analysis using High-Order Finite Element Methods:
Spurious Oscillations excited by Internal Element Eigenfrequenies

D. Schmicker, S. Duczek, S. Liefold, U. Gabbert

From a computational point of view, the numerical analydisilirasonic guided waves is still a very demanding
task. Because of the high-frequency regime both a fine $patietemporal discretization is required. To minimize
the numerical costs, efficient and robust algorithms oughte developed. One promising idea is therefore to
focus on high-order finite element metholds-FEM).

The current article investigates the behavior of fheersion of the finite element methgdKEM) and the spectral
element method (SEM) with respect to the existence of smudscillations in the solution. Convergence stud-
ies have shown that it is possible to observe non-physicllattons under certain conditions. These parasitic
vibrations, however, significantly deteriorate the acayraf the simulation. For this reason, we analyse this phe-
nomenon in detail and propose solutions to avoid its ocawee

Without loss of generality, we employ a two-dimensionahelatrain model to derive a guideline as to how to
avoid these spurious oscillations, placing a special ensgghan the relation between the element size, the polyno-
mial degree of the high-order shape functions and the etaitdrequency.

Our results show that accurate simulations are possibldéf model is generated according to the proposed
methodology. Moreover, the implementation of the guiédlito an existing finite element software is straightfor-
ward; these properties turn the method into a useful toopi@rctical wave propagation analyses.

1 Introduction

Wave propagation analysis can be divided into three mainggo(i) seismic wave propagatiofii) acoustic wave
propagation and (iii) guided wave propagationThis article addresses the third topic, since it is closelgted

to structural health monitoring (SHM), which is of specialerest to the authors. We expect, however, that the
findings of the current article are applicable, without loggenerality, to the other classes of wave propagation
problems.

The continuous monitoring of a structure aims to provideiimfation on the structural integrity of the monitored
region and to predict its residual life. The first step is tgister the presence of a damage. The second step is to
gather information on the possible location. The third ssepccordingly to determine the extent and/or type of
the damage before any details can be given about the rediféuaf the structure in the fourth and last step. SHM
systems should, therefore, enable an online examinatisafefy-relevant structural components during operation.
According to Worlton (1961) the application of ultrasoniawes for this purpose can be traced back to the early
60's. The development of suitable computational methodzredict and to evaluate the responses of ultrasonic
waves interacting with defects is one of the major tasksigmahea of research. Such models are of great impor-
tance, since they facilitate a better understanding ofrttezaction of guided waves with boundaries as well as with
damages and support the design of reliable and robust gigne¢ssing methods. A finite element simulation of
ultrasonic waves, however, calls for both a fine spatialrdiszation and temporal one (high frequency regime
short wavelengths). As a consequence, a large number aéetegf-freedom is required, resulting in dispropor-
tionate numerical costs. To this end, we have investigdtethative numerical approaches to solve the governing
equations more efficiently. These methods comprise the-s@#yg lattice model (MSLM) proposed by Baek
and Yim (2011), the local interaction simulation approdcisf) published by Lee and Staszewski (2007a,b), the
spectral element method (SEM) presented by Patera (198#4)aitsch and Tromp (2002), Ha and Chang (2010),
and thep-version of the finite element methop-EEM) proposed by Baliika et al. (1981) and further developed
by Duster (2002), Willberg et al. (2012), and Duczek and Gab2f13). By way of reference, Willberg et al.
(2012) introduced some discussions about high-order &éiment methods seeming to be the most viable choice
to deal with practice-oriented problems including ultr@isgguided waves. The following paragraphs will there-
fore take a closer look at the propertieshafFEM in the context of wave propagation analysis.
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During the past few decades, several authors analyzed thieaay and the numerical/grid dispersion inherent to
finite element approaches when solving the wave equatidih @epustic and elastic). Grid dispersion describes
a phenomenon where numerical noise related to the gridrspaeiuses dispersion. This, of course, has a detri-
mental effect on the accuracy of the wave propagation aisalipe® Basabe and Sen, 2007). The reason for the
described numerical dispersion is the mismatch betweeadhel velocity of high-frequency waves in the grid
and the true velocity. As the grid is the source of this erttog, name numerical or grid dispersion was coined
for this phenomenon. We also wish to point out that it alsaiceevhen the physical problem being solved is not
dispersive. It can only be controlled by choosing an appad@ielement size and time-step (De Basabe and Sen,
2007).

The first systematic studies of the properties of finite elemeethodsg-FEM) for high wavenumber applications,
however, were carried out in a series of papers by Ihlentaiggabi$ka (1995a,b, 1997b,a). They present new er-
ror estimates for solving the wave equation and concludsttisaot possible to totally eliminate the phase error. It
is, however, still possible to achieve significant erromugitbns by means of a suitable discretization depending on
the wavenumber. The same authors also state that the clilcape functions is irrelevant from the point of view
of the dispersive characteristics of the numerical sofytamgain highlighting the importance of high-order shape
functions. They found that high-order finite elements ethabgreater degree of accuracy than low order finite
elements for the same number of degrees-of-freedom. Argptd lhlenburg and Balika (1995a,b, 1997b,a),
the most significant improvements in accuracy are obtairfeehviransferring the standanelversion (withp = 1)

to approximation ordep = 2 orp = 3.

Seriani and Priolo (1994) made similar observations reggrthe spectral element method. They found that the
results are more accurate compared to those of low-ordee #tements. Based on their research, Seriani and
Priolo (1994) concluded that there is a theoretical limitite number of nodes per minimum wavelengthrdbr

an increasing polynomial degree. In this case, the accummgins almost unchanged even for long propagation
times. For practical applications they recommend 4.5 ngaéesvavelength deploying a polynomial degree of
p = 8. As a practical rule of thumb, they state that using at leagides per wavelength for the spatial resolution
and a polynomial degree pf= 4 significantly reduces the numerical dispersion error. higler wave propagation
periods are to be investigated, higher polynomial ordeesn@eded to avoid error accumulation and numerical
anisotropy (Seriani, 1998; Seriani and Oliveira, 200829.Basabe and Sen (2007) compare the dispersion prop-
erties of FEM and SEM. Both formulations are used to diszeethe acoustic and elastic wave equation. The
analysis reveals that the dispersion error can be reduded be2 % for SEM of order four or greater with at least

5 nodes per wavelength.

Jensen (1996), Dauksher and Emery (1999, 1997), Chris889jland Ainsworth and Wajid (2010a,b) comment
on the influence the mass matrix has on the numerical redeltsen (1996) deploys the spectral element method
with a diagonalized mass matrix. He concludes that massihgroes not introduce additional errors. In the case
of spectral elements based on a Gauss-Lobatto-Legendie) @id, a simple nodal quadrature (GLL-quadrature
rule) provides an elegant way to diagonalize the mass-rmatdmatitsch and Tromp (2002) offer similar conclu-
sions and recommend a polynomial degreg ef 4/5 since, from their point of view, it provides the best trade-o
between accuracy and integration stability. By way of refiee, Christon (1999) showed that the higher order
mass matrix - a linear combination of lumped and consistergsmmatrices - can improve the dispersion character-
istics of both reduced and fully integrated finite elemeAissworth and Wajid (2010a,b) also utilized a weighted
average of the consistent and diagonalized mass matritey. demonstrate that the optimal blending parameter
for finite elements of ordep is given by the ratid : p. Compared to the pure schemes additional two orders of
accuracy can be gained independent of the spatial dimensidn efficient implementation of the higher order
mass matrix can be achieved by nonstandard integratios. rAle explicit construction of the nodes and weights
is given in Ainsworth and Wajid (2010b). Ainsworth and WafzD10a) also findr as a theoretical limit for the
number of nodes per wavelength if the polynomial degreedsesed accordingly (previously stated by Seriani
and Priolo (1994)). Dauksher and Emery (1999, 1997) demeatest that a row-summing procedure can result
in accurate solutions with spectral elements based on Ghelypoints (GLC). This row-summing procedure is
only performed on the global mass matrix. Nonetheless, dhgisgn characteristics are relatively unaffected by
the diagonalized mass matrix but the numerical costs ofrspbf the equation system is drastically reduced when
applying an explicit time-integration scheme. The authapsfor deploying row-summed mass matrix spectral
elements with central time differencing to solve the waveagipn.

The angle-dependency of the wave propagation propertiebéen studied by Mullen and Belytschko (1982),
Christon (1999) and De Basabe and Sen (2007) for exampleleMahd Belytschko (1982) noticed the angle-
dependency for linear two-dimensional finite elements argkoved a higher dispersion error when the stiffness
matrix is underintegrated. De Basabe and Sen conclude EidtiS clearly advantageous and that the dispersion
results gathered for the acoustic case can be transfertbd &dastic case.

Mulder (1999) investigates spurious or parasitic modes ¢ha occur if high-order finite elements are used to
discretize the wave equation (SEM= 2, ..., 6). The Fourier analysis is used to study the aforementiohed p

52



nomenon. No deleterious effects are produced for a highgmpalynomial degree. He recommends employing
spectral elements based on a GLL grid with a diagonalizeds merix. Park and Flaggs (1984) defined spuri-
ous mechanisms as non-physical oscillatory componentsathantrinsic in the spatial discretization regardless
of the uniformity of the mesh spacing. They are often assediavith rank deficiencies of the element stiffness
matrix. The goal of their investigations is to develop a teghe to identify these phenomena as intrinsic element
properties. These studies were carried out on a one-digradsaxial bar. Abboud and Pinsky (1992) investigated
standard finite elements (8-node trilinear element, 2Cereetendipity element, 27-node tri-quadratic element).
The results of their analysis indicate that the serendigiggment is not suitable for wave propagation analysis
in terms of simplicity and accuracy. It is more complex aneéslaot offer the same numerical economy as the
8-node element, nor does it exhibit the same accuracy as/Hme@e tri-quadratic finite element. Seriani and
Oliveira (2008b) study spectral elements based on a GLL drd @id. They observe the following properties:
spectral elements using a GLC grid exhibit a phase leadgv@iilL-based spectral elements produce lagging er-
rors. Ainsworth and Wajid (2010b) and Thompson and Pins®@4) recorded similar findings for lumped and
consistent mass matrix formulations. Thompson and Pinskyi@y the Fourier analysis technique to examine
the dispersion irp-version finite elements up to ordgr= 5. They use the termp-version of FEM differently
than it is normally understood. They considered hierartBigendre basis functiong-FEM), hierarchic Fourier
basis functions (Fourigr-FEM Leung and Chan (1997); Leung and Zhu (2003)) and spéxsés functions based
on Gauss-Lobatto-Legendre points (SEM). Thompson anky&gain confirm the well-known fact that clearly
high-orderm-type elements exhibit increased accuracy compared tofder dinite elements, for the same number
of degrees-of-freedom. To resolve the wavefront, theynclgiat two elements per wavelength are sufficient for
polynomial degrees gbf > 4. Conclusions from their study are that, for well-resolveaves, SEM produces
better results in terms of phase error when compared torblgcaelements. For higher frequencies, however, both
dispersion and amplitude attenuation errors increase tha. nAinsworth (2004) proves that the error decay is
quasi-optimal when the number of nodes per wavelength etgréhant.

Regarding the literature survey on dispersion errors and@s modes, we note that no practical guidelines have
been proposed to circumvent these deleterious effectsgiVle error estimates are necessary for adaptive solution
techniques but are hard to use for an a priori determinatidheoappropriate discretization set-up. The articles
dealing with spurious effects concentrate almost excigion one-dimensional structures. Provided we accept
the definition of spurious waves given by Park and Flaggs4),98e will show in the course of the investigations
throughout the current paper that the described effectrig different in nature from what has previously been
reported in literature.

The effect we describe in this paper is of practical imparéanwhen examining typical thin-walled structures (aero-
nautics, aerospace). We therefore propose to use an erigeeproach instead of a mathematically thorough
treatment of the observed effect. The present paper detdg@whenomenon that was discovered in Willberg et al.
(2012), who observed that stationary, non-physical agwlhs occur in specific cases. The following sections
investigate the reasons for this effect in detail. The saiehemenon can be of crucial importance, particularly
when thinking about designing signal-processing algorghfor SHM-systems on the basis of numerical high-
order models. Consequently, following comprehensive stigations, we propose a guideline to determine an
appropriate discretization to avoid this special kind afrspus oscillations.

The outline of the paper is as follows: Section 2 briefly riscde basic principles of the finite element method and
introduces two types of high-order shape functions reltig¢dep-version of FEM and SEM. A short introduction
to ultrasonic guided waves, especially Lamb waves, is gimeBection 3. This is followed by a description of
the numerical model in Section 4, which serves to illustthéeobserved phenomenon. To determine the cause of
these spurious oscillations, an eigenvalue analysis idwaiad in Section 5, after which we elaborate a guideline
to avoid this phenomenon. Finally, Section 6 summarizesihi@ points and provides conclusions.

2 High-Order Finite Element Methods

The following section briefly recalls the fundamentals @ finite element methods. All fundamental principles
are identical. The only difference is to be seen in the shapetions employed. In the current article, however,
we confine our analysis to wave propagation problems in tieestic, isotropic and homogeneous materials. All
guantities are given in Voigt-notation. Therefore, theehapplied matrix notation understands vectors as com-
ponent representations of physical quantities or numlep@eameters being arranged to column format. Hence,
products of vectors and/or matrices are abbreviationsmpoment sums according to Falk’s scheme. The product
aTb, for instance, refers to the scalar proddcf a;b;.
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2.1 Basic Principles

The finite element developments are based on the variatforrallation corresponding to Navier's equations,
namely Hamilton’s principle. It states that the motion o gystem within the time intervdd,, ¢-] is such that,
under infinitesimal variations of the displacements, thenitanian actionSy vanishes, meaning that the motion
of the system follows the path of the stationary action (Had@67)

to
5SH:5/(L+WE)dt:O. )

t1

Here L represents the Lagrangian function, amg; the work done by the external forces. The Lagrangian is the
difference between the kinetic enerffyand the elastic strain enerd@y; (L = K — W;). After some calculations
and the substitution of Hooke’s law into Eqg. (1), the vadagl formulation takes the following form

0=— / [pou’ii + 6e” Ce] dQ+ / sulFy dQ + / sulFgdr, )
Q Q T

6L Wg

wherep is the mass density;, and o are the vectors of mechanical strains and stresses in Voigtion, re-
spectively (Zienkiewicz and Taylor, 2000a){C denotes the elasticity matrix ani represents the acceleration
vector. The external forces can be divided into surfaceddgg and volume load$'y,. Q2 andI’ represent the
computational domain and its boundary, respectively. Ifdivéde the domain of interest into several elements,
then the displacement field(x, t) in each finite element, denoted by is approximated by the product of the
space-dependent shape function malNixx) and a time-dependent vector of unknovitfis(t),

u(x,t) = Ne(x)U,(t). 3)
The mechanical strain is defined as
e =DN.U, = B.U,, (4)

by introducing the strain-displacement matrixids = DN., whereD is a linear differential operator relating
strains and displacements. With the aid of Egs. (2), (3) dharid the reasoning that Hamilton’s principle has to
be satisfied for all variationdu, = N, U, we obtain the well-known equation of motion

Mqu +K,U, = fg (5)

where the system matrices are obtained by assembling albelematrices

M, = A M,, (6)
K,= AK., (7)
£,= Af. ®)

The elemental mass and stiffness matrix as well as the elairiead vector are given as

M, = [ pNTN.dQ, 9)
Qe
K, = / B.7CB.dQ, (10)
QE
f, = / NZF, . dQ + / NIF qdr, (11)
Qe Fe

wheref), andl’, are the domain of a single element and its correspondingdasynFor further explanations, such
as including the influence of damping in the finite elementhoeét the reader should refer to standard text-books
on this subject by Zienkiewicz and Taylor (2000a,b,c), Weigy(2009), Bathe (2002), Fish and Belytschko (2007)
and Hughes (1987), for instance.
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2.2 Shape Functions

This section discusses two different typegpeadxtensions. We begin by introducing the hierarchic Legefgsis
functions (Weinberg, 1996; iter, 2002; Solin et al., 2004; Demkowicz, 2006; Demkovetal., 2008), before
presenting the Lagrange interpolation polynomials defored Gauss-Lobatto-Legendre grid (GLL) (Komatitsch
and Tromp, 2002; Ha and Chang, 2010; Zak et al., 2006; Kudelk, 2006; Peng et al., 2009). The first approach
is commonly referred to as thgversion of the finite element method-FEM) while the latter one is known as
spectral element method (SEM). Both methods are very atcaral suitable for wave propagation analysis. It has
been thoroughly demonstrated that under certain congitioese approaches exhibit an exponential convergence
rate in the energy norm (Bter, 2002; Pozrikidis, 2005; Fichtner, 2011).

2.2.1 Hierarchic Legendre Polynomials

The definition of the shape functions, based on the norntliegral of the Legendre polynomials, follows the
procedure described in the monograph by $zaid Babgka (1991, 2011). We start with the standard linear shape
functions, also referred to as nodal shape functions

1
N;.egendrﬁtg) — 5(1 +&8), i=1,2, (12)
whereg; is the local coordinate of th# node. High-order shape functions are added to the set inrarbical
fashion. They are defined in terms of the normalized intsgrithe Legendre polynomials

&
1
NLRE) — [ Les)dn, i=sp, (13)
—2 2
with the norm of the Legendre polynomial

| Li—o|l = (14)

21 —3°

These functions have the property thét*®*"{+1) = 0. The corner nodes (= 1, 2) consequently retain a
physical meaning, whereas the internal variables=(3, 4, ..., p + 1) cannot be interpreted physically. The
degrees-of-freedom are therefore connected to modes. dviemene have to keep in mind that this set of shape
functions is hierarchic, cf. Fig. 1. The resulting elemerttrices and vectors are accordingly likewise hierarchic
in the sense that the matrix corresponding to polynomiatebggis a sub-set of the matrix corresponding to order
p—+1. This property is of great help in adaptiveefinement procedures. The first four shape functions grets
shown in Fig. 1 by way of an example.

1.2 1.2 1.2
08 > 1 0.8 1 0.8 ™ 1
04 < 04 < 04 <

0 — ~— 0 e T~ 0k I e TN
0.4 0.4 ST £ R S R W 5 e

-08-04 0 04 0.8 -08-04 0 04 0.8 -0.8-04 0 04 0.8
£ £ £

(a) modified Legendrp = 2 (b) modified Legendre = 3 (c) modified Legendrp = 4

Figure 1: One-dimensional shape functions for pheersion of the finite element method. Normalized integrals
of the Legendre polynomials.
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2.2.2 Lagrange Polynomials

The presentation of the spectral shape functions is baséldeocimplementation discussed in the monograph by
Ostachowicz et al. (2011). Thepeype elements (Thompson and Pinsky, 1994) are based omahgeinterpo-
lation polynomials defined on a GLL nodal distribution. ThauSs-Lobatto points{, j = 1,...,(p + 1)) are
defined in such a way that

-1 if =1
=14 &t if 2<j<p. (15)
+1 0 if j=p+1
Here{éf{”’1 (n=1,...,(p— 1)) denotes the roots of thg — 1)**-order Lobatto polynomial
1 artt »

Therefore, the basis functions based on Lagrange polyhemnia given by

Lagrangep o AR 5 - gj .
N, ©= I =—= i=12 .. p+L (17)
Pl

In this case, all degrees-of-freedom retain their physitning. The degrees-of-freedom are therefore connected
to nodes. If a GLL grid is used in conjunction with the Gausdatto quadrature, the elemental mass matrix
is under-integrated and diagonalized. This is due to thetfet the integration points coincide with the nodal
coordinates. We wish to point out, however, that this sehapg functions is not hierarchical by construction. The
first four shape functions are shown in Fig. 2 by way of an examp

1.2 1.2 1.2
08 N\~ 0.8 N\ /7 ™\ 108 N/ -
N\ / 7 4 \'.
0.4 y< PN 0.4 A ) A4 04 X ,> A
0 0 - & \ gl 0 —'_-\/- ------ < A} 3
— — == == NS R o
-04 -0.4 -0.4
-0.8-04 0 04 0.8 -08-04 0 04 0.8 -08-04 0 04 0.8
3 3 3
(a) Lagrange polynomials = 2 (b) Lagrange polynomials = 3 (c) Lagrange polynomials = 4

Figure 2: One-dimensional shape functions for the speetemhent method. Lagrange interpolation polynomials
through Gaul3-Lobatto-Legendre points.

For a detailed discussion of the spectral methods the stexieeader is referred to the monographs by Ostachowicz
et al. (2011), Fichtner (2011) and Pozrikidis (2005).

3 Ultrasonic guided Wave

The propagation of elastic waves in solid media is the stilgiemany textbooks: Viktorov (1967); Graff (1975);
Achenbach (1987); Rose (1999); Giurgiutiu (2008); Su and2(%9); Eds.: Boller et al. (2009); Raghavan and
Cesnik (2005). This treatise is of particular interest iridgd elastic waves. Lamb waves are one important
representative of this class of waves. They propagate tepdand shell-like structures with free surfaces and are
a type of ultrasonic, dispersive waves. The term was coindtbnor of its discover Horace Lamb, who was the
first to describe them mathematically in his seminal work ‘Waves in an Elastic Plate” Lamb (1917). The first
comprehensive book on this subject was published by Vikt¢t867) and is now regarded as the standard text on
Lamb wave propagation.
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(a) So-mode with a phase velocity ef, = 5.248 km/s (b) Ag-mode with a phase velocity ef, = 2.464 km/s

Figure 3: The two fundamental Lamb wave modes encounterad suminum plate (material data: Tab. 1) at
fd =1.25 MHzmm.

Through multiple reflections on the plate’s lower and uppefases, and through constructive and destructive
interference, pressure waves (primary/P-waves) and steaes (secondary/S-waves) give rise to Lamb waves,
which consist of a pattern of standing waves in th&hickness)-direction (Lamb wave modes) behaving like
travelling waves in ther-direction Giurgiutiu (2008). Accordingly, two differetypes of Lamb waves can be
distinguished; symmetri§;- and anti-symmetrici;-modes, cf. Fig. 3. The terms symmetric and anti-symmetric
refer to theu, displacement component, cf. Figs. 3. The out-of-planelaégment is symmetric with respect to
the mid-plane for symmetric modes and anti-symmetric fdi-symmetric modes. Besides being multi-modal,
Lamb waves also display a dispersive behaviour, i.e. thejpgrties - such as the group velocity - are frequency-
dependent, cf. Fig. 4. To be exact, the velocity does not dapjend on the frequency but on the product of the
excitation frequency and the thickness-(d) of the structure. For a more detailed review of ultrasonigd
waves the reader is referred to the aforementioned litexatu

cg [km/s]
RN
i
i
i

fd [MHz mm]

Figure 4: Group velocity dispersion diagram for a lineaistita isotropic material X;, = 5.1084 - 10'° N/m?,
p = 2.6316-10'° N/m? andp = 2700 kg/m?; aluminum). Dashed lines denote anti-symmetric Lamb wavees,
while solid lines represent symmetric modes.

4  Benchmark Problem

During the investigation of the convergence propertiesifiei@nt high-order finite element methods, distinct
peaks in the convergence curves have been observed, chewilet al. (2012). Therefore, the main objective of
the current article is to investigate the reasons for thetuaence. In doing so, we are able to propose measures
to avoid this phenomenon.

At this point, for the sake of completeness, we briefly déscthe numerical model employed by Willberg et al.
(2012). Without loss of generality, a two-dimensional @atrain model is used. The geometry and boundary
conditions are depicted in Fig. 5.

Generally, a mono-modal excitation is favored. This tegbaiallows us to study the properties and the behavior
of symmetric and anti-symmetric Lamb waves separately. hi®eénd, the excitation is conducted using a pair
of collocated point forces. This, however, makes it eagiénterpret the signal. These loads are applied at the
top and bottom surface = 0. Depending on the choice of parameter= +1 either only symmetric or only
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anti-symmetric wave packets are excited. The excitatignadiis a windowed (Hann-window) sine burst signal

AP -2 ([ wfpt H n
F(t) = {FSln(Qﬂ'th) sin (ﬁ) if 0<t< f—g ’
0

1 n
if t>f—§

(18)

wheren, is the number of cycled; represents the signal amplitude afisidenotes the center frequency.

F(t) 4 B
“y
> d
. X
!
Y uF()
)\Lv K“r, p a
b

Figure 5: Analytical model for the convergence study.

Due to the symmetry of the model, we only discretize one hiathe plate using high-order finite elements and
apply symmetry boundary conditions, cf. Fig. 6. The platgté is chosen in such a way that reflections at the right
boundary do not interfere with the signals measured at takiation points A and B. The spatial discretization is
characterized by the polynomial degree of the shape fumeiio propagation directiop,., the polynomial order

in thickness directiop,, and the element widtb .
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Figure 6: Numerical model for the convergence study.

The time-of-flightt. between points A and B is evaluated. Since the distance katifese points is known a
priori, . corresponds to the group velocity of the simulated wave packet. The analytical valugs; ... can be
taken from Achenbach (1987).
To determine the time-of-flight for the numerical models,emeploy the Hilbert-transform. First, we calculate the
envelopes of the time signals at points A and B. Secondly, aveptite the centroids of those curves, cf. Fig. 7.
Proceeding in this way, we determine the times-of-flightfrthe origin to the evaluation points. The relevant
values suggest the ..., (Willberg et al., 2012; Xu et al., 2009). The relative erranctherefore, be determined
by

Erel _ |Cg,num - Cg,e:vact| ) (19)

Cg,exact

Each simulation uses a distinct polynomial degree templatndp,, while the element width, is successively
decreasedntrefinement). In order to gain a dimensionless refinemerampater to evaluate the results, we intro-
duce the number of modes/nodes per wavelengt)(

XS, = — A (20)




Here, )\ is the wavelengthg, stands for the group velocity and is a functionfofd, A\;, and . represent the two
Lamé constants and the mass density is denoted Dlye model parameters are compiled in Table 1.

3.0E-04 ”
2.0E-04
// 4 r{'T|
1.0E-04 : i
_10E'O4 " ' =' H ¥ :l
”“ i A up at point A —
-2.0E-04 Uy at point B == =
4.0E-05 6.0E-05 8.0E-05 1.0E-04 1.2E-04 1.4E-04
tls

Figure 7: Computation of the time-of-flight between pointarid B.

Table 1: Model parameter for the convergence study.

Parameter name Symbol Value

1st Lane constant AL 5.1084 - 1010 N/m?
2nd Lane constant iy, 2.6316 - 100 N/m?
Center frequency Ip 477465 Hz
Group speed Cg,sym,exact 5147.9 m/s
Group speed Cg,asym,ezact  3130.0 m/s
WavelengthSy-Mode Ay, 0.0111362 m
Wavelengthdo-Mode  Agsym 0.00481439 m
Amplitude F 1-107 N

Number of cycles np 32

Mass density P 2700 kg/mi

Plate thickness d 0.002 m

Distance to pointA « 0.03m

Distance to pointB b 0.1m

Time integration is performed with a Runge-Kutta algoritbfifourth order including an adaptive time-step con-
trol. A time-integration scheme from the Runge-Kutta famd deployed in order to demonstrate that the said
effect occurs independently of the numerical time-marghatgorithm. Note that the numerical quadrature of
stiffness and mass matrices is exact due to the fact thatudaregesh with undistorted rectangular elements is
employed. Mass matrix diagonalization (lumping) methagsret applied in this investigation.

In the remainder of the current section only the resultstferdymmetric Lamb wave mode are discussed. Without
loss of generality, thé-refinement is conducted for several polynomial degree kategp, andp,. The results

of the convergence study for the SEM are depicted in Fig. 8BwAgan see, the convergence behavior is signifi-
cantly disrupted at points where the amount of nodes perlesagth s, is a multiple of the shape function degree
pe. Similar observations are made by studying the anti-symmeamb wave mode, other polynomial degrees in
thickness direction, or different excitation frequencfes, respectively. These statements also hold iftversion

of FEM is employed to discretize the benchmark problem, @f. & Willberg (2013) shows that these peaks can
also be observed fordScontinuous isogeometric finite elements. So it is safe yatlsat this problem is inherent
to all Cy-continuous finite elements regardless of the chosen poliaiaegree.
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Figure 8: Results of the convergence study for the fundaahegmmetric Lamb wave mode are depicted. The
model has been discretized using spectral elements. Tatévestrror in group velocity is given over the number

of nodes per symmetric wavelengthg().
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Figure 9: Results of the convergence study for the fundaahegtmmetric Lamb wave mode are depicted. The
model has been discretized usipyersion finite elements. The relative error in group velois given over the
number of modes per symmetric wavelengXlg, ).

Even if the polynomial degree is increasedpte= 8 the non-physical oscillations are not notably reduced. The
results of the convergence analysis for 6, 7, 8 are illustrated in Fig. 10. Different ideas need to be dgvetb

therefore in order to avoid these disturbances.

60



1E+01 I T T T T T T —]
p:z:7,py:7 —— ]
L Pr=8py =8 —e—

1E+00

1E-01 A1}

E7‘el [%}

1E-02 | A

1E_03 N ﬁﬁﬁﬁjiﬁ TN T

1E'04 N ﬁﬁﬁﬁiﬁﬁ SRS ﬁﬁ'iﬁﬁﬁ OSSN

T1=e):3 A N S N S SN S B SR
4 6 8 10 12 14 16 18 20

XSo [_]

Figure 10: Results of the convergence study for the fundéaheypmmetric Lamb wave mode are depicted. The
model has been discretized using spectral element methual relative error in group velocity is given over the
number of nodes per symmetric wavelengilz (). An isotropic Ansatz space with higher polynomial degrises
testes.

Fig. 11 illustrates the displacement history recorded attpo(u, 4). The results are based on computations em-
ploying the spectral element method using the polynomigteetemplate, = 3, p, = 4 and the different values

of the number of nodes/modes per wavelengih = 5, 6 and 7. Considering Figs. 8 and 9 the displacement signal
atxs, = 6 is expected to be significantly distorted. Studying the sdatiagram of Fig. 11x(s, = 6) we observe
stationary oscillations over time. That is to say that péiréxperiences a standing wave similar to that familiar
from a modal analysis. As the group velocity of the fundaraesymmetric Lamb wave mode is known a priori,
we can conclude that after= 7 - 10~° s no oscillations ought to occur at point A. This behavior aacordingly

be described as non-physical.

We would like to mention, however, that even simulationsigsi coarser grigts, = 5 result in accurate displace-
ment histories. To sum up, if the discretization is refinedaarsened, accurate signals are computed. In principle,
therefore, the shape functions are able to resolve the veamedorrectly for all three meshes. Moreover, Fig. 11
suggests that the group velocity is not affected by the eesephenomenon. That is to say, signal processing
methods, such as the continuous wavelet transform, do edhgeeffect. From a modelling point of view, how-
ever, it is interesting to investigate the source of thesdlasons and to devise a remedy. In this way, the analyst
can be sure that the results obtained are accurate and tleen® mumerical artefacts to pollute the simulation
results.

In order to identify the source of the described phenomeitas,helpful to consider the mode shape of the re-
maining vibrations. Fig. 12 depicts a contour plot of theptiisement field forys, = 6. In view of the mode
shape of the oscillations, the analyst might be remindeti®fxell-known hourglass phenomenon. This effect is
usually seen in low orddr-type finite elements. In this case, efforts are made to aslwégr-locking by integrating
special terms of the stiffness matrix deliberately usingfew quadrature points. This procedure is called under-
integration and is itself another source of errors resgliimzero-energy modes or hourglass modes (Zienkiewicz
and Taylor, 2000a). In other words, no energy is needed tieeelthe deformed shape for different displacement
configurations. As these oscillations are not suppresseadding an artificial damping, we can conclude that
zero-energy modes do not cause the described effect.
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Figure 11: Displacement signal at point A. This depicts thplane displacement component The results were
obtained using the spectral element method with the follgwiolynomial degree templatp; = 3 andp, = 4.
Please note, however, if the amount of nodes per symmetnelergth is chosen to be twice the polynomial
degree in propagation directiogg, = 6, the solution is evidently corrupted.

After ruling out hourglass modes as a possible source oktke®rs, a second obvious idea is that the eigen-
dynamics of the numerical model might cause such vibratidnsorder to prove this assumption, we conduct
several modal analyses in the following sub-sections.
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Figure 12: Snapshot of the spurious oscillation compongtgining in the plate after the primary wave has
already passed. The simulation was conducted using the Sivpw= 3, p, = 4 andxg, = 6. Contour plot
corresponding to the graph in the middle row of Fig. 11.
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5 Modal Analysis of Single Elements and Sub-Models

As a next step in the investigation of this effect, we conduniodal analysis of a single finite element. It seems
likely that elemental eigenfrequencies are excited. Owintie fact that no physical damping is introduced and
that the chosen time integration scheme does not add anyrimatiamping, the observed vibrations do not vanish.
Taking the connection between adjacent finite elementsaictount, we apply symmetry boundary conditions to
its left-hand and right-hand side boundaries. All subsatjuensiderations are therefore based on the numerical
model depicted in Fig. 13. It consists of one element withréabde element widtlh,. The natural frequencies are
calculated to solve the well-known linear eigenvalue peabl

(K-w’M)v =0 (21)

with v describing the mode shape.

Modal analysis of a single finite element The results presented in this section are obtained withithefdhe
spectral element method. We wish to mention, however, ttmsame conclusions can be drawn in cases where
the p-version of the finite element method is used.

) E
(b e N
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Figure 13: Model for the modal analysis is a single finite edatrwith symmetric boundary conditions.

——————

]
r— J\_‘
\
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(b) The first two asymmetric mode shapes.

Figure 14: The first two symmetric and asymmetric mode shaplesmging to non-zero eigenvalues of one spectral
element with symmetry boundary conditions, cf. Fig. 13. pbi/nomial degrees are chosen as:= 3, p, = 4.
The element size i& = 5.568 - 1072 m.
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Fig. 14a depicts the first two symmetric mode shapes of onieithel spectral element using the polynomial
degree®, = 3, p, = 4 and having an element size lof = 5.568 - 10~ m corresponding tqs, = 6. A visual
inspection of the results, in which the mode shapes are cadpeth the displacement field in Fig. 12, reveals a
qualitative agreement between the first eigenvector anditinations. This can be taken as an initial clue to verify
the stated assumption. Fig. 14b displays the first two asytniomeode shapes. As they do not coincide with the
oscillations, we just disregard them in the following intigations.
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Figure 15: The relation between the first two symmetric eleméenfrequencies of a single spectral element and
the element size is illustrated. The polynomial degree tataps:p, = 3 andp, = 4.

Fig. 15 plots the symmetric element eigenfrequengijes, . as a function of the element width and the number

of nodes per wavelength, respectively. For the sake oftglave give both abscissas although they can be easily
converted, cf. Eq. (20). At the chosen excitation frequesicy, = 477 kHz a horizontal line is plotted in the
diagram. The intersection of this line with the graphs ofshmmetric element eigenfrequencigs,, . (b.) gives

the critical element sizes at which non-physical vibragiane to be expected. The first critical element width is
be = 5.61 mm (xs, = 2.899) and the second i& = 11.53 mm (xs, = 5.956). These points coincide with the
locations of the peaks seen in Figs. 9 and 8. Consequertdlgisbovered phenomenon is referred tthasinternal

element eigenfrequency effect

Frequency dependency of the internal element eigenfrequey effect The following paragraphs investigate
two different excitation frequencies. The wave is excitédfa = 4.77 - 10° Hz and fp = 1.59 - 10° Hz,
respectively. The polynomial degrees are chosem.as 4 andp, = 4.

Figs. 16b and 16c¢ depict the relative error in group speedh®ichosen excitation frequencies and polynomial
degree template. We conclude thai, = 3.9 andys, = 8 are critical discretization settings. However, it is
surprising that the excitation frequency does not seemve hay influence on the critical number of nodes per
wavelength. Since the-direction is discretized with a shape function of polynaharderp,, = 4 the connection
between the polynomial degree in wave propagation directia the critical s,-value is again evident.

For this reason, we introduce three abscissas that corrdgpdhe element sizg andy g, for the two excitation
frequencies (cf. Eq. (20)). Despite the change in the et@itdrequency, the locations of the peaks are hardly
influenced. Again, the locations of the peaks in the convergeplots for the group velocity are in excellent
agreement with the predicted element size due to the elaagenfrequency effect.

64



0.6

0.5

0.4

0.3

f [MHZ]

0.2

0.1

0.0

Xs, at 477kHz [—]

(a) The relation between the first three symmetric element &egurencies of a single spectral element and the elementssithasirated.
The polynomial degree template is; = 3 andp, = 4. Where the eigenfrequencies correspond to the excitatamuéncy, distinct

peaks in the convergence curves are observed, cf. Figsntaig 16b.
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(b) Convergence curve of the relative error in group vejofcit the fundamental symmetric Lamb wave mode. The polynomialegegmplate
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is: pe = 4, py = 4. The excitation frequency ifp = 1.59 - 10° Hz.
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(c) Convergence curve of the relative error in group velofdt the fundamental symmetric Lamb wave mode. The polynomialegegmplate

is: px = 4, py = 4. The excitation frequency ifp = 4.77 - 10° Hz.

Figure 16: Relation between elemental eigenfrequenciépeaaks in the convergence curves.
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Modal analysis of a group of finite elements So far, it has been implicitly assumed that the structurestnd
investigation is discretized using a regular Cartesiarbmekis can often be the case where thin-walled plate-like
structure are concerned . To be applicable for a wider rafigeablem classes, however, it is necessary to add
one last step to the current studies and to look at periodghes This means that adjacent finite elements do not
necessarily have to have the same element sizes. Nonethielepossible to extract representative sub-structures
from the model. To this end, we proceed to analyze the sukehumgpicted in Fig. 17. This sub-structure consists
of three spectral elements with varying dimensigng - b., 0.7 - b., 1.3 - b,].
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Figure 17: Numerical model for the modal analysis of a peciedb-structure.

To facilitate the comparison between the results, we ussdhe& mean number of nodes/modes per wavelength
as with the simulations discussed in the previous sectidifee polynomial degrees ayg, = 3 andp, = 4,

cf. Fig. 17. As explained before, we begin by computing themetric eigenfrequencies of the sub-model as a
function of the element width.. The results are illustrated in Fig. 18a. The critical valoéy s, are determined

to be5.92, 8.98 and 18.00. We then proceed to extend the sub-model periodically andysits convergence
behavior. As predicted in the modal analysis, irregulesitirise afks, = 5.92, 8.98 and18.00, cf. Fig. 18b. We

can therefore conclude that, even in cases where adja@mepts do not share the same dimensions, the wave
propagation analysis can be corrupted. Consequentlyntilgst also has to be aware of the eigenfrequency effect
described above when employing a periodic mesh. This phenomis more pronounced if a coarse discretization
is chosen in conjunction with a mono-frequent excitatiomoking at Fig. 18b, we notice that the effect of the
disturbed convergence behavior is minimized for a fine apdiscretization. However, this is only the case in a
nodes/modes per wavelength range that is of no interesetprtwctical engineer. The required discretization is
too fine so the computational costs are too high. An accurbapmroximatelyl % is normally sufficient from an
engineering point of view. It is accordingly very importdaotensure that the external excitation frequency does
not coincide with any internal eigenfrequency.

Guideline to avoid the internal element eigenfrequency effct The steps given below are designed to help
analysts to avoid non-physical oscillations in wave pr@piag analyses:

1. Determine the size of a single finite element (Cartesiat) gr the size of the smallest representative sub-
structure.

2. Apply symmetry boundary conditions to the left-hand agtitthand boundaries.

3. Conduct a modal analysis of the representative subtsteiavhere the element size is an independent pa-
rameter.

4. Extract the symmetric eigenfrequencies.

5. Find the intersection of the excitation frequency with finst symmetric eigenfrequencies. This step deter-
mines the critical element sizés .,.;;.

6. Ensure that the element dimensiopsire not coincidental with the critical one.

The analyst can easily avoid the internal element eigenéecy effect and achieve accurate simulations if he
adheres to the proposed guideline. If commercial mesh grsrand unstructured discretizations are used it is
improbable that the observed effect will play a significasler From the authors’ point of view at least, it is
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nonetheless essential to be aware of all the pitfalls that beaencountered when dealing with the analysis of
guided ultrasonic waves.

It should be mentioned however, that the described phenomesn also be prevented if unstructured meshes are
deployed. Concerning the quality of the simulations it in@iheless recommended to use finite elements with low
aspect ratios. Cartesian grids are accordingly prefefired.analyst consequently tries to partition the model under
investigation in order to create regions where a structuregpped mesh can be applied. It is therefore advised to
adhere to the proposed guideline.
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(a) The relation between the first three symmetric element &iggurencies of a periodic SEM sub-model and the element sihgsisated.
The polynomial degree template ip; = 3 andp, = 4. Where the eigenfrequencies correspond to the excitat@uéncy, we
observe distinct peaks in the convergence curves, cf. Big. 1
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(b) Convergence curve of the relative error in group vejofcit the fundamental symmetric Lamb wave mode. The polynomialegegmplate
is: pz = 4, py = 4. The excitation frequency ifp = 4.77 - 10° Hz. A periodic sub-model is used.

Figure 18: Relation between elemental eigenfrequencidgpaaks in the convergence curves for the sub-model
[1.0 - be, 0.7 - be, 1.3 - be].

It could be argued, however, that the peaks seen in the apevee curves are merely the results of an offset
of the time signal envelope’s centroid that was computedgutie Hilbert-transform. The phenomenon under
investigation has no effect on either the group and phaseiglor on the signal amplitudes. This is true and the
eigenfrequency effect could indeed be suppressed by inting different signal processing schemes, such as the
CWT. This is not satisfactory from a numerical point of viewwrever, as the time signal is nevertheless disrupted.
We accordingly believe that such effects should be takem actount whenever wave propagation analysis is
conducted. Since the remedy for the eigenfrequency efideiirly simple, it should be the goal of every analyst
to avoid such numerical disturbances.
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6 Conclusions

The current paper investigates the effect of spurious laicihs caused by elemental eigenfrequencies. Using
high-order finite element approaches such as the SEM or #rarbhicp-FEM, we have illustrated that non-
physical oscillations can occur under certain conditidfessious modal analyses have shown that these numerical
oscillations can be suppressed once the element dimerfgsibibelow a critical maximum element size, which

is smaller than would be inferred from the convergence biehavo determine these critical mesh sizes, it is
necessary to calculate the smallest eigenfrequenciesedalement or the smallest periodical sub-model supported
by a symmetry boundary conditions. For a proper finite elérignulation of the ultrasonic wave propagation in
thin-walled structures, it is therefore important to avitid effects described above, as they may seriously disrupt
the accuracy of the solution.
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