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Biaxial Testing of Elastomers - Experimental Setup, Measurement and
Experimental Optimisation of Specimen’s Shape

H. Seibert, T. Scheffer, S. Diebels

The present article deals with the setup and the control of a biaxial tension test device for characterising the ma-
terial properties of elastomers. After a short introduction into the experimental setup a brief explanation of the
benefits of a biaxial tension test is given. Furthermore the analysis of this test will be discussed. Therefore, the
used optical field measurement by digital image correlation for analysing the strains is shortly introduced to the
reader. Additionally, the basic concepts of the calculation of an inverse boundary problem for identifying the mate-
rial’s parameters are imposed. However the main focus is laid on the experimental optimisation of the specimen’s
geometry, whereupon a nearly hyperelastic, incompressible silicone is used to get the experimental results. The
resulting geometry will be specially fitted to the requirements of elastomers. The tested geometries and the evalu-
ation of the experiments will be explained as well as the resulting quality factor for the suitability of a specimen’s
shape. After all, a short validation of the foregoing considerations will be presented.

1 Introduction

The significance of simulations in the construction and development of products steadily increases. The expensive
and time-consuming prototype-construction has to be minimised because of increasing demands on the products
and simultaneously the enforcement of decreasing the costs of the production process. In order to ensure the func-
tionality of the commodity, reliable tools for simulations like the finite element method have to be made available.
Especially elastomers engage a more and more important role in modern product engineering and fulfil a wide
range of functional tasks. Typical application ranges are sealings, vibration absorption, acoustic insulation or arbi-
trary combinations of those, cf. Eyerer et al. (2008); Gent (2001).
With regard to a certain simulation of these materials an adequate material model has to be implemented in the
simulation tool. The characteristics of such models vary with the application that has to be examined. In general,
the type of the experiment that is used to identify the parameters of the constitutive law is supposed to be as similar
as possible to the real practice, though the focus can lie on different specific material effects, e. g. the modelling of
the often occurring viscoelasticity as mentioned exemplarily in Haupt and Lion (2002), Lion (2000) or Reese and
Govindjee (1998), the modelling of the Payne-effect, cf. Payne (1962), which describes an amplitude-, frequency-
and filler-amount-dependent softening effect of cyclically loaded filled elastomers, or the influence of the temper-
ature on the material behaviour, which is typically more significant with polymers than with metals, cf. Rey et al.
(2013).
In this context, the impact of multiaxiality is often underestimated in industrial use. The main reason for that wilful
neglect is the preeminence of the uniaxial tension test, which represents the most common experiment to obtain
material parameters, cf. Brown (2006). The significance of this test method is founded in its comparatively simple
execution on the one hand, and in its simple analysis on the other.
The importance of the adaption of an approach to display the material behaviour in a proper way is shown in
Koprowski-Theiß et al. (2012). Therein a model for a sealing profile out of the automotive engineering is pre-
sented. On purpose to describe the sealing behaviour of the porous elastomer that is treated, the material is tested
under hydrostatic pressure which is a more specific form of multiaxial deformation state.
The literature provides many setups for equibiaxial tension tests. An equibiaxial tension test can be realised by a
uniaxial pressure test, cf. Chatraei and Macosko (1981), by a bubble inflation test, cf. Baaser and Noll (2009), or
by a stretching frame, presented in Detrois (2001) for example.
In case of multiaxial deformations with cyclic loadings as it is common with car tyres for example, one has to
arrange dynamic multiaxial tests to examine the material properties of interest. Examples for tests designed for
this special demands are shown by Freund et al. (2011), Gent (1960) or Ihlemann (2002); Klauke et al. (2010).
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Figure 1: plane of invariants according to Treloar (1975). Possible deformation states are limited to the range
between uniaxial tension and equibiaxial tension

To explain the need of multiaxial material models the plane of invariants according to Treloar (1975) is consulted.
Therein, all possible deformation states of a structure can be recognised, provided that the material is incompress-
ible which is sufficiently fulfilled with the considered silicone rubber and many other elastomers. Basically, that
plane is spanned by the first and the second principal invariants of the left Cauchy-Green deformation tensorB,
cf. Baaser and Noll (2009); Johlitz and Diebels (2011); Treloar (1975). These principal invariants are given by

IB = trB = B : I

IIB =
1
2

[
(B : I)2 − BT : B

]
(1)

IIIB = detB = 1.

Taking into account the material’s incompressibility, the third principal invariant is equal to one, which is equiva-
lent to the volume conservation.

Applying the numerical values for uniaxial tension, equibiaxial tension, cf. Baaser and Noll (2009); Baaser et al.
(2011); Chevalier and Marco (2002); Sasso et al. (2008) and pure shear, one gets the limitations of possible de-
formation states between the curve of equibiaxial tension and uniaxial tension. All achievable deformations are
within these curves, cf. Fig. 1.
Hence, a uniaxial tensile test is represented by the lower limitation curve in Fig. 1, pursuant to that, an equibiaxial

tension test by the upper curve. Every other state of deformation is located between these curves. These arbitrary
states cannot be considered if models are used that are calibrated by uniaxial tension tests only. The reason is found
in the given ratio of the first and the second principal invariant during the uniaxial test.
If the real application is conform to the executed experimental setup, this approach provides acceptable results.
Considering the deformation of a typical part in automotive engineering, the problems are obvious. Fig. 2a) shows
a CAD-reproduction of a typical engine mount of a car. It consists of a two-piece supporting frame made of steel,
connected with two elastomer buffers. In the static case only the weight of the engine loads the bearing, which
is in accordance with a uniaxial loading situation, cf. Fig. 2b). But the complexity of the assembly leads to a
deformation field, which is different from a uniaxial tension or pressure. This is pointed out in Fig. 2c), where the
deformations of the buffers, in detail the combinations of the first and second principal invariants ofB, are logged
pointwise. The simulation is computed with Comsol MultiphysicsR©. One has to notice that Fig. 2c) overestimates
the deformation for better understanding. The fact that the position of a deformation state within the plane of in-
variants plays an important role for the material behaviour was already shown by Rivlin and Saunders (1951) or by
Treloar (1976). Following these results, Johlitz and Diebels (2011) developed an experimental setup, which allows
to reach arbitrary admissible points in the plane of invariants. The ideas presented in Johlitz and Diebels (2011)
will be refined and extended in the present article. Especially the experimental optimisation of the specimen’s
shape will provide the main focus.
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Figure 2: Example part engine mount: a) CAD-reproduction; b) FE-simulation; c) plane of invariants with de-
formed states according to the simulation

2 The Testing Device

The used biaxial testing device is based on the setup described in Johlitz and Diebels (2011). It consists of a
specially built frame fitted with four stepper motors associated with spindle units, cf. Fig. 3. Two of each linear
drives are aggregated to an axis, whereas the two axes are ordered crosswise. By the transmission to the spindle
unit there are four linear slides. The opposite engines move synchronously but counter-rotating, which has several
advantages. On the one hand the centre of a specimen that is clamped in the middle between the two linear slides
doesn’t leave its position although the slides erase from each other. On the other hand, the arrangement doubles
the testing velocity compared with the velocity of each slide.
It is possible to control both axes independently of each other, and in this way the possibility is given to reach
any admissible point in the plane of invariants. Allowing a suitable trajectory in the invariant plane during an
experiment it is possible to generate a data pool for determining the material behaviour at any deformation state.
The corresponding reaction forces are measured by two S-shaped force sensors, one in each axis. The complete
setup of the device and a detailed view on the clamped specimen are given in Fig. 3.

2.1 Control

Due to the fact that the device is an in-house development, the deposited coding of the machine can be adapted
individually to the demanded deformation profile. In the following section, the basics of the programming are
exposed more detailed.
As coding environment the software LabViewR© by National InstrumentsR© comes into operation. With respect to
the peculiar requirements in terms of synchronisation of the corresponding axes, a real-time system was chosen
to execute the controlling tasks. As hardware components the CompactRIOR©-Controller with convenient cSeries-
ModulesR©, also by National InstrumentsR©, are used. By the choice of that real-time environment, a special coding
architecture has to be followed.
LabViewR©-RealTime programmings consist of a three part program structure on different hardware modules:
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Figure 3: testing device, left: complete setup; right: detailed view on specimen

• FPGA (field programmable gate array)
The FPGA integrated in the cRIO-Controller is the fastest system-component, which comes up to a hard-
wired digital circuit in its clock frequency. In this chip all communication tasks are executed which are the
reading-in of the sensor signals, the writing-out of the machine instructions and also the reading-in of the
current angularity of the motors. The last permits to calculate the current slide position by using the spindle
slope.

• cRIO-Controller
The cRIO-Controller is the second hardware-component which is used. It is also built for real-time appli-
cations and operates as an interface between the experimenter and the machine. The main aspects of its
programming are data processings, in detail scaling of input-signals or the preparation of control commands.
Besides simple single commands the virtual instrument provides the possibility to send out a sequence of
commands, which is generated by a separate application, the so called sequence editor. Test methods gener-
ated by this sequence editor can be modified and repeated any number of times, so the experimental effort is
minimised.

• Host PC
The next discussed software component is not necessary for the handling of the system but for data-logging.
This control-part of the device works on a customary computer and has the task to file the upcoming mea-
surements or images for the optical strain measurement.

Additionally to traditional commands for the run-up to a specified slide-position, the experimenter is able to sched-
ule more complex sequential arrangements. The creation of such a sequence leads to automated test procedures
which can be iterated at the push of a button. There are several basic modules the sequences can be constructed
with, including linear positioning with defined velocity, stepwise loading of the specimen with holding-times or
cyclic tests with moderate frequencies. Furthermore data operations like logging the measured signals with certain
sampling rates to reduce the data overhead at long term but fast cycling tests and taking and storing photos at
defined times.
Moreover it has to be mentioned that both axes can be moved independently from each other. This ensures that a
desired path through the plane of invariants, as displayed in Fig. 7, can be performed. The innovation compared to
Johlitz and Diebels (2011) is rooted in the automated execution of the sequences. Originally, the commands had
to be initiated by the experimenter, having its disadvantages in matters of reproducibility and effort of time on the
part of the operator.
In detail, the proposed testing guidance is given by several segments. At first, thex-axis is prestretched to a de-
fined position. This yields a nearly uniaxial deformation in the stretched axis which correlates in a starting point
on the lower limiting curve in the plane of invariants. By holding thex-axis at the given position and stepwise
stretching of they-axis, the deformation in the centre of the specimen leaves more and more the uniaxial state. If
the deformation is equal in both directions, the upper limiting curve is reached being identical with an equibiaxial
deformation state. Further stretching iny-direction results in a further removal from that curve. By repeating the
tests for different prestretches of thex-axis, curves as plotted in Fig. 7 result in the course of the experiments.
There has to be mentioned, that Fig. 7 only displays three curves as an example. Lower and higher values can be
set by an appropriate choice of the prestretching inx-direction.
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2.2 Optical Strain Measurement

In this section, the basics of optical strain measurement are introduced. Furthermore, the differences between the
spatial discretised acquisition as proposed in Johlitz and Diebels (2011); Koprowski-Theiß et al. (2011) and the
continuous measurement as used in this article, are demonstrated, see also Avril et al. (2008); De Crevoisier et al.
(2012). The resulting consequences for the development of a material model are shown. The goal of the following
paragraphs is to generate a fundamental appreciation for the presented methods. For more details concerning the
particular techniques the reader is referred to pertinent literature, e. g. Chu et al. (1985); Pan et al. (2009); Schmidt
et al. (2003a,b); Sutton et al. (2000, 2009); Yaofeng and Pang (2007).

2.2.1 Strain Measurement by Edge-Detection

Initially, the relatively simple variant of strain measurement by edge-detection is suggested. Although the results
depicted later on are not obtained by this method, the relevance of the measuring-procedure for the design of
the specimen’s shape has to be distinguished. Meanwhile the method of edge-detection for determining strains
is commonly used. It is predicated on the assumption, that the strain of a discrete increment of the specimen is
representative for the strain over the whole sample, i. e. the strain field has to be homogeneous. A typical field
of application is the uniaxial tension test on condition that uniform stretches occur. Usually in this case, the spec-
imen’s surface is marked by paint with a quadratic field. Therefore, the coating has to exhibit a high contrast
towards the surface of the sample.
During the experiment, the marked field has to be captured by a camera, which is adapted to the device. In this
context, the advantage of the stationarity of the specimen’s centre is obvious, because of the missing necessity of
tracking the mark.
The taken photos have to be interpreted by an image processing software afterwards. In this software, the extension
of the put up mark has to be detected, whereby the high contrast between mark and surface of the specimen guar-
antees the reliable reconnaissance of the edges, which is essential for an automated interpretation. The identified
dimensions in each direction, cf. Fig. 4, can be used to calculate the strain corresponding to

λ1 =
l

l0
, λ2 =

w

w0
(2)

with

λi = 1 + εi.

Therein,l stands for the length of the mark andw for its width. The index(∙)0 characterises the reference state.
Since the strain is a dimensionless quantity the measurement ofl, l0, w andw0 can be in pixels. The strain of the
discrete increment is given by the comparison between the current dimensions and those in the reference state. For
the special case of a uniaxial tension test with homogeneous sample material the measured strain is conform with
the strains all over the uniform area of the specimen, assuming that the discrete increment is sufficiently far from
the clamps.
The limits of the presented method are revealed by its derivation. First of all, Eqn. (2) expects geometrically linear
behaviour, which causes errors that are not negligible for large deformations. Furthermore, the range of validity
is limited to homogeneous materials on the one hand and uniform deformations on the other. Inhomogeneous
materials have a disposition to necking, with the consequence that the area of maximum strain is located to one
point and can be simply overlooked. This problem can occur even with a very uniform specimen as given in DIN
EN ISO 527-2 (dogbone-shaped). In conjunction with more complex geometries the boundaries of this treatment
are nearly reached.

2.2.2 Optical Field Measurement by DIC

In this article, the applied strain measurement method is an optical procedure based on digital image correlation
(DIC) algorithms.
The used commercial tool is the software Vic2DR©, developed by Correlated SolutionsR©, cf. Correlated Solutions
(2010). Therein, the recognition of random speckle patterns which are allowed to move arbitrarily through the
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Figure 4: strain measurement with edge-detection: a) reference state; b) deformed state; c) interpretation

captured image plane, is implemented. On the one hand, the fluctuation of discrete image details over a series
of images is traced, on the other hand, the deformation of that special detail is detected by the observation of
similarities. Fig. 5 displays the basic functional principles, Correlated Solutions (2010). Therein, three distinct
configurations are shown, from the left to the right the reference shape with the undeformed quadratic image
detail and two further deformed configurations. The marked field of view undergoes a translation and in addition
a distortion. By the use of mathematical algorithms like displayed in Sutton et al. (2009), a projection of the
actual arrangement onto the reference can be applied. Hence the variation of the specified field of interest can be
distinguished. For this procedure it is essential to coat the specimen with an appropriate pattern. It is required
that the observed area of the pattern is unique and stochastic, otherwise a reliable recognition is not executable.
Regular, oriented structures like rectangles or periodically appearing lines do not match these assumptions which
causes inaccuracy in the interpretation. The most simple way to obtain a pattern that fulfils all demands is to
produce a random set of points on the surface.
Depending on the type of application various methods of coating specimens have established. Exemplarily there
can be mentioned:

Figure 5: functionality of DIC, Correlated Solutions (2010)
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Figure 6: speckle-pattern on clamped specimen (type D according to Fig. 10)

• contact lithography,

• charging with toner powder, which is fixed by heating up,

• spray coating.

By combination of the materials to test and the arising costs spray coating is preferred in this case, but trans-
parency of the observed silicone rubber causes further problems. Being aspired to finite deformations the discrete
pattern-areas are underlying large translations in the image plane, whereby the necessity of preferably constant
lighting conditions over wide ranges increase. Already weak contrasts in the patterns by default can still decrease
by irregular lighting conditions, which prohibits the proper execution of DIC-algorithms. According to that, high
contrasts have to be ensured a priori. For this reason a smooth, white base coat is applied to the surface before the
deposition of the black speckle pattern. Fig. 6 shows a prepared specimen installed in the testing device.

The advantages of the optical field measurement are obvious. The variability of the observed shapes and also the
variability of the observed materials make this method a very general type of measuring strains. Furthermore the
results are based on finite deformations whereby a linearisation from the beginning can be omitted.
In the presented version of Vic2DR© only in-plane deformations can be detected. By the use of a stereoscopic
camera system in connection with the extension Vic3DR© by the same producer, three dimensional deformations
can be observed also, which makes the method still more capable.

3 Modelling and Parameter Identification

This section is intended to recapitulate the interpretation of the investigations presented by Johlitz and Diebels
(2011). For this purpose only a short overview of the basic concepts pertaining to the proposed material model is
given, as the main focus is set on the experimental optimisation of the specimen’s shape.
Johlitz and Diebels (2011) have executed uni- and biaxial tension tests with the used silicone rubber ELASTOSILR©

RT 625, produced by Wacker Chemie GmbH. The benefit of this material is rooted in the slightly pronounced rate
dependency of its strain-stress-relation which leads to very short relaxation times and therewith to a nearly hy-
perelastic material response. By the works of Johlitz and Diebels (2011) and Chen et al. (2013) isotropy and
quasi-incompressibility of this rubber were proved.
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Figure 7: paths in the plane of invariants depending on pre-deformation inx-direction: a) experiments by Johlitz
& Diebels Johlitz and Diebels (2011); b) current experiment by the use of DIC (sample type D)

3.1 Material Modelling

The introducing paragraph points out the importance of the influence of multiaxial deformations on the material
behaviour. This section will give an experimental accentuation of this statement by comparing two identified
models which were on the one hand identified by uniaxial tension tests and on the other hand by biaxial tension
tests. Details concerning the theoretical background can be found in Johlitz and Diebels (2011). Therein, a
constitutive law in the form of Eqn. (3)

T = −pI + 2ρ0
∂Ψ
∂IB

B − 2ρ0
∂Ψ
∂IIB

B−1 (3)

is proposed, with the Cauchy stress tensorT, the left Cauchy-Green deformation tensorB as a process variable
and the free energy functionΨ(IB, IIB) depending on the first and second principal invariant ofB. The Lagrangian
parameterp is determined by the additional condition of incompressibility. By the dependency on the two principal
invariants the model is able to describe deformation states beyond the lower limit curve of uniaxial tension. A
commonly used approach is given by a Mooney-Rivlin-model, cf. Mooney (1940). It can be specified as

ρ0Ψ = c10 (IB − 3) + c01 (IIB − 3) . (4)

In this approach the densityρ0 cancels just in combination with (3) out and the material parametersc10 andc01

have to be identified.

3.2 Parameter Identification

For the identification of the parameters in the Mooney-Rivlin-approach (4) there are two different experiments
used in Johlitz and Diebels (2011). The first one is a conventional uniaxial tension test with specimens according
to DIN EN ISO 527-2, the second one is a biaxial tension test, executed at specimens of the shape displayed in
Fig. 10a). For details about the procedure of the uniaxial experiment, the reader is referred to Johlitz and Diebels
(2011); Koprowski-Theiß et al. (2011).
As explained in a former section, the biaxial test consists of a prestretching inx-direction and afterwards a stepwise
stretching iny-direction while holding thex-axis constant. After the evaluation of the marked rectangle in the
centre of the specimen, a path in the plane of invariants is performed for a certain pre-deformation in thex-
direction as illustrated in Fig 7a) or b), respectively. At this point one has to notice that the process of identification
deviates from the usual procedure. Due to the fact that the region of interest, the biaxially deformed state is located
in the centre of the specimen whereas the reaction force is measured at the end of the specimen’s arms. Hence
it is necessary to identify the two parameters by solving a complete boundary problem with the reaction force as
boundary condition and the strains in the measured area as command variable. So the interpretation is carried
out by an inverse computation in an adequate simulation tool, e. g., with Comsol MultiphysicsR© in this case.
In a second software the deformation of the centre field calculated in the simulation has to be compared to the
deformation optically measured in the experiment. This comparison is calculated by MatlabR© and uses the internal
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Table 1: resulting model parameters of two experiments

parameter uniaxial tension biaxialtension

c10 [MPa] 0.151 0.111
c01 [MPa] 0.000 0.039

Optimisation ToolboxR©, which generates a new set of parameters. This set of parameters is committed to Comsol
MultiphysicsR© again and a new comparison is started until the difference between the computed and the measured
strain becomes minimal.

3.3 Results

By the adaptation of the suggested constitutive law to the experimental data and a subsequent simulation of the
particular test in Comsol MultiphysicsR© it is evident, that the model is able to reproduce both corresponding
experiments, cf. Fig. 8 a) and b).

The resulting parametersc10 andc01 of the Mooney-Rivlin approach are mapped in Table 1. On the basis of the
numerical value ofc01 in that table one can recognise the main problem of the uniaxial test. The parameterc01

which affects the second principal invariant in the constitutive law, is identified to zero, whereby the Mooney-Rivlin
approach is transferred to an approach of Neo-Hookean type. According to that, the resulting material law is able
to reproduce uniaxial deformation states only. The fixed ratio between the first and the second principal invariant
of B in the uniaxial tension test creates the necessity of a further experiment in order to activate the influence of
the second principal invariant. By the use of a biaxial tension test it is possible to combine the results of different
experiments in one test.
To demonstrate the influence of this inaccuracy, Fig. 8c) and d) show a crosswise simulation. The uniaxial tension
test is simulated with the model obtained by interpretation of the biaxial test in Fig. 8c), the contrary case, thus the
simulation of the biaxial experiment under utilisation of the uniaxially generated model is shown in Fig. 8d). For
better understanding in the case of the biaxial experiments, they are plotted in the form stretch on they-axis and a
dimensionless loading parameterτ on thex-axis. This parameterτ is calculated by the ratio of the experimental
time and the duration of the test. Inside these figures(∙)UA stands for the model adapted to the uniaxial data and
(∙)BA adapted to the biaxial test.
Concluding one can see that the uniaxially performed model doesn’t reproduce the biaxial test, i. e. the deviation
between measured and simulated data increases with increasing load, otherwise, the biaxially performed model re-
produces the uniaxial data well, at least in a certain area, cf. Fig. 8c) and d). The difference between the simulation
of the biaxially calibrated model and the uniaxial experiment can be explained by means of Fig. 7b). Prestretching
one axis while holding the other constant does not produce a perfectly uniaxial deformation state. Clamping of the
perpendicular axis causes a deformation state which is slightly different from the uniaxial curve. Furthermore the
biaxially calibrated model is performed by a maximum stretchλmax

i ≤ 1.4 at the displayed experiment, cf. Fig.
8b). Significant deviations between the uniaxially and biaxially calibrated models in Fig. 8c) occur at stretches
higher thanλmax

i which is the extrapolating area of the biaxial model. By the execution of biaxial experiments
with higher maximum strains the biaxial model leads to a better quality than the uniaxial one.
With these results it can be established, that the choice of a suitable constitutive law in combination with a biaxial

tension test can lead to the ability to predict a material behaviour under complex deformations as they are com-
monly given in reality, cf. Fig. 2. Models identified by the use of uniaxial tests often fail in this application.

4 Experimental Optimisation of Specimen’s Shape

Basically, the applicability of the proposed method was proved in Johlitz and Diebels (2011). Certainly, enhance-
ments can be applied by modifying some details. One possible upgrade is the optimisation of the used specimen’s
geometry, which provides the main focus of this article. Relating to this topic, several articles can be referred to,
though the construction of the specimen’s geometry strongly depends on exterior requirements, like the type of the
observed material with the applicable manufacturing techniques. Hence, constraints are built by producibility of
the specimens or the chosen method of measuring, e. g. strain measurement by optical field measurement or edge
detection.
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Figure 8: adaptation of measured data: a) fit uniaxial exp.; b) fit biaxial exp.; c) uniaxial and biaxial fit - uniaxial
exp.; d) uniaxial and biaxial fit - biaxial exp.

In the present case, elastomers are mainly tested, whereby restrictions concerning the machining of raw materials
are given. Chipping technologies for example are only useful in rare cases. Furthermore, it is reasonable to extract
the specimens out of the running production to guarantee the equality between the specimen’s material behaviour
and that of the real component. Cutting the specimen out of a typical geometry like a membrane without the ne-
cessity of an aftertreatment, is very convenient.
Overviews over investigations of geometries for biaxial testing, which were executed so far, are given by Ohtake
et al. (1998) or Kuwabara (2007). In the course of these, general principles of shaping the specimens as well as
actual characteristics of them are illustrated.
In the scope of small deformations, commonly occurring with metals or carbon fibres, Makinde et al. (1992), Tier-
nan and Hannon (2012) or Demmerle and Boehler (1993) can be named. For investigations of large multiaxial
deformations one can name Promma et al. (2009) or Silberstein et al. (2011).
A very similar testing device to the proposed one here is given by Kahraman and Haberstroh (2013). Nevertheless
there are significant differences in the design of the specimen’s shape. This aspect will be picked up later in this
article.

In a first step in the optimisation of the samples’ geometry, the requirements have to be scheduled. By the use of
optical field measurement, the demands on the geometry with regard to its homogeneity are weakened, because of
the availability of the test piece’s deformation in every section. Although there has to be simulated the full inverse
problem due to the absence of an analytical solution.
Therefore, the goal of the investigations can be defined as follows: Find the shape of a specimen leading to a
biaxially deformed area with maximum range and, in addition, high strains in the region of interest. Moreover,
the constraints on the material outside this biaxial area have to be as small as possible, which means a kind of
overall-homogeneity. With respect to manufacturing the samples, the raw material was predefined as a membrane
without the need of changing the specimen in thickness-direction.
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4.1 Tested Geometries

Based on the sample geometry proposed in Johlitz and Diebels (2011), cf. Fig. 10a), six further shapes were
created. In order to get information about the dependencies between properties of the samples and their suitability
for getting proper results in a biaxial tension test, there are only small variations among the various test pieces.
Fig. 10 displays four intermediary stages beginning at the reference geometry in Fig. 10a) up to the finally chosen
shape in Fig. 10d). By reasons of clearness, at this point it is relinquished to describe all the geometries in all
details but rather a representative choice. Besides the above-mentioned constant thickness of the sample as well

(L
s
y
m

)

δ

γsym
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R

bsym

Figure 9: varied parameters for the sample geometry

as their symmetric structure are presupposed. For better understanding, the essential geometrical properties are
defined. The centre of the specimen is called crossroad area below. The radius that compounds two perpendicular
arms is labelled crossing radiusR. The arms of the specimen are the ranges parallel to the particular centre line,
reaching from the crossing radius to the point with changing cross-section for the clamps.
As illustrated in Fig. 9 the varied parameters are the crossing radiusR, the width of the armsb = 2 bsym and the
length of the armsLa. The region for the clamping jaws has to be a rectangle of the widthγ = 2 γsym = 12.5 mm
and the lengthδ ≥ 8.5 mm. The overall length of the sampleLs = 2 Lsym results from the choice of the
foregoing parameters.

4.2 Quality Criterion

In order to establish a criterion for the grade of biaxiality further deliberations have to be made. In his article,
Baaser et al. (2012) proposes a method to describe the deformations in a structure based on modified invariants.
The proposed pair of variables allows statements about the intensity of a deformation state and its comparability
with another. However, these variables are introduced with intent to create a constitutive law for the particular
material.
In the present work, there is the need of such a formulation with regard to describe the intensity of a biaxial de-
formation state. So the general localisation inside the plane of invariants can be reduced to an equibiaxial state as
a special case. Hence, the mathematical formulation of the grade of biaxiality can be transformed into a simple
comparison between the strains in both directions.

4.2.1 Grade of Biaxiality

This section deals with the introduction of criteria for the grade of biaxiality and also an appropriate regulation for
its experimental determination. As mentioned in the paragraph above, one can use the equibiaxial deformation in
the crossroad section and compare the resulting strains. After that, a mathematical test function can be created.
The results of that formulation can be transferred onto a general biaxial deformation state.
For the following considerations the equality between the coordinate systems of the testing device as illustrated in
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Figure 10: sample geometries: a) type A; b) type B; c) type C; d) type D

Fig. 3 and the one of the software Vic2DR© is presumed. Furthermore it is assumed that these axes are principal
axes of the strain tensor.
The principal strains inx- andy-direction can be extracted from the Green-Lagrangian strain tensorE. In the
following paragraphs they are described by the coefficientsExx andEyy. Their pathway is carried out directly
from the DIC-software.
For the case of a perfectly equibiaxial state in the centre of the specimen, marked by index(∙)c, one has

Ec
xx ≡ Ec

yy. (5)

Mathematically this can be evaluated by calculating the difference between both values. The error which occurs
between these strains is interpreted as a criterion for the distance to that perfect state of equibiaxiality. The test
functionΓ(x, y) can be defined as

Γ(x, y) = |Exx(x, y) − Eyy(x, y)| . (6)

Pointwise evaluation of the test function over the horizontal axisA© - B© as shown in Fig. 11b), which corresponds
to thex-axis, provides a parabolic graph as displayed in Fig. 11a). The parabolic shape ensues of the fact that
the aberrations between the strains in the arms are quite high, due to a nearly uniaxial deformation state in the
arms. Ideally, the value of the test function in the centre is identical to zero in the case of perfect equibiaxiality.
Hence, small values ofΓ(x, y) are equivalent to small aberrations of the equibiaxial state, large values indicate
a nearly uniaxial state. With intent to achieve a geometry with a maximum area of equibiaxial deformation, the
resulting parabolas in Fig. 11a) have to exhibit a maximum stretch factor, in detail this is equal to a wide graph.
The minimum of the curves is by the construction located at the centre of the specimen.
A mathematical approach to benchmark the width of the plots is to calculate the standard deviation ofΓ(x, y)
around the mean value, evaluated in a specified set of pixels around the angular point. Therefore, an acquisition
area of 11 pixels is chosen, which is in accordance to the smallest area, Vic2DR© is able to calculate the mean value
over at the given arrangement.
Hence, a small standard deviationσc

Γ over the observed field is synonymous with small aberrations of the equibi-
axial state in it. Specimens with large (equi-)biaxial areas are obliged to show small standard deviations around
the mean value ofΓ(x, y) in a specified range. By examination of Table 2 it is obvious that the shape D performs
best in this test. The measured standard deviations of type A and type B are higher about one order.
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Figure 11: test functionΓ over horizontal symmetry axisA© - B©

Table 2: resulting values of the different specimens

Sample standard deviationσc
Γ scaled degree of efficiencyη(0.1) quality factorQ(0.1)

type A 0.05984 0.253 0.04
type B 0.05158 0.124 0.02
type C 0.00705 0.092 0.13
type D 0.00289 0.299 1.03

4.2.2 Degree of Efficiency (DOE)

The obtained results are not sufficient to make a statement about the qualification of the geometry. The basis
for the evaluated curves in Fig. 11 are states which show a strainEc

xx ≈ 0.1 in the specimen’s centre field.
Besides the achievement above, a comparison between the strains in the arms of the particular samples shows high
disparities. The strains occurring in the uniaxial regions are much higher than those in the biaxial regions. On this
account, further investigations have to be carried out. At this point, the definition of a degree of efficiency (DOE)
is inevitable to get more information. Obviously some geometries of the samples seem to promote a high gradient
between the strain in the arms and in the crossroad area, respectively, which is in fact the scope of interest. High
strains in the arms compared with that in the middle of the specimen imply high demands to the sample material.
The required formulation of a degree of efficiency has to accommodate the proportionality between their respective
strains. Therefore, the ratio has to depend on the strain in the crossroad area and also on the maximum strain in the
specimen. It can be defined by

η =
Ec

xx

Emax
xx

.

Because of symmetry, it is adequate to evaluate the degree of efficiency in one direction, in this case thex-
direction. In order to create comparability, the deformations with a centre field strain ofEc

xx ≈ 0.1 are considered.
Therewith, the scaled degree of efficiency can be written as

η(0.1) =
0.1

Emax
xx

, with Ec
xx = 0.1. (7)

Analysis of the scaled degree of efficiency in Table 2 bares the inadequacy of the sample of type C. The strains in
the arms, which are necessary to create a centre field strain of 10 percent, are disproportionally high, even though
the biaxially deformed field is large and therewith, the resulting standard deviation ofΓ(x, y) is small. The degree
of efficiency is the main reason for varying the sample’s geometry with respect to that proposed in Kahraman and
Haberstroh (2013). In order to generate a large homogeneity in the specimen’s centre there are multiple slits in the
arms of the sample which yield a small degree of efficiency and therewith high demands on the sample. Depending
on the extensibility of the material this can lead to limitations in the experimental investigations.
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Figure 12: test functionΓ(x, y) on type A (top) and type D (bottom); left: auto-scaled, right: max. value1%

A significant criterion for the suitability of the specimen has to adhere both factors. With this knowledge, it is
possible to define a quality criterionQ(0.1) like

Q(0.1) =
η(0.1)

100 ∙ σc
Γ

. (8)

Comparing the values forQ(0.1) in Table 2 carries out considerable differences between the particular sample
geometries. Relating to the degree of efficiencyη(0.1), type A represents a quite useful alternative to type D. The
main disadvantage of this geometry is rooted in the bad standard deviationσc

Γ. Fig. 12 illustrates a comparison
between those two samples. Both upper images show the original geometry (type A) as used in Johlitz and Diebels
(2011), the lower ones show the ascertained type D. For a detailed view on the colour scheme the reader is referred
to the online version of this paper. Therein the scale of the left images is adapted to the globally appearing values,
the maximum value on the right images is set to a fix scale of one percent. That means, only the area with smaller
aberrations of the equibiaxial state than one percent is coloured different than red (regionII© in Fig. 12b) and d).
In Fig. 12b) of type A such a district is only detectable by applying a zoom function so the whole surface shows
larger deviations of the equibiaxial state. In Fig. 12d) this field is nearly as big as the crossroad area of the original
shape (regionI© in Fig. 12d).

4.3 Evaluation of the Results

In order to verify the obtained results, this paragraph is intended to present a simple method to evaluate the fore-
going considerations. In the case of admissibility of the developed criteria, the coupling between both axes has
to depend characteristically on the particular geometry. With regard to illustrate this fact, it is possible to check
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the impact of deformation of thex-axis on the corresponding reaction force in they-direction. By the creation of
large biaxially deformed areas and small losses of strain in the arms, the influence of the lateral contraction in the
crossroad area is maximised. Furthermore, the samples with slight strains outside the centre fields display a higher
global stiffness than those with large strains outside that field.
The experiment, which is intended to prove this, is the simplest possible. Deforming the samples in one axis and

observing the reaction force in the other one can support the assertion above. Fig. 13 shows the measurements
following the mentioned test. One can see an explicit dependency of the reaction force in cross direction on the
used sample geometry. Comparing the plots in terms of the quality factorQ(0.1) according to Table 2 it gets clearly
evident that both statements coincide. The larger the value of the quality factor, the larger the slope of the reaction
force induced by a deformation in the perpendicular direction.
As a result one can note the use of the generated quality criterion on the one hand, and also the suitability of the
sample, that is optimised with that criterion. Hence it is not necessary to produce the geometry with the aid of
complex manufacturing techniques. It can be cut out of a membrane. Consequentially, the material behaviour of
the specimen is representative for the material which is used in the real application by the absence of specific mold-
ing processes or similar methods. Furthermore the requirements to the material concerning the uniaxial stretch are
quite weak, which had been a basic demand.

5 Conclusion

The foregoing article introduces an in-house device to determine material parameters of elastomers under biaxial
deformation. Therein the necessity of enquiring the influence of multiaxiality is illustrated by a typical component
out of automotive engineering as an example. Combined with the results in Johlitz and Diebels (2011) one can
recognize the importance of extending the experimental portfolio about a biaxial tension test. In this context,
the course of a possible method of analysing the tests is mentioned. Therefore, the basic concepts of the inverse
calculation in a simulation tool like Comsol MultiphysicsR© are presented.
For the optimisation of the constitutive parameters, the output of the simulation is compared to the experimentally
obtained deformations.
In order to widen the biaxially deformed area in the specimen’s centre, an enhanced sample geometry is introduced
by defining a mathematically traceable quality criterion by the use of optical field measurement of the strain. The
developed geometry fulfils the conditions regarding to producibility and the finite capability of resistance of the
tested materials.
The influence of the biaxial deformation with respect to viscoelastic material behaviour is not investigated at this
point.
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6 Outlook

The experimental setup introduced in this work deals with nearly hyperelastic material on the one hand and a quasi
static experimental arrangement on the other. Earlier works of Sedlan (2001), Koprowski-Theiß et al. (2011) or
Scheffer et al. (2013) already describe the influence of a suitable pretreatment of viscoelastic specimens concerning
the duration of experiments using uniaxial tension tests. In the future, the investigations about (cyclic) multiaxial
deformations on viscoelastic materials have to be executed. For determining the hyperelastic and viscoelastic part
of a resulting material model, the basic elasticity of the material has to be measured. Scheffer et al. (2013) propose
a method to optimise the experimental duration for the case of uniaxial deformation. Following works will deal
with the examination of the transfer of this method to biaxial deformations, which seems to be useful considering
the interpretation of the pilot survey. The experimental effort to generate a data pool can be reduced by such a
method.
Detailed investigations assume the reconstruction of the biaxial testing device with the goal of dynamic experi-
ments. After that, systematic studies of viscous effects will be executed and interpreted.
Besides this constructive improvement of the device, a further numerical simulative optimisation of the sample
geometry by using the ascertained knowledge of the experimental optimisation will follow.
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