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On the Generalization of Uniaxial Thermoviscoplasticity with Damage to
Finite Deformations Based on Enhanced Rheological Models

C. Brocker, A. Matzenmiller

The enhanced concept of rheological models, as proposeddokBr and Matzenmiller (2013), is generalized
systematically to finite deformations. The basic bodies are defined individually for large deformations, and a rheo-
logical network of thermoviscoplasticity is assembled, representing nonlinear isotropic and kinematic hardening
as well as an improved description of energy storage in metal plasticity. The constitutive equations are deduced
in an analogous procedure as for the uniaxial model id&er and Matzenmiller (2013). Furthermore, damage
evolution is additionally accounted for.

1 Introduction

In a recent publication of Bicker and Matzenmiller (2013), an enhanced concept of rheological networks has been
proposed for the constitutive modeling of thermoviscoplasticity. New basic elements are introduced to account for
nonlinear isotropic and kinematic hardening as well as to advance the description of energy storage and dissipation
during plastic deformations by means of rheological models. Furthermore, damage evolution is represented as
well - see Biicker and Matzenmiller (2012). The yield condition and the viscoplastic flow rule are deduced from
the equilibrium of stresses of the rheological network by means of simple algebraic calculations in the framework
of thermomechanically consistent material modeling. Moreover, different approaches are given to improve the
energy storage behavior by relating storage of inelastic work to ideal plasticity. The subsequent validation agrees
well with the experimental test data.

However, the enhanced concept of rheological modeling, as presentedbyeBand Matzenmiller (2013), is
restricted to the uniaxial case only, but already requires a complex structure. Hence, the question consequently
arises: How can the one-dimensional constitutive equations be generalized for the spatial application for both
small and large deformations. Possible means for enhancing the rheological modeling to a three-dimensional
formulation are given by Palmow (1984), Krawietz (1986), Altenbach and Altenbach (1994) - see also Haupt
(1996). In particular Lion (1997), Lion and Sedlan (1998), Lion (2000) present a clear and elegant way for
transferring the uniaxial equations of a rheological model of thermoviscoplasticity to large deformations. This
method is also utilized by Shutov and lhlemann (2011) and, moreover, enhanced for distortional hardening by
Shutov et al. (2011). Based on a rheological network of endochronic viscoplasticity, another novel, attractive
procedure is proposed by Kletschkowski et al. (2002, 2005) for the spatial generalization of the uniaxial constitutive
model to finite deformations by means of the concept of material isomorphisms of Bertram (1999, 2003).

The paper at hand provides the representation of rheological networks for finite deformations as a straightforward
generalization of the enhanced concept of rheological models proposedtikeBand Matzenmiller (2013). For

this purpose, a modified tensor notation is used in comparison to the literature in order to distinguish easily between
the different stress and strain measures, operating on the various configurations of the material body. The basic
components of the uniaxial model - such as springs, dashpots, friction elements - are individually generalized as
bodies with tensor-valued definition on either the initial or current configuration, which allows for assembling

a rheological network of thermoviscoplasticity for finite strains by means of series and parallel connections of
the elementary components and, hence, generates the free energy of the entire model. This arrangement of ideal
bodies and the concept of dual variables of Haupt and Tsakmakis (1989) form the basis for the derivation of the
constitutive material equations in finite deformation viscoplasticity, providing the yield function and the flow rule

in an analogous procedure as in the uniaxial case, seekBr and Matzenmiller (2013). In this process, the
thermomechanical consistency of the model is satisfied. Moreover, in the framework of the concept of effective
stresses, introduced by Lemaitre and Chaboche (1990), Lemaitre and Desmorat (2005), the constitutive model is
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enhanced for damage evolution as well.

The content of this paper is arranged as following: In Section 2, the tensor notation is introduced and the basic rheo-
logical bodies are defined for finite deformations. Furthermore, the connection principles of elements in parallel
and series arrangement are discussed with their main characteristic relations and a spring-network is considered
as a simple example. In the next Section, a rheological network of finite thermoviscoplasticity is assembled,
the associated constitutive equations are deduced in the framework of thermomechanically consistent material
modeling and transferred to the initial configuration. In Section 5, the material model is enhanced for damage
evolution.

2 Basic Rheological Bodies
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Figure 1: General representation of rheological element of finite deformations

In the first step, a general definition is given for the rheological elements of finite deformations. Considered
individually, each basic component is placed between the ifiti@nd the current configuratidsy of the material
body B - see Figure 1. Between both configurations, the deformation graflieperates as a two-field tensor and
maps material line elementsX from B, into spatial oneslz; in the current configuratiof$; according to

d7, = FdX. (1)

2.1 Notation and Definitions

Compared to the literature - e.g. Haupt (2002), a modified tensor notation is applied for the stress and strain
measures of the various (intermediate-) configurations for reasons of an increased clarity in the subsequent steps
of mathematical rearrangements. The syrr%icdenotes the @EEN strain tensor of the initial configuratiof,

according tok = s(FTF-1) = %(%3 — 1) with the right O\UCHY-GREENtenSOI‘(Oj = FTF. The ALMANSI
strain at the current configuratidf, is represented a@ = 1(1 — F~TF~1) and the transformation property

](E)] = FT]tE)F is valid. Moreover, the 2ndIPLA -KIRCHHOFFSstress tensor is represented%aand the KRCHHOFF

stress tensor is denoted’tﬂswith the property ’g = F—l'tFF‘T. This means that the subscripted index indicates

on which configuration the tensorial quantities opetafhus, the well-known push-forward and pull-backward
operations for the stress and strain measures - see Marsden and Hughes (1994) - may be represented as

)

E= FTEt)F

E=F TEF! 2)
0 0

t

and

T = F_l’%‘F_T

, T =FTF'. 3)
0 0

t

The mechanical worky, which is applied to a basic element during the loading process, is either stored as free
energyy in the rheological component or dissipated and, hence, typically converted into heat. However, the dissi-
pated energy might in general be also consumed e.g. for microstructural changes of the material like endothermic

1The superscripté.) T and(.) ! indicate the transpose and the inverse of the tensor.

2There is no need to indicate that the deformation gradient is operating between theBpitiatl the current configuratiofi;. Hence,
this two-field tensor is simply denoted with the symiibivithout any subscripted index of associated configurations in order of clarity of the
formula. Furthermore, the unity tensbiis written without any subscripted index of the configuration as well.
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phase transformations. The mechanical work may be calculated as the time integral of the stress power in terms of
the initial or the current configuration according to

ot 1/t
w=— [ T-Edr=— [ T -Ddr. 4)
PR Jo 0 O PR Jo t t
In (4), pr is the mass density of the initial conflguraudﬁ,gwes the time rate of the REEN strain tensor andD

is the strain rate tensor, which is equal to the symmetrlc part of the spatial velocity grhdledtto the covarlant

OLDROYD rate of the AMANSI strain tensoﬂ;]

A . .
D=-(L+L")=E=F 'EF ! | L=FF!. (5)
t t t t 0

t

N =

An arbitrary tensoA can be decomposed into its spherical and deviatoric fractions

A=AS+ AP | Aszétr(A)l : AD:A—%tr(A)L (6)

wheretr(.) denotes the trace operatafA) = 1- A with A - B = A;, B;; representing the scalar product of both
tensorsA andB. Furthermore, if the tensoA is invertible, it may be split multiplicatively into an unimodular
(volume preserving) parA and a volumetric contributioAY as

A=AA | A=(detA)5A , AV =(detA)s1, @)
which yields the properties of the determinants
det (A) —1 . det (AV) — det A @)
Moreover, the tensoA can be decomposed according to
A =[|A[[N(A) 9)

with the definitions of the directioN(A) and the normj|A || of the tensoA as’

Note that the operatdt(A) exhibits the properties
IN(A)[=1 ,  N(A)-NA)=1 (11)

for every non-zero tensak. The decomposition (9) and the relations (11) are of key importance for deducing the
constitutive equations in the following sections.

Furthermore, the arclength of an arbitrary strain meaduige defined as

9 [t . t. - 2 .
:\@/ [Aldr = [ Rar . A=\/;IIAII- (12)
0 0

This yields for the @EEN strain tensoﬂa] to the relation

2 t tL - 2 -
:\/g/o H%:HdT:/O Edr Ez\/;llgll (13)

and motivates a similar expression for the arclength of the strain rate t?naocording to

~ 2 t 1 2 t t; . 2
g=4/= [ |FTEF |dr=4/z | |D|dr= [ &dr ) E=4/-|D]. (14)
3 0 0 3 0 t 0 3 t

In the case of rigid body motior? = St‘z = —St)T, the strain rate tensd‘? vanishes identically, and hence, both
arclengths andE remain constant.

3itis defined thaN(A) = 0 holds for the special case & = 0.

144



.m,d
P K. G F n 0

T.E

T E
%‘7%) ':!:‘,:tE 0" 0 t ¢

Figure 2: Elastic spring with paramet&r, G (left) and nonlinear dashpot with parametem, d (right)

2.2 Basic Elements

In the next step, the rheological basic components, as utilized for the uniaxial casédikeBand Matzenmiller

(2013), are generalized to finite deformations. For this purpose, each stress relation of the individual elements has
to be redefined on either the initial or the current configurétidime graphical representation of each rheological
basic element of finite deformation is chosen identically as in the case of the uniaxial modeiokeBand
Matzenmiller (2013).

Elastic Spring

The elastic spring (Figure 2, left) is supposed to capture finite hyperelasticity. The free energy is simply assumed
as consisting of a volumetric contributidn(.JJ) taken from Hartmann and Neff (2003) and an isochoric fraction

v((;}) of NEO-HOOKE type as utilized by Shutov and Kreil3ig (2008) according to

)= (O =v(E) . UM = (D2 . o) =

G ~
¢ 2 = (1-C—3) (15)

b= UW) +o( o (1€

o))

with the material parameters andG as well as the abbreviation = det F = (det g)% and the unimodular

tensor(? = J'%(OJ. The associated stress relation is obtained for the initial configurBtjas

_ 0, &0\ o1
%?_pRag_szag_(KJ(J—1)1+G(03)g : (16)

in which (;JD denotes the deviator of the unimodular ten%br

Nonlinear Dashpot

The nonlinear dashpot (Figure 2, right) is generalized, operating on the current configuration with a stress definition
in terms of the strain rate tensor according to

T = ﬁ (nulgn)” " doN(D) (17)

with the operatoN(.) as given in (10). The parameteris a kind of viscosity, the exponent yields nonlinear
rate dependency and the paramekgis only used to introduce stress units. All mechanical work, applied to the
dashpot, is dissipated completely.

4At this point, the choice of the configuration for the definition of the basic elements may initially appear some kind of randomly. However,
later on, these component expressions will provide well-known constitutive equations of viscoplasticity.
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Figure 3: Friction body with initial yield limit:o (left) and hardening element with stiffnegs (right)
Friction Element

The friction body (Figure 3, left) is assumed as an energy storing element with the stress relatiordelkér Bnd

Matzenmiller (2013):
v - in(B) o opso
2
ITI < /250 for D=0,

wherex gives the initial yield limit. The free energy is obtained by integrating (4)and using (9) as well as
(11), according to

1 t\/§ 1 t\/§ 1
P = — —koN(D) -Ddr=— —|ID||dTr = — ko &€ 19
v PR ,/0 BHO (t) t T pRKO,/O 3”tH T PR e (19)

with & representing the arclength of the strain rate tensor as given in (14).

(18)

Remark:

The friction body is typically regarded as a perfectly dissipative element. Hence, most state of art models of
viscoplasticity account for energy storage due to elasticity as well as isotropic and kinematic hardening only, which
yields an overestimation of dissipation for metals during inelastic deformation. For this reason, some authors -,
e.g., Chaboche (1993a,b), Helm (1998, 2006) and others - already assign partial energy storage related to ideal
plasticity in order to advance the prediction of energy transformation processes observed experimentally during
viscoplastic loading. As demonstrated byoBker and Matzenmiller (2013), the non-dissipative friction body
allows to model a process-dependent energy storage behavior by arranging such a modified friction component
in series connection to the dissipative strain element, specified below. This modeling approach is validated by
Brocker and Matzenmiller (2013), showing a very good agreement with experimental energy transformation data.
Note that the same characteristic of energy conversion could be realized alternatively by applying the classical,
dissipative friction body in series arrangement with a novel conservative strain element, which could be defined
analogous to the dissipative strain body, however, as its counterpart with energy storage.

Hardening Element

The stress of the hardening body (Figure 3, right) is defined as - 6tkBr and Matzenmiller (2013):

_ 2 =
T = \/;EKEN(]?) for D#0,

(20)
25 & _
IT < /2 Eue for D=0.
The related free energy results from44nd using (9), (11)as well as (14) to:
1/t /2 1 b 1 € 1
¢:7/ \/7E,Q€N(D>-DdT:E,€ cidr=—E, | ede= —E, 2. (1)
PR Jo V3 ¢ t PR 0 PR 0 2pr

Dissipative Strain Element

The dissipative strain element (Figure 4, left) serves for limiting the strain and the associated storage of energy
in other rheological component - seetBker and Matzenmiller (2013). Hence, it is defined that all mechanical

146



Hé
-O

T7 Dth
t ot

Figure 4: Dissipative strain element with internal deformation Itageand parameters; (left), thermal strain
element with associated deformation rﬁtla1 and general functiord(6) specifying thermal deformation (right)

work, applied to this ideal body, is dissipated completely. Moreover, the element is assumed to transfer the stress
state’{‘ due to external loads. However, the internal strains, evolving in this rheological component, are exclusively

controlled by an evolution equation of the structure

Dy :C(r]t:‘vaj;"')v (22)

t t

which may in general be a function of the stress SItaas well as other internal variables of the material model
with the associated parameters Appropriate approaches (22) will be constructed later on.

Thermal Strain Element

In the case of purely mechanical loading, the thermal strain element (Figure 4, right) only transfers the external
load like a rigid rod. However, the rheological component responds to every change of the temgevnathra
strain rate tenso‘l?th according to

]?th = ‘%‘th 0. (23)
It is reasonably assumed that a thermal vorti&itvyh = —VtVtTh does not occur due to temperature changes, i.e.
the propertieéyth =0and
Itlth =FF'= ]?th (24)

hold for the spacial velocity gradieﬁélﬂl of this rheological component. Assuming an isotropic state of thermal
deformation

F=¢)1, (25)

the tensor of thermal expansﬁ;?zth in (23) results with (24) and (25) as

. 0gp(0)
tC}Ylth = 2(0) 1. (26)
The function of thermal deformatiofi(f) may be characterized e.g. by means of the simple expression
@(0) =1+ a(0)(0 —bo) . (27)

The free energy, stored in the thermal strain element due to temperature changes, is introduced as a general function
of the temperature according to

¥ =Q(0). (28)

Remark:

Notice that both the dissipative and the thermal strain element may not be deformed arbitrarily - neither stress
nor strain controlled, since the state of deformation in these components is completely governed by the evolution
equations (23) and (22).

5The small ha(A) on top of the variables indicates their temperature dependency.
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3 Network Assemblages

The basic elements of finite deformation may be also assembled in series or in parallel connection in order to
construct networks for modeling complex material behavior.

3.1 Parallel Connection

Figure 5: Parallel connection of basic elements 1 and 2 of finite deformations (left) with associated stress decom-
position at current configuratiaB (right)

Figure 5 shows a sketch of two basic elements arranged in parallel connection. The deformation gradient in both
individual elements 1 and 2 is equal to the total one

F=F, =F,, (29)
which means that the strain in both rheological components is equal to the total strain in the network as well:
P=Pi=F» . DP=B-B 0

However, the total stress at the initial and the current configuration is decomposed additively into both contributions
from the individual elements 1 and 2 according to

%1:%‘1-*-%—12 ) T=T1+'{‘2- (31)

3.2 Series Connection

In the following, the concept of dual variables (Haupt and Tsakmakis, 1989; Haupt, 2002) is extensively used to
obtain the kinematical, kinetic and energetic relations for the various configurations of the materi#l. body

T E
0’0 T’]?
Figure 6: Series connection of two basic elements 1 and 2 of finite deformations

For the series connection of two basic components 1 and 2 (Figure 6), a multiplicative decomposition of the total
deformation gradieri is assumed with the contributiol’y andF; related to both individual elements - cf. Haupt
(2002), Lion (2000), Landgraf and lhlemann (2012):

F = F,F,, (32)

which implies an intermediate configuratiy bgtween the initial configuratiopo and the current onB;. Hence,
the transformation (1) turns intdz, = FoF; dX = F,d7, with d¥, = F; dX representing the mapping of the
material line elementl X into the intermediate configuratidsy,.
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The total strain tensoE of the intermediate configuratioBl, results by means of the push-forward or pull-
backward operations (2) as

E = FJEF, = F; 'EF;’ (33)

and the multiplicative decomposition (32) directly yields an additive split of the strainBtateording to

1
E=_(F'F'+FiF;) =E; + B, (34)

with contributions ofE; as ALMANSI andE, as GREEN strain tensor related to the individual basic components
z Z
land2

1 T 1
B = (1-F; FH O, Ey= 5(FQF2 -1). (35)
Similarly, the total REEN and the A MANSI strain tensors are decomposed additively3grand3; into

B=BiiB: . BBt )
with the contributions related to the basic elements 1 and 2,0n

1
]«031 =F{EF, = _(F[F; - 1) , %2 =F|E,F; = 5(FTF —~F[F,) (37)

N[ =

and onB;
E, = F;T1;31F2—1 = %(FQ_TFQ_I ~-F'FY E, = FQ_T]*ZJQFQ_I = %(1 ~-F;'F;Y).  (398)
However, the total stress state is equal to the stresses in the basic elements 1 and 2
T=T=T . T=N=T . T=N-T )

and the stress tens@lrof the intermediate configuratids), is obtained by means of the push-forward or pull-back
operations (3) according to

T= F;ligF;T = F{gFI . (40)

The multiplicative decomposition (32), moreover, provides an additive split of the spatial velocity gr%dmot
- see Marin et al. (2006) -

L=FF!=FF,!+FFF'F,! = Ly +L (41)

t

with the contribution of both individual elements 1 and 2:
L, = 125 L =FLF' . L= F,F'. (42)
Note that the second relation of (42) represents the deformatioLfaté the element 1 from the intermediate

z
configuration3,, which is transferred to the current configuratiSpand, thus, denoted zItsl Motivated by the
various expressionk; of the configurationss;, the operator
1

1
D; = sym (LJ> = 5L+ L)) (43)

is defined as the symmetric part of each meafyte

Applying (41), the strain rate tensdItD decomposes additively
D =
t

1 T
3G+ E) =Dty @
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into its summands
1 T 1 .
1?2:5({42‘*‘1{2) ) ]?125(%1+It41)~ (45)

Pulling back the strain rate tensor (44) onto the intermediate configurdjigields the covariant OOROYD rate
of the strain tensoE according to

E = F;"BF;* = FIDF, = FID,F, + FID, F, (46)
with the relations
FID,F, =B, FID/F= (GoL +LCy) (47)
and the QUCHY-GREENtype tenson(zjg =FIF,.

Moreover, the special case is considered, when the velocity gradient is a d%viatigP. Inserting (41) into the
definition of the deviator (6)yields the property thdtLD decomposes additively into two deviatoric contributions

1
D _ L . _1b D
7= (152 +It‘1) 3 (1 (%2 +£‘1)) =Ly +L (48)
associated with both individual elements 1 and 2. Similarly, the symmetridt)%df the deviatonIt,D splits into

1 T
D_ (D by _ 1D D
]t) _2(It1 +]€ )—1?2+]t31 (49)
with two deviatoric, symmetric contributions of both elements 1 and 2

1 T
p_lop D D _
]?2— (Itlz +It‘2 ) ) ]?1

> (L? +LPT) (50)

1
2Nt
The deviatorIt,'f may also be rewritten in terms of the transformation {48jcording to

1
1;? = F,L F; ! — 3 (1-FoL,Fyh) 1= FoLPF; (51)

which states that the deviatdtﬁf of the current configuratioi, entails the deviatoL? on the intermediate
z
configurations3, and vice versa.

By means of the kinematical and kinetic relations obtained above, the internal stress posyebe considered
next for the case of the series connection of two basic elements:

1 . 1 1 1 1
|=—T-E=—T-D=—T-L=—T Lo+ —T -Li=l+1, (52)
PR 0 0 PR t t PR t t PR t t PR t t

i.e. the total internal stress powealso decomposes into the fractidpngndi, of both individual basic components.
Note, due to the symmetry proper]ty = ’%‘T of the KIRCHHOFF stress tensor, only the symmetric fraction[tof
gives a contribution to the scalar prOdltTt It, Thus, in eq. (52)]? may be replaced b]% and vice versa. The

first summand of (52)can be transferred to the intermediate configuraBpmvith (40) and (47) as
1 1 1 .
lp=—T Ly=—T -Dy= —T Es. (53)
PR E T pPRE T PR Z 2

Moreover, the second summand of (5&)ay be rearranged using (40) and 4a¥

1 1
li=—T-Li=—T-D, (54)
PR E T PR T
1 T 11 1
= —F,TF, -F;LiF," = —C,T-Li = —M- L, (55)
PR z Z PR 2 % Z PR % Z
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Figure 7: Series connection of two elastic springs

with the definition of the M\NDEL stress tensor

M=C,T. (56)

z

In the special cases & = M', i.e. if T andC, are coaxial to each other, the velocity gradi&ntmay be
A .

replaced in (55) by its symmetric pdit; = E; = F| " ](5)31 F;!-cf. (5) - and, hence, the stress povecan be

further converted according to

1 1 1 . 1 .
h=—M-Li=—M-D,=—F'MF;" - E; = —M-E,; (57)
PR Z z PR 2 z PR z 0 PR 0 0

with the transformation - cf. (3) PB/[ =F'MF;" = (031_1(03’%‘ of the MANDEL stress tensoM to the initial
configuration, and the QUCHY-GREEN type tensors; = F!F, as well asC = F'F.

Landgraf and Ihlemann (2012) have presented a similar approach for the connection of finite rheological elements
based on the multiplicative decomposition of the deformation gradient (32). They have postulated the balance of
the stress power for the initial configuration in order to derive the equilibrium of stresses. However, in the paper at
hand, the balance of stresses (39) is assumed, and hence, the decomposition of the stress power (52) is the outcome.

3.3 Example: Series Connection of Two Elastic Springs

Two elastic springs with different stiffness properties are connected in series - see Figure 7.

According to the general definition of a hyperelastic spring, its free energy is assumed as a functionre the G
strain tensor’la] = %(FTF — 1). That means, the free energyof the entire network of springs in Figure 7 is

obtained as a function of bothREEN strain type tensors

1 1
E, = (F[Fi-1) . Ey=_(F]F;-1) (58)
according to
=01 (B1) + 02 (Bs) =9 (B Es) . (59)
The temporal rate of the free energy is
Lo oy .
Y= 3]531 “Ei o+ OE, B (60)

In the case of isothermal conditions and by neglecting heat conduction, the internal dissipatsofts as - see
Haupt (2002), p. 511 -

. 1 )
§=—-tp+—T-E>0 (61)
pRO ©

and has to be non-negative for any admissible process.
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Assuming that both tensofS, andT are coaxidl, the total stress powerof the system in Fig. 7 may be decom-
posed according to (52)(53) and (57) into

1 . 1
T B (TR B ©)

With (60) and (62), the internal dissipation (61) is evaluated as

1 oY . oY -

and yields for arbitrary rates (%1 andE, the potential properties for the stress on the intermediate configuration
B, and the KRCHHOFF stress on the current o

o 00 b1

T =pr— or T F 64
I'=re3E, prF2 OE (64)
as well as to the MINDEL type stress tensors on the initidj and the intermediate configuratidt)
oY X
M = or M=prFi—F,. 65
Y PR A 8E v PR I 31531 1 (65)

If the free energy/;(El) is an isotropic tensor function, e.g. as in (15), the relation (64) leads to the property that

Cg andT are coaxial to each other, |M Cg T= MT andM F! MF; T MT hold. It remains) = 0
from the internal dissipation (63), i.e. a reverS|bIe matenal behawor is present in th|s example.

The interesting outcome from this quite simple network of elastic springs is the following:

e the second spring is naturally connected to thedHHOFF stresST at the current configuratiofi; as well

as to the stress tens’diY F;! T F, " of the intermediate configuratids,,
e however, the first sprmg is naturally associated to theNMEL stress tensdk/I Cg T of the intermediate

configurations3, as well as to the stress tenﬁgi =F7 M F{ T= (031 1(03%‘ at the |n|t|al configuratior.

These conclusions may be generalized: In a series connection of two stress inducing basic elements, the second
rheological body is associated to thGHCHHOFFStI’ESST at the current configuratiafi;, whereas the first element

is naturally associated to the MIDEL stress tenscM 02 T of the intermediate configuratids,.

The stress relations of the configuratidfis B, and 3, may be summarized as

W 31&

1 PR
= PR C Cl ) 1 PR Fl (9 s (66)
_ _ o 81/}
1 1 T_
?_92 I\Z/I_pR(z:Q FlaE) Fi 8E (67)
and
1. OV oY
_ 1 9% o1 _ Y gT
’%‘7@“]{3’2 Fa F RFQ8 F, (68)

4 Rheological Model of Thermoviscoplasticity for Finite Deformations

By means of the basic elements introduced above, a rheological network of finite thermoviscoplasticity can be
assembled - see Figure 8 - as a generalization of the specific uniaxial model proposédker Bnd Matzenmiller

6This property will be verified later on.
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Figure 8: Finite rheological network of thermoviscoplasticity

(2013), representing nonlinear isotropic and kinematic hardening as well as an improved description of energy
storage and dissipation during viscoplastic deformations due to a process-dependent energy storage in the friction
body analogous to the one-dimensional counterpart.

The general structure of the rheological network has been adopted from the material models of finite thermovis-
coplasticity of Lion (2000), Shutov and Kreif3ig (2008). However, the model at hand provides some additional
features and intermediate configurations associated to the initial yield stressl the stress of isotropic harden-

ing x. The rheological network consists of the thermal strain element with the thermal deformation gkagdient

on the left hand side, the complete viscoplastic model setting including seven individual elements associated with
the viscoplastic deformation gradieFt,, in the center as well as the elastic spring with the elastic deformation
gradientF,, on the right hand side. This means that the thermal, the viscoplastic and the elastic model contribu-
tions are arranged in a threefold series connection between the jtiahd the current configuratioB; - see

Figure 8. The viscoplastic arrangement itself provides four different chains of basic bodies connected in parallel,
each one representing a specific phenomenon of the entire viscoplastic behavior. On top, an elastic spring is ar-
ranged in series connection to a dissipative strain element allowing for nonlinear kinematic hardening. Below, the
hardening element and a dissipative strain component are placed in series arrangement for modeling of nonlinear
isotropic hardening. The next chain consists of the friction body with energy storage and another dissipative strain
element in order to effect the initial yield threshold and an improved behavior of energy storage and dissipation
during viscoplastic loading. In the lowest chain of the viscoplastic network setting, a nonlinear dashpot is placed
to account for strain rate effects.

4.1 Kinematics

The fundamental kinematical relations of the thermoviscoplastic model may directly be taken from the rheological
network in Figure 8, utilizing the network rules (32) and (29) of the connection principles of series and parallel
arrangement of basic element. The total deformation gradieoftthe network is decomposed multiplicatively

into the mechanical and the thermal fractions with (25) as

F=FuFuw , Fo=¢(0)1, (69)

which in turn implies the thermal intermediate configurati§n. As well, the mechanical contributidfy, is split
multiplicatively into the elastic and the viscoplastic parts

Fy =FoF,,. (70)

Hence, a viscoplastic intermediate configurati®y is obtained. Plastic incompressibility is assumed as usually
for metal plasticity in absence of damage, i.e. the relation

det(Fyp) = 1 (71)
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holds. HenceF,,, turns out as a unimodular tensBy,, = f‘vp - cf. (7)., which implies the properties that,,,
vp
andD,,, are deviator$
vp
L,, =L | D,, =DP 72
vp P VPVp vp P vpVp ( )

and, furthermore, the associated rightu €HY-GREEN type tensor is unimodular as well
_ T _
tc}sz - vaFVp ) det (gvp> =1. (73)

The viscoplastic setting of the rheological model in Figure 8 provides a threefold multiplicative decomposition of
the viscoplastic part of the deformation gradient

va = F&eFﬁd =FqeFua = Fnoanod (74)

according to the three chains comprising the series connections of dissipative strain elements and the spring, the
hardening body and the friction element, respectively. The multiple split (74) yields three additional intermediate
configurationB,, B,, andB,,,, which are associated to kinematic (indgxand isotropic hardening (index) as

well as to the process-dependent energy storage in the friction element figdeRimilar to property (71), it is
reasonably assumed that

det(Fee) = det(Feq) = det(Fre) = det(Frq) = det(Frpe) = det(Frpa) =1 (75)

holds for the decomposition (74), i.e. all the partial mappings are volume preserving. According to (48) up to (51),
the relations

L =LP + L2, | L, =F L2, F! | DP? =DP +DP 76
wP T vpre T pd wpd veyvd e w'P T vpre  prd (76)
with the velocity gradients
v -1 D v -1 D
Loe=FreFoe =Loe »  Lha=FaF =1 (77)

are valid on the viscoplastic intermediate configuratfap, where the subscripts = xo, v = x andy = £ denote
the various deformation measures of the motion from the thefipaio the viscoplastic configuratiof,,.

4.2 Equilibrium of Stresses and Free Energy

Figure 9: Sketch of equilibrium of stresses on viscoplastic intermediate configution

The equilibrium of stresses is considered on the viscoplastic intermediate configusatiai the rheological

model in Figure 8. The total stre$s = Fell’{‘F;T on B,,, results from the individual contributions of all four
vp
parallel chains of the viscoplastic network according to (31), i.e. from the nonlinear daBhpittie friction body
vp

T, the hardening elemefl,. and the spring of kinematic hardeniflt} as - see Figure 9 -
vp vp vp

T="T,+ Ty + Tx+Te. (78)
vp vp vp vp vp

= 1 A~ _1 . ~
"For the unimodular deformation gradiefit= (det F) ™ 3 F and with the relation¥ = (detF)™ 3 (F -3 %)F) andF~! =

1 —~ A~
(det F)3 F~1, it follows thatIt, =FF 1= I;D holds.
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In terms of the MANDEL stress tensor - cf. eq. (56), the equilibrium of stresses (78) is

M = Ca T =M, + My, + M, + M (79)

vp vp Vp vp

with the elastic @QuCcHY-GREENtype tensoiC,; = FeTlFel and the partial stress quantities
vp

Mn = Cel Tn y mo = VCel Tﬁo ) Mfc = Cel TK, ; lleﬁ = vCpel :,];)f . (80)

vp vp Vp vp vp vp Vp

The total free energy is obtained from the contributigrs, .1, ¥¢, 1, andy,, of the basic elements with the
capability of energy storage according to their specific position in the rheological network, i.e. from the thermal
strain element),;,, the elastic spring.;, the spring of kinematic hardening, the hardening element, as well

as the friction bodyy,,, according to the relations (28), (15), (21) and (19) as

1;[} = 7/}th( ) + q/}el( el) + 1/15 (Efe) + 1/15 (‘C:He) + 'l/)rco (gnoe) (81)
= Q) + 2; (K (Ja—1)*+G(1- (gel —3)+Ge (1- (?ge —3)+ Eqé2. +2K0 snoe) (82)
R v
with the strain tensors of REENtype

1
Ea = §(FLFQI —-1) =

1
5(%1_1)’ Bee=35

and the determinant,; = det Fe; andJee = det F¢e = 1 of both springs as well as with the arclength of the
friction and the hardening body according to the definition (14)

_ 2 [* L. . 2
Ekpe = \/;/ ||Di<aoeH dr = / Ekope dr ) Ekpe = \/; HDHoeH 5 (84)
o VP 0 vp
2 [t *, ) 2
Ere = \/; IDyelldr = / EredT Ere = \/7||D,€e|| . (85)
o VP 0 3 'vp

Hence, the free energy (81) may generally be summarized as a function of its arguments

(FT Fee —1) = %(?Ee -1) (83)

w w ( elaa E£E7EK87€I€0679R) . (86)
Note, the temperature gradigfit with respect to the material coordinates
00
Jp = —— 87
gr ox (87)

has been added to the list of arguments of the free engg/usually done - see e.g. Haupt (2002), p. 514, since
the heat fluxgg has to be a function afg. The rate of the free energy (86) results with (84hd (85) as

o . 0 . 2 0 2 0 0 .
Yo P 2 2 p 2 D 2 e 69

L) S T OB ¢ 3 05 v 02y
vp

4.3 Decomposition of Stress Power

The total internal stress powedecomposes according to (52), (3nd (55) as - see Lion (2000) -

1 . 1
l—T~E:<T Eu +CMT Lth):lM-ch (89)
pr0 0 pr \ibh M in

into the mechanical,; and the thermal contributioly,. The mechanical stress power in turn splits according to
(52), (53), (55)% and (72) a%

1 . 1
h=—T Ey= (T Eg+M-LP > =la+lwp (90)
PR

PR th th vp Vp vp Vp

8Note that L, is naturally deviatoric due to the assumption of plastic incompressibility in (71). However, in order to visualize this
vp

important property, the superscripd® is additionally appended to the measilig,, as well as to its decomposed fractions in (94) and (95).
vp
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- see Lion (2000) - into the elastig, and the viscoplastic fractiofy,, of the total stress powdr Hence, the
total stresSI‘ is the natural stress measure of the elastic stress powerhereas the MNDEL stress statM is

naturally assomated to the viscoplastic stress péwemMotice that the volumetric part of the totalAWDEL stress

M does not lead to any contribution in the viscoplastic stress pM/eILEp, smceLD is a deviator. Moreover,

the viscoplastic stress powky, is decomposed using the equmbrlum relatlon (79) as

1
lyp=—M- LY = <M LD + My, "LO 4+ M, LY + M, LVDP> : (91)
PR vp

vp vp vpr vp vp vp
The MANDEL stress tensor is supposed to be symmetric:

M=M", (92)

vp vp

which means thaflel andT have to be coaxial to each other. The property (92) seems somehow to be an arbitrary

assumption, but the symmetry will be proven later on. The relation (92) implies that for reasons of plausibility, the
partial stresses of the rheological model in (79) have to be symmetric &s well

vp n vp vp vp

MnfMT , M,, =M | MﬁfMT , M, = M{ . (93)
vp vp
According to (93) 3 and (76}, the relations

M,, - L° =M, D5C+MKO~D5d, M, - L2 =M, DD+M -DP, (94)
vp vp vP vp 0 vp vp 0 vp vp p vp vp vp

hold for the parallel chains of the viscoplastic network contribution with the intermediate configurBtipasd
B,. Furthermore, with (52) (76);, (93), (53)% and (55}, the decomposition

M LD M LD M?.DP + MP. LD, =M. E + Ceo M- LD 95
M, -1 I - M - Dee + Mg - Licg = Mg - Bee + Cee Mg - L (95)

is obtained? for the intermediate configuratidsy with the transformed MNDEL type stress measure of kinematic
hardening

M = F, 1vv15 eF:’. (96)

With (90), (91), (94), (95), (24) and (23), the total stress power (89) results as

l= <T Eq + Cu Ty 0+ M, DD + M, DEUe + M, - Dmd
PR \VP VP th vp
+ M, DD + M, Dﬁd + Mz - Ege + Cee Mg - Lgd) : (97)

Notice that each individual summand in (97) represents the stress power associated with exactly one of the basic
elements of the rheological model in Figure 8.

4.4 Evaluation of Internal Dissipation

The inequality of the internal dissipatiémesults from the balance equations for energy and entropy in combination
with the second law of thermodynamics - see Haupt (2002), p. 511 - as

1 1
:—’g/} 984‘7 E—iqR gr >0 (98)
PR O O PR 0

and has to be satisfied by the constitutive model. In (9&)enotes the entropy, besides all the other quantities
already known from above. Inserting the rate of the free energy (88) and the decomposed stress power (97) into

®This meansL D, may be replaced by its symmetric fracti®, in (91).
vp vp
10The rateDge is naturally deviatoric, which mearis- Dge = 0 holds. However, this property is lost nge due to the transformation

E) F£SD50F5C ie. Ege is not a deviator. Similarly, the pull-backward operation (96) yields a non- deV|ator|c stress rrM?mBg
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(98) yields for the internal dissipatiéh

s | Lop_ 0¥ By + M& RL .Ege—<s+a¢—ICMT-ath)é—g@R
R

PR VP 0E, vp PR € 8];]5C 13 00 PR th  th th
vp
1 2 O 1 2
— M, -N(DP \[ D,. — M,, -N(DP \f D,,e
¥ (pR (D) - a) Dl + (pR M N(DE) <3 5o ) 1Dl
1 1
- 7qR gr + p. (lv\g g + Cge Mg LEd +M DEd +MH0 D,md) . (99)

For arbitrary rated®,;, }E)Ee, 0, Gr, | Drell, [ Dryell and an arbitrary temperature gradignt it follows according
vp vp vp

to the standard argumentation of Coleman and Gurtin (1967) that the factors ahead of these rates have to vanish
for any admissible thermomechanical process. Hence, the potential relations

o - o
8Eel ’ 5 = PROE,. 8E

vp

T = pr (100)

and

—C

PR th BT (10)

are obtained for the total stred50n B,,, the MANDEL type stress tensd\f;_/[g of kinematic hardening o3¢ as
vp
well as for the entropy. The relations (100) reveal thatandC,; as well asl\é/Ig and(glge are coaxial to each other
vp vp :
for the free energy (82). Hence, the symmetry assumption (92) is verified. Furthermore, (99) yields the property

oy

=0, 102
9 (102)

i.e. the free energy must be independent of the temperature grgdient

Qp 7/)< e1797E5875I€e;€K09> . (103)

Moreover, the fifth and the sixth summand of (99) provide the relations

2 2
M, -N(Dp, —\[pR % o . M,-N(DR, —\pr o o, (104)
vp vp 85,{6 vp vp 3 agnoe

which may be rearranged by means of the propesie8B3® = AP .- BP and (11) according to

<M5 - \/5 PR 3(?} <D58)> N (D56> =0 (105)

P Ke vpP vp

(MEO — \/5/) aiw N <DEOC>> N (DEOC) =0. (106)
VP Koe

Both equations (105) and (106) must be satisfied for arbitrary B@f¢s+# 0 andDY . # 0, leading to the
vp vp
additional potential relations

and

2 O \F o
D_  [% DY_ /% D _ D
I‘X)'[n - \/;pRagne N (EI{E) 3 &N (gme) ) K pRaéﬁe for v:?)/{e 7é 0 (107)
and
MP = \FpR % N(DP =\/§ N DEe . Ko=pRr @ for DP° 40 (108)
vp "0 O0E€kpe \vP™ 3 0 0Ekpe vp"?

1INote, L e and L .. are deviatoric, sincd v, is a deviator - see (72). Hence, the properiis, = DD andDNoe = D hold.
vp vp vp vp vp

phoe
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for the stress state in the hardening and the friction body in terms of the quantities of the viscoplastic intermediate
configurations,,,. The scalark denotes the internal stress in the isotropic hardening part. Both varialaled

ko in (107) and (108) are strictly non-negative, if the associated energy contributions of the hardening and
friction body ¢, and,,, in (81) meet the following demands,, and,, have to be convex functions of their
arguments . andé,,. with the initial states),,(£..=0) = 0 and,, (¢.,=0) = 0. Furthermore, the properties

Y (Ege>0) > 0 and )y, (E4,e>0) > 0 must be fulfilled during loading. Thus, the internal dissipation (99) is
reduced to the residual inequality

1 1
5: —ﬁ §R§R+p7 <Mn D +C£eME D§d+M DKd+MK»O Dﬁod) :(Sth_"(s]\/[ ZO, (109)
R R v
and separated into its therm®g), and mechanical contributiodg;. The thermal dissipation
1 .
dh=———qr"gr >0 (110)
prO

is usually satisfied by means obBRIER'S model of heat conduction
dr = —KJgr (111)

with K representing a positive definit tensor in general or Mth= £ 1 in the case of isotropic heat conduction.
By using the propertygge 1\5/12 = ((535e 1\5/_[5)D, the mechanical dissipation results as

1
PR vp

Vp VP vp

In order to ensuré,; > 0in any case, the foIIowing sufficient condition may be specified for the nonlinear dashpot

N (13;[5) =N (g%) (113)
as well as for the three dissipative strain elements

N(??d) = N(((g&e 1\5/15)[)) ’ N({g?d) = N(ljg,?) , N (Dmd> = N(l};[E()) . (114)

Satisfying (113) and (114) and using (9) as well as {1tt)e mechanical dissipation (112) is always non-negative
and results as

= (|MD|| DO, 1+ 1(Qee Me)P 1D + M2 D% -+ M2, | ||D,€0d)zo. (115)

According to (114) 3, (107) and (108), the relations

N <D5d> =N (DQC) , N (Dﬁod) =N (DEOC) (116)

are obtained for the directions of the internal rates of deformation. Moreover, the decomposition]()fg)ani
vp
B.p, leads with (9) and (116) according to

=||D5PN<DSP)=DBEHN(DEE)+||D5d||N(DEd)=(|| -+ 1D dn) (Dse) (117)
vp vp vp vp vp vp vp
to the important properties

D% = 1D+ D% N(D2,) =n(D2.) ~n(De,) (118)
as well as

D% = D20+ D2l N(D2,) =N(D2.) = (D) (119)

This means that all the directions of the internal rates of deformation on the viscoplastic intermediate configuration
B, - resulting from the parallel chains of the friction and the hardening element in the viscoplastic network setting
- are equal to the direction of the viscoplastic fiby D2 ). Furthermore, the norrfiD®, || splits additively into

vp vp

the norm of the hardening body and the one of the dissipative strain element - see eq- ék18¢ll as similarly
into the norms of the friction component and the associated dissipative strain element in (119)
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4.5 Yield Function and Direction of Viscoplastic Flow

The deviatoric part of the MNDEL stress tensot$in the equilibrium relation (79) is evaluated #,, by using
the component stresses (107) and (108) as well as the splitin (9) and the condition in (113):

2 2
MP = |[MP| N( DP \[ N DD \[ N( DP MP . 120
vp H Vpn || (vap) + 3 Hoe 3 K foce + fo ( )

Rearranging (120) with the relations (9), (118)nd (119) leads to the expressibh

2
MP — MP = [MP — M| N(MD — M?) = <|ME’,|| + \[(no + m)) N (Dgp) : (121)
vp vp vp vp vp vp vp 3 vp

Since all summands in the bracket on the right hand side of (121) may only have non-negative values, equation
(121) can be separated into its direction and its norm, which directly gives the direction of evolution for the
viscoplastic ﬂova » according to

N (Q)va) =N <1V\§D — 1}{)1?) . (122)

Moreover, the scalar equation

3 3
ﬁuggsn = \gugngv\g?H — (ko + k)= F (123)

is obtained from (121) by comparison of the coefficients. The relation (123) implies a mathematical contradiction
for all model states of' < 0, since the stress equilibrium, as evaluated in (120), holds for non-zero viscoplastic
flow DD # 0 only - see footnote 13. This means that viscoplastic strain may evolve solely during processes with

F> 0 and, furthermoreF’ < 0 indicates the thermoelastic range of the model. Hence, the yield fun€ttams
out in (123) with the case distinction - see als@é&ker and Matzenmiller (2013):

P { <0 elastic domain (124)

>0 viscoplastic domain -
4.6 Viscoplastic Flow and Evolution Equations of Dissipative Strain Elements

Viscoplastic Flow

Since the nonlinear dashpot is arranged in a series connection to the elastic spring in the rheological network of
Figure 8, the dashpot provides aAMDEL type stress measufeon the viscoplastic intermediate configuration
B.p, which turns out according to the definition (17) as

2 1/m
Mo -2 (#1221 oy (D5, ) (125)

Inserting the norm of the dashpot stress (125) into (123) yields the relation

Vamei= (nipe) e = o) (126)

12Note, sinceF,;, is a unimodular tensor, no spherical stress contribution may arise from the viscoplastic setting of the rheological network.
However, the hydrostatic state of stress, resulting from the elastic spring between the configiigtians 3;, affects the total rheological
model in consequence of the equilibrium of stresses (39) in the series connections of the elements.

13The stress relations (107) and (108) hold onlyl%’ﬁe #£0 andggoe # 0. Hence, in consequence of (128)nd (119}, equation (120)

is valid only for all states oDQp # 0.
vp

14see also the stress relation of the first elastic spring and the conclusions in Section 3.3.
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where additionally the Macauley-brackets) = (x + |z|)/2 have been introduced for the yield functiéhin
order to distinguish loading’ > 0. Rearranging of (126) provides the norm of the viscoplastic flow tensor

1 /F\"
D5 =1 () =A (127)

which is abbreviated with the symbaland denoted as the viscoplastic multiplier. Combining relation (122) and
(127) gives the flow rule for the evolution of the viscoplastic strains

D7, =AN <1V\§D — 13{)1?) : (128)

According to the definition in (14), the arclength of the viscoplastic strain rate is obtained as
_ . 2
Evp = \/7/ HD ol dr 7/ Evpdr Evp = \/g)\. (129)

Dissipative Strain Element of Kinematic Hardening

Motivated by the sufficient condition (114and the uniaxial model of Bicker and Matzenmiller (2013), the norm
HD || is chosen for the dissipative strain element in the series connection with the spring of kinematic hardening

accordmg to

1 2
DY = — CeMD\/>/\ 130
IDRall = ¢ 11(Gee Me) 15 (130)
with £€°° as the saturation value of the noﬂr(gge l\g/IE)DH and the facton driving the change of the internal strain

rate. Hence, the evolution equation]??d1 is obtained from (114)and (130) as
Dg, = ! (cEe Mg) \FA. (131)
3 £ 3

Dissipative Strain Element of Isotropic Hardening

The ansatz for the nonﬁD D, || is taken similarly as for the case of the uniaxial model aidker and Matzenmiller
(2013):

HD al =< A, (132)
which yields with (9), (118) and (127) to the evolution equation

DPy = — DY (133)

vp K™ vp

with k°° as the saturation value of the stress of isotropic hardetiing

Dissipative Strain Element of Friction Body

The norm||DP ;|| for the third dissipative strain element is adopted from the uniaxial model @fk@r and
vp
Matzenmiller (2013) as

||D D all= (1= Brexp(—B2&wp)) A (134)

with the arclengtlz,, of the viscoplastic strain rate according to (129). Hence, with (9), (134), {E®) (127),
the evolution equation of this dissipation body in the series arrangement to the friction element reads as

Dngd - (1 - ﬁl €xp (_/62 évp))g\?p . (135)
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4.7 Constitutive Relation of Total and Partial Stresses and Mechanical Dissipation

By means of the potential relation (1Q0}he total stress state on the viscoplastic intermediate configuigtipn
is calculated from the free energy (82) - see also (16)

oY
0C.a
vp

T = 2pRr = (K Ja(Ja — 1)1 + Gég) Cc.'. (136)
vp vp vp

The MANDEL type stress of kinematic hardening becomes with the help of (82) and;(20@)e intermediate
configurationB,

o
M = 2pp—— = G CP. C! 137
£t pR@?ge ke e (137)

and the property‘g?e = (??e holds. Moreover, the scalar stress of isotropic hardening emerges from the free energy
(82) according to (10%)as
k=FE, e, (138)

and its evolution equation is obtained from (138) with @8%118), (132) and (129)as

. KX 2 D R EX
i = By e —En\/;gmn ~ B, (1— Tw) Eps (139)
i.e. the structure of (139) is identical to the one of the uniaxial model.

The internal raté,. . of energy storage,,, in the friction body - see (81) - may be determined from 84119},
(134) and (129):

. 2 o
€roe = \/; HV:?)EOGH = 61 €xp (762 gvp) Evp - (140)

The mechanical dissipation (115) leads to the non-negative expressin fyrusing the relations (107,)(108),
(123), (127), (129), (130), (132) and (134):

1 1 D2 K2 _ .
A (p L "2 o N
= - <F+ e I(CeMePIP + 2 4 (1= B exp gggvp))>gvp_o (141)

The set of constitutive equations (136) — (141) is completed with the thermal contribution of the deformation
gradient (69), the yield function (123), the flow rule (128) together with the viscoplastic multiplier (127) as well
as with the evolution equation of the dissipative strain element of kinematic hardening in (131) for the rheological
model of thermoviscoplasticity in Figure 8 .

Remark:
All material parameters of the model may in general be non-negative functions of the températhre yields
for each temperature-dependent parameter of the free energy (82) one additional summand in the entropy (101)

besides the partial derivati\%% However, the validity of the mechanical dissipation (141) and the entire line of
argumentation in Section 4 remain unaffected, if some or all the parameters are assumed as temperature dependent.

4.8 Summary of Constitutive Model on Initial B, and Thermal Intermediate Configuration By,

By means of some lengthy mathematical rearrangements, the constitutive model can be transferred to the initial
By or the thermal intermediate configuratiff,. These two configurations only differ from each other due to the
isotropic thermal expansion - see (69Hence, the second®LA-KIRCHHOFFstress is expressed in terms of the
configurations3, andB;,, according to

~ J
_ -1 _ -1\D _
T=C <K Ja(Ja = 1)1+G (C C ) ) . Ja (142)

h'P
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with the temperature dependent functipf®) specifying the thermal deformation. The yield functiBresults to
3 2
F = 52—(/104—/-@) ) Y= [tr E (143)

_ D _ * — 5 2
R (GuD)"-Guwle . T=007T (144)

with the stress type tensor

. D . . . .
and the propertgVp lt\gf = (gvp ].t\gg) . The viscoplastic flow rule is obtained as

2 1 /F\"

The scalar stress of isotropic hardening is governed by the evolution equation

R:En(l—%>évp : évpz\/zx (146)

The MANDEL type stress tensor of kinematic hardening is calculated as

Dp-—T -1 —-1\D
M; = FIMEF [ = FOMPF T = Ge G5 (G Ced) (147)

with the flow rule of the associated dissipative strain element

. 2 2 .
Cea = \/; = Cup M Ccq. (148)

Besides the capability of thermal expansion and the volumetric stress relation, the mechanical behavior of the
constitutive equations summarized above in this section are equivalent to the material model proposed by Shutov
and Kreilig (2008). However, in the paper at hand, a novel method has been utilized for deducing the constitutive
relations by means of a rheological network of finite deformations as a generalization of the procedure applied by
Brocker and Matzenmiller (2013). Moreover, the resulting mechanical dissipation

Sy = F+n(1—ﬁex (—Baé ))+“2+itr (Cop M) ) ) Eup > 0 (149)
M — PR 0 1 p 2 Cvp é‘oo thvp thg vp =
differs from the model of Shutov and Kreil3ig (2008), since a process-dependent energy storage is assumed for the
friction body, and hence, the stress podger = p%/i[)évp, associated with ideal plasticity, is partly dissipated as
heat only - see the second summand of (149).

5 Enhancement for Damage Representation

In continuum damage mechanics, the concept of effective stresses has been established to account for damage
evolution in solids - see Lemaitre and Chaboche (1990), Lemaitre and Desmorat (2005). Its main idea is summa-
rized in Figure 10. During a loading process, defects are generated in solid materials. These imperfections in the
physical space reduce the aréa of the cross section, which effectively transfers the external férc&his fact

motivates the transformation of the physical space into an effective one, whose cross 4estieduced for the

fraction of the defectsly.s, i.e. A = Ay — Ager holds for the effective space. The equilibrium of forces of both
spaces gives

F=0"Ay = 0(Ag — Ager) (150)

with o® representing the actual stress of the physical space with damagedanbting the effective stress. By
means of the definition of the scalar internal damage variable

= Deo,1), (151)

with the range of values from» = 0 (undamaged state) tO — 1 approaching one (total fracture), eq. (150) may
be rearranged according to

s ¢*=(1-D)o. (152)
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Figure 10: Concept of effective stress and application to rheological models

Thus, the stress in the damaged stateis related to the effective counterpartby means of the damage or
degradation factofl — D). The damage variablP has to be calculated by a closed form damage criterion or an
evolution equation. This may be chosen for example in one of the most simple cases as

= np . = np—1
D_<€ 5“> s Dp=_"P <6 EC> Z (153)

Ef —E&c Ef —&c \&f —E&c

in whichnp is a positive exponent,. > 0 is the critical threshold of the arclength= fot le| dr, where damage
processes are initialized, ang> ¢ is the associated state of failure, iB(z = &) = 1.

The relationship (152) may be formally introduced into the rheological networks as well, leading to damage repre-
sentation in rheological models - seedBker and Matzenmiller (2012). In the framework of continuum mechanics

and thermomechanically consistent material modeling, the constitutive equations may be deduced from the rheo-
logical network in agreement to the well established concept of effective stresses of continuum damage mechanics
(Lemaitre and Chaboche, 1990). It turns out that the strain equivalence holds for the the total and the partial strain
measures, i.e. the strain responses of the effective and the damaged state of the model are equivalent. Moreover,
in the special case of isothermal conditions, a linear relationship turns out between the actual (damaged) and the
effective (undamaged) state of the constitutive mbdeHence, the damaged state of the model is calculated by
multiplying the total and internal effective stresses with the degradation/damage(factdr), i.e. the stress state

affected by damage reads

c*=(1-D)o (154)
in the uniaxial case or

'ga:(lfD)’g & T°=(1-D)T & ’{‘a:(lfD)? (155)
vp

vp

in applications of finite deformation kinematics. Analogously, the internal stresses of hardening and the initial
yield limit are obtained according to

I\E/Ia:(l_D)l}E/IE ) k*=(1-D)k , kg =(1—D)kg. (156)
In finite thermoviscoplasticity, the evolution equation of damaymay be specified as given in (153with the

arclengthz of the total strain substituted with the viscoplastic agg. The mechanical dissipatioiy; for the
damaged state of the material results as

Sy =(1=D)om+¢mD >0 (157)

15In general there is a coupling between the effective and the nominal state of the model due to the temperature dependency of the material
parameters and the dissipation of heat during the loading process.
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with dy; from (149) and the mechanical contribution

wM = wel + 1/}6 + 1/% + 1/%0 (158)

of the free energy in the equations (81) and (82). Hence, the first summand of the dissipation power (157) is driven
by viscoplastic deformation and the second contribution of (157) is due to damage evolution.

6 Conclusions

The enhanced concept of rheological modeling)er and Matzenmiller, 2013) is generalized to finite deforma-
tions. By assembling the basic bodies into a network, kinematical and kinetic relations of the constitutive model
arise using the elementary properties of series and parallel arrangement of elements within the concept of dual
variables. Hence, the finite material equations are obtained in an analogous procedure as in the uniaxial case,
providing the yield function and the flow rule naturally from the equilibrium of stresses. The resulting constitutive
theory is very similar to well-known approaches of viscoplasticity in the literature, however, derived differently

as usual and extended to an improved description of energy storage. Moreover, damage evolution is additionally
considered for the proposed model.
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