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On the Generalization of Uniaxial Thermoviscoplasticity with Damage to
Finite Deformations Based on Enhanced Rheological Models

C. Bröcker, A. Matzenmiller

The enhanced concept of rheological models, as proposed in Bröcker and Matzenmiller (2013), is generalized
systematically to finite deformations. The basic bodies are defined individually for large deformations, and a rheo-
logical network of thermoviscoplasticity is assembled, representing nonlinear isotropic and kinematic hardening
as well as an improved description of energy storage in metal plasticity. The constitutive equations are deduced
in an analogous procedure as for the uniaxial model in Bröcker and Matzenmiller (2013). Furthermore, damage
evolution is additionally accounted for.

1 Introduction

In a recent publication of Bröcker and Matzenmiller (2013), an enhanced concept of rheological networks has been
proposed for the constitutive modeling of thermoviscoplasticity. New basic elements are introduced to account for
nonlinear isotropic and kinematic hardening as well as to advance the description of energy storage and dissipation
during plastic deformations by means of rheological models. Furthermore, damage evolution is represented as
well - see Br̈ocker and Matzenmiller (2012). The yield condition and the viscoplastic flow rule are deduced from
the equilibrium of stresses of the rheological network by means of simple algebraic calculations in the framework
of thermomechanically consistent material modeling. Moreover, different approaches are given to improve the
energy storage behavior by relating storage of inelastic work to ideal plasticity. The subsequent validation agrees
well with the experimental test data.

However, the enhanced concept of rheological modeling, as presented by Bröcker and Matzenmiller (2013), is
restricted to the uniaxial case only, but already requires a complex structure. Hence, the question consequently
arises: How can the one-dimensional constitutive equations be generalized for the spatial application for both
small and large deformations. Possible means for enhancing the rheological modeling to a three-dimensional
formulation are given by Palmow (1984), Krawietz (1986), Altenbach and Altenbach (1994) - see also Haupt
(1996). In particular Lion (1997), Lion and Sedlan (1998), Lion (2000) present a clear and elegant way for
transferring the uniaxial equations of a rheological model of thermoviscoplasticity to large deformations. This
method is also utilized by Shutov and Ihlemann (2011) and, moreover, enhanced for distortional hardening by
Shutov et al. (2011). Based on a rheological network of endochronic viscoplasticity, another novel, attractive
procedure is proposed by Kletschkowski et al. (2002, 2005) for the spatial generalization of the uniaxial constitutive
model to finite deformations by means of the concept of material isomorphisms of Bertram (1999, 2003).

The paper at hand provides the representation of rheological networks for finite deformations as a straightforward
generalization of the enhanced concept of rheological models proposed by Bröcker and Matzenmiller (2013). For
this purpose, a modified tensor notation is used in comparison to the literature in order to distinguish easily between
the different stress and strain measures, operating on the various configurations of the material body. The basic
components of the uniaxial model - such as springs, dashpots, friction elements - are individually generalized as
bodies with tensor-valued definition on either the initial or current configuration, which allows for assembling
a rheological network of thermoviscoplasticity for finite strains by means of series and parallel connections of
the elementary components and, hence, generates the free energy of the entire model. This arrangement of ideal
bodies and the concept of dual variables of Haupt and Tsakmakis (1989) form the basis for the derivation of the
constitutive material equations in finite deformation viscoplasticity, providing the yield function and the flow rule
in an analogous procedure as in the uniaxial case, see Bröcker and Matzenmiller (2013). In this process, the
thermomechanical consistency of the model is satisfied. Moreover, in the framework of the concept of effective
stresses, introduced by Lemaitre and Chaboche (1990), Lemaitre and Desmorat (2005), the constitutive model is
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enhanced for damage evolution as well.

The content of this paper is arranged as following: In Section 2, the tensor notation is introduced and the basic rheo-
logical bodies are defined for finite deformations. Furthermore, the connection principles of elements in parallel
and series arrangement are discussed with their main characteristic relations and a spring-network is considered
as a simple example. In the next Section, a rheological network of finite thermoviscoplasticity is assembled,
the associated constitutive equations are deduced in the framework of thermomechanically consistent material
modeling and transferred to the initial configuration. In Section 5, the material model is enhanced for damage
evolution.

2 Basic Rheological Bodies
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Figure 1: General representation of rheological element of finite deformations

In the first step, a general definition is given for the rheological elements of finite deformations. Considered
individually, each basic component is placed between the initialB0 and the current configurationBt of the material
bodyB - see Figure 1. Between both configurations, the deformation gradientF operates as a two-field tensor and
maps material line elementsd ~X fromB0 into spatial onesd~xt in the current configurationBt according to

d~xt = F d ~X . (1)

2.1 Notation and Definitions

Compared to the literature - e.g. Haupt (2002), a modified tensor notation is applied for the stress and strain
measures of the various (intermediate-) configurations for reasons of an increased clarity in the subsequent steps
of mathematical rearrangements. The symbolE

0
denotes the GREEN strain tensor of the initial configurationB0

according toE
0

= 1
2

(
FTF − 1

)
= 1

2

(
C
0
− 1

)
with the right CAUCHY-GREEN tensorC

0
= FTF. The ALMANSI

strain at the current configurationBt is represented asE
t

= 1
2

(
1 − F−TF−1

)
and the transformation property

E
0

= FTE
t
F is valid. Moreover, the 2nd PIOLA -KIRCHHOFFstress tensor is represented asT

0
and the KIRCHHOFF

stress tensor is denoted asT
t

with the property1 T
0

= F−1T
t
F−T. This means that the subscripted index indicates

on which configuration the tensorial quantities operate2. Thus, the well-known push-forward and pull-backward
operations for the stress and strain measures - see Marsden and Hughes (1994) - may be represented as

E
0

= FTE
t
F , E

t
= F−TE

0
F−1 (2)

and

T
0

= F−1T
t
F−T , T

t
= FT

0
FT . (3)

The mechanical workw, which is applied to a basic element during the loading process, is either stored as free
energyψ in the rheological component or dissipated and, hence, typically converted into heat. However, the dissi-
pated energy might in general be also consumed e.g. for microstructural changes of the material like endothermic

1The superscripts(.)T and(.)−1 indicate the transpose and the inverse of the tensor.
2There is no need to indicate that the deformation gradient is operating between the initialB0 and the current configurationBt. Hence,

this two-field tensor is simply denoted with the symbolF without any subscripted index of associated configurations in order of clarity of the
formula. Furthermore, the unity tensor1 is written without any subscripted index of the configuration as well.
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phase transformations. The mechanical work may be calculated as the time integral of the stress power in terms of
the initial or the current configuration according to

w =
1
ρR

∫ t

0

T
0
∙ Ė

0
dτ =

1
ρR

∫ t

0

T
t
∙ D

t
dτ . (4)

In (4), ρR is the mass density of the initial configuration,Ė
0

gives the time rate of the GREEN strain tensor andD
t

is the strain rate tensor, which is equal to the symmetric part of the spatial velocity gradientL
t

and to the covariant

OLDROYD rate of the ALMANSI strain tensor
M
E
t

D
t

=
1
2

(
L
t

+ L
t

T
)

=
M
E
t

= F−TĖ
0
F−1 , L

t
= ḞF−1 . (5)

An arbitrary tensorA can be decomposed into its spherical and deviatoric fractions

A = AS + AD , AS =
1
3

tr(A)1 , AD = A −
1
3

tr(A)1 , (6)

wheretr(.) denotes the trace operatortr(A) = 1 ∙A with A ∙B = AijBij representing the scalar product of both
tensorsA andB. Furthermore, if the tensorA is invertible, it may be split multiplicatively into an unimodular
(volume preserving) part̂A and a volumetric contributionAV as

A = ÂAV , Â = (detA)−
1
3 A , AV = (detA)

1
3 1 , (7)

which yields the properties of the determinants

det
(
Â
)

= 1 , det
(
AV
)

= detA . (8)

Moreover, the tensorA can be decomposed according to

A = ‖A‖N(A) (9)

with the definitions of the directionN(A) and the norm‖A‖ of the tensorA as3

N(A) =
1

‖A‖
A , ‖A‖ = (A ∙ A)

1
2 . (10)

Note that the operatorN(A) exhibits the properties

‖N(A)‖ = 1 , N(A) ∙ N(A) = 1 (11)

for every non-zero tensorA. The decomposition (9) and the relations (11) are of key importance for deducing the
constitutive equations in the following sections.

Furthermore, the arclength of an arbitrary strain measureA is defined as

Ā :=

√
2
3

∫ t

0

‖Ȧ‖ dτ =
∫ t

0

˙̄A dτ , ˙̄A =

√
2
3
‖Ȧ‖ . (12)

This yields for the GREEN strain tensorE
0

to the relation

Ē :=

√
2
3

∫ t

0

‖Ė
0
‖ dτ =

∫ t

0

˙̄E dτ , ˙̄E =

√
2
3
‖Ė

0
‖ (13)

and motivates a similar expression for the arclength of the strain rate tensorD
t

according to

ε̄ :=

√
2
3

∫ t

0

‖F−TĖ
0
F−1‖ dτ =

√
2
3

∫ t

0

‖D
t
‖ dτ =

∫ t

0

˙̄ε dτ , ˙̄ε =

√
2
3
‖D

t
‖ . (14)

In the case of rigid body motionsL
t

= Ω
t

= −Ω
t

T, the strain rate tensorD
t

vanishes identically, and hence, both

arclengths̄ε andĒ remain constant.

3It is defined thatN(A) = 0 holds for the special case ofA = 0.
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Figure 2: Elastic spring with parameterK, G (left) and nonlinear dashpot with parameterη, m, d0 (right)

2.2 Basic Elements

In the next step, the rheological basic components, as utilized for the uniaxial case by Bröcker and Matzenmiller
(2013), are generalized to finite deformations. For this purpose, each stress relation of the individual elements has
to be redefined on either the initial or the current configuration4. The graphical representation of each rheological
basic element of finite deformation is chosen identically as in the case of the uniaxial model of Bröcker and
Matzenmiller (2013).

Elastic Spring

The elastic spring (Figure 2, left) is supposed to capture finite hyperelasticity. The free energy is simply assumed
as consisting of a volumetric contributionU(J) taken from Hartmann and Neff (2003) and an isochoric fraction
v(Ĉ

0
) of NEO-HOOKE type as utilized by Shutov and Kreißig (2008) according to

ψ = U(J) + v(Ĉ
0
) = ψ(C

0
) = ψ(E

0
) , U(J) =

K

2ρR
(J − 1)2 , v(Ĉ

0
) =

G

2ρR

(
1 ∙ Ĉ

0
− 3
)

(15)

with the material parametersK andG as well as the abbreviationJ = detF = (detC
0
)

1
2 and the unimodular

tensorĈ
0

= J - 2
3 C

0
. The associated stress relation is obtained for the initial configurationB0 as

T
0

= ρR
∂ψ

∂E
0

= 2ρR
∂ψ

∂C
0

=
(
K J(J − 1)1 + G Ĉ

0

D
)
C
0

−1 , (16)

in which Ĉ
0

D denotes the deviator of the unimodular tensorĈ
0

.

Nonlinear Dashpot

The nonlinear dashpot (Figure 2, right) is generalized, operating on the current configuration with a stress definition
in terms of the strain rate tensor according to

T
t

=

√
2
3

(
η ‖D

t
‖
)1/m

d0 N
(
D
t

)
(17)

with the operatorN(.) as given in (10). The parameterη is a kind of viscosity, the exponentm yields nonlinear
rate dependency and the parameterd0 is only used to introduce stress units. All mechanical work, applied to the
dashpot, is dissipated completely.

4At this point, the choice of the configuration for the definition of the basic elements may initially appear some kind of randomly. However,
later on, these component expressions will provide well-known constitutive equations of viscoplasticity.
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Figure 3: Friction body with initial yield limitκ0 (left) and hardening element with stiffnessEκ (right)

Friction Element

The friction body (Figure 3, left) is assumed as an energy storing element with the stress relation - cf. Bröcker and
Matzenmiller (2013):

T
t

=
√

2
3 κ0 N

(
D
t

)
for D

t
6= 0 ,

‖T
t
‖ <

√
2
3 κ0 for D

t
= 0 ,

(18)

whereκ0 gives the initial yield limit. The free energyψ is obtained by integrating (4)2 and using (9) as well as
(11)2 according to

ψ =
1
ρR

∫ t

0

√
2
3

κ0 N
(
D
t

)
∙ D

t
dτ =

1
ρR

κ0

∫ t

0

√
2
3
‖D

t
‖ dτ =

1
ρR

κ0 ε̄ (19)

with ε̄ representing the arclength of the strain rate tensor as given in (14).

Remark:
The friction body is typically regarded as a perfectly dissipative element. Hence, most state of art models of
viscoplasticity account for energy storage due to elasticity as well as isotropic and kinematic hardening only, which
yields an overestimation of dissipation for metals during inelastic deformation. For this reason, some authors - ,
e.g., Chaboche (1993a,b), Helm (1998, 2006) and others - already assign partial energy storage related to ideal
plasticity in order to advance the prediction of energy transformation processes observed experimentally during
viscoplastic loading. As demonstrated by Bröcker and Matzenmiller (2013), the non-dissipative friction body
allows to model a process-dependent energy storage behavior by arranging such a modified friction component
in series connection to the dissipative strain element, specified below. This modeling approach is validated by
Bröcker and Matzenmiller (2013), showing a very good agreement with experimental energy transformation data.
Note that the same characteristic of energy conversion could be realized alternatively by applying the classical,
dissipative friction body in series arrangement with a novel conservative strain element, which could be defined
analogous to the dissipative strain body, however, as its counterpart with energy storage.

Hardening Element

The stress of the hardening body (Figure 3, right) is defined as - cf. Bröcker and Matzenmiller (2013):

T
t

=
√

2
3 Eκ ε̄ N

(
D
t

)
for D

t
6= 0 ,

‖T
t
‖ <

√
2
3 Eκ ε̄ for D

t
= 0 .

(20)

The related free energy results from (4)2 and using (9), (11)2 as well as (14)4 to:

ψ =
1
ρR

∫ t

0

√
2
3

Eκ ε̄ N
(
D
t

)
∙ D

t
dτ =

1
ρR

Eκ

∫ t

0

ε̄ ˙̄ε dτ =
1
ρR

Eκ

∫ ε

0

ε̄ dε̄ =
1

2ρR
Eκ ε̄2 . (21)

Dissipative Strain Element

The dissipative strain element (Figure 4, left) serves for limiting the strain and the associated storage of energy
in other rheological component - see Bröcker and Matzenmiller (2013). Hence, it is defined that all mechanical
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Figure 4: Dissipative strain element with internal deformation rateD
t

d and parametersci (left), thermal strain

element with associated deformation rateD
t

th and general function̂ϕ(θ) specifying thermal deformation (right)

work, applied to this ideal body, is dissipated completely. Moreover, the element is assumed to transfer the stress
stateT

t
due to external loads. However, the internal strains, evolving in this rheological component, are exclusively

controlled by an evolution equation of the structure

D
t

d = ζ
t
(T

t
, aj , ...) , (22)

which may in general be a function of the stress stateT
t

as well as other internal variablesaj of the material model

with the associated parametersci. Appropriate approaches (22) will be constructed later on.

Thermal Strain Element

In the case of purely mechanical loading, the thermal strain element (Figure 4, right) only transfers the external
load like a rigid rod. However, the rheological component responds to every change of the temperatureθ with a
strain rate tensorD

t
th according to

D
t

th = α̂
t

th θ̇ . (23)

It is reasonably assumed that a thermal vorticityW
t

th = −W
t

T
th does not occur due to temperature changes, i.e.

the propertiesW
t

th = 0 and

L
t
th = ḞF−1 = D

t
th (24)

hold for the spacial velocity gradientL
t
th of this rheological component. Assuming an isotropic state of thermal

deformation

F = ϕ̂(θ)1 , (25)

the tensor of thermal expansion5 α̂
t

th in (23) results with (24) and (25) as

α̂
th

th =
∂θϕ̂(θ)
ϕ̂(θ)

1 . (26)

The function of thermal deformation̂ϕ(θ) may be characterized e.g. by means of the simple expression

ϕ̂(θ) = 1 + α̂(θ)(θ − θ0) . (27)

The free energy, stored in the thermal strain element due to temperature changes, is introduced as a general function
of the temperature according to

ψ = Q̂(θ) . (28)

Remark:
Notice that both the dissipative and the thermal strain element may not be deformed arbitrarily - neither stress
nor strain controlled, since the state of deformation in these components is completely governed by the evolution
equations (23) and (22).

5The small hat ˆ( ) on top of the variables indicates their temperature dependency.
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3 Network Assemblages

The basic elements of finite deformation may be also assembled in series or in parallel connection in order to
construct networks for modeling complex material behavior.

3.1 Parallel Connection
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T
t
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t

1
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Figure 5: Parallel connection of basic elements 1 and 2 of finite deformations (left) with associated stress decom-
position at current configurationBt (right)

Figure 5 shows a sketch of two basic elements arranged in parallel connection. The deformation gradient in both
individual elements 1 and 2 is equal to the total one

F = F1 = F2 , (29)

which means that the strain in both rheological components is equal to the total strain in the network as well:

E
0

= E
0

1 = E
0

2 , E
t

= E
t
1 = E

t
2 . (30)

However, the total stress at the initial and the current configuration is decomposed additively into both contributions
from the individual elements 1 and 2 according to

T
0

= T
0

1 + T
0

2 , T
t

= T
t

1 + T
t

2 . (31)

3.2 Series Connection

In the following, the concept of dual variables (Haupt and Tsakmakis, 1989; Haupt, 2002) is extensively used to
obtain the kinematical, kinetic and energetic relations for the various configurations of the material bodyB.

Bz

B0 Bt

F

T
0
,E

0

T
z
,E

z

T
t
,E

t

F2

F1

21

Figure 6: Series connection of two basic elements 1 and 2 of finite deformations

For the series connection of two basic components 1 and 2 (Figure 6), a multiplicative decomposition of the total
deformation gradientF is assumed with the contributionsF1 andF2 related to both individual elements - cf. Haupt
(2002), Lion (2000), Landgraf and Ihlemann (2012):

F = F2F1 , (32)

which implies an intermediate configurationBz between the initial configurationB0 and the current oneBt. Hence,
the transformation (1) turns intod~xt = F2F1 d ~X = F2 d~xz with d~xz = F1 d ~X representing the mapping of the
material line elementd ~X into the intermediate configurationBz.
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The total strain tensorE
z

of the intermediate configurationBz results by means of the push-forward or pull-

backward operations (2) as

E
z

= FT
2E

t
F2 = F−T

1 E
0
F−1

1 (33)

and the multiplicative decomposition (32) directly yields an additive split of the strain stateE
z

according to

E
z

=
1
2

(
F−T

1 F−1
1 + FT

2F2

)
= E

z
1 + E

z
2 (34)

with contributions ofE
z

1 as ALMANSI andE
z

2 as GREEN strain tensor related to the individual basic components

1 and 2

E
z

1 =
1
2

(
1 − F−T

1 F−1
1

)
, E

z
2 =

1
2

(
FT

2F2 − 1
)
. (35)

Similarly, the total GREEN and the ALMANSI strain tensors are decomposed additively onB0 andBt into

E
0

= E
0

1 + E
0

2 , E
t

= E
t
1 + E

t
2 (36)

with the contributions related to the basic elements 1 and 2 onB0

E
0

1 = FT
1E

z
1F1 =

1
2

(
FT

1F1 − 1
)

, E
0

2 = FT
1E

z
2F1 =

1
2

(
FTF − FT

1F1

)
(37)

and onBt

E
t
1 = F−T

2 E
z

1F
−1
2 =

1
2

(
F−T

2 F−1
2 − F−TF−1

)
, E

t
2 = F−T

2 E
z

2F
−1
2 =

1
2

(
1 − F−T

2 F−1
2

)
. (38)

However, the total stress state is equal to the stresses in the basic elements 1 and 2

T
0

= T
0

1 = T
0

2 , T
z

= T
z

1 = T
z

2 , T
t

= T
t

1 = T
t

2 (39)

and the stress tensorT
z

of the intermediate configurationBz is obtained by means of the push-forward or pull-back

operations (3) according to

T
z

= F−1
2 T

t
F−T

2 = F1T
0
FT

1 . (40)

The multiplicative decomposition (32), moreover, provides an additive split of the spatial velocity gradientL
t

into

- see Marin et al. (2006) -

L
t

= ḞF−1 = Ḟ2F
−1
2 + F2Ḟ1F

−1
1 F−1

2 = L
t
2 + L

t
1 (41)

with the contribution of both individual elements 1 and 2:

L
t
2 = Ḟ2F

−1
2 , L

t
1 = F2L

z
1F

−1
2 , L

z
1 = Ḟ1F

−1
1 . (42)

Note that the second relation of (42) represents the deformation rateL
z
1 of the element 1 from the intermediate

configurationBz, which is transferred to the current configurationBt and, thus, denoted asL
t
1. Motivated by the

various expressionsL
i
j of the configurationsBj, the operator

D
i

j = sym
(
L
i
j

)
=

1
2

(
L
i
j + L

i

T
j

)
(43)

is defined as the symmetric part of each measureL
i
j .

Applying (41)3, the strain rate tensorD
t

decomposes additively

D
t

=
1
2

(
L
t

+ L
t

T
)

= D
t

2 + D
t

1 (44)
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into its summands

D
t

2 =
1
2

(
L
t
2 + L

t

T
2

)
, D

t
1 =

1
2

(
L
t
1 + L

t

T
1

)
. (45)

Pulling back the strain rate tensor (44) onto the intermediate configurationBz yields the covariant OLDROYD rate
of the strain tensorE

z
according to

M
E
z

= F−T
1 Ė

0
F−1

1 = FT
2D

t
F2 = FT

2D
t

2F2 + FT
2D

t
1F2 (46)

with the relations

FT
2D

t
2F2 = Ė

z
2 , FT

2D
t

1F2 =
1
2

(
C
z

2L
z
1 + L

z

T
1C

z
2

)
(47)

and the CAUCHY-GREEN type tensorC
z

2 = FT
2F2.

Moreover, the special case is considered, when the velocity gradient is a deviatorL
t

= L
t

D. Inserting (41)3 into the

definition of the deviator (6)3 yields the property thatL
t

D decomposes additively into two deviatoric contributions

L
t

D = (L
t
2 + L

t
1) −

1
3

(
1 ∙ (L

t
2 + L

t
1)
)
1 = L

t

D
2 + L

t

D
1 (48)

associated with both individual elements 1 and 2. Similarly, the symmetric partD
t

D of the deviatorL
t

D splits into

D
t

D =
1
2

(
L
t

D + L
t

DT)
= D

t

D
2 + D

t

D
1 (49)

with two deviatoric, symmetric contributions of both elements 1 and 2

D
t

D
2 =

1
2

(
L
t

D
2 + L

t

D
2

T)
, D

t

D
1 =

1
2

(
L
t

D
1 + L

t

D
1

T)
(50)

The deviatorL
t

D
1 may also be rewritten in terms of the transformation (42)2 according to

L
t

D
1 = F2L

z
1F

−1
2 −

1
3

(1 ∙ F2L
z
1F

−1
2 )1

t
= F2L

z

D
1 F−1

2 , (51)

which states that the deviatorL
t

D
1 of the current configurationBt entails the deviatorL

z

D
1 on the intermediate

configurationBz and vice versa.

By means of the kinematical and kinetic relations obtained above, the internal stress powerl may be considered
next for the case of the series connection of two basic elements:

l =
1
ρR

T
0
∙ Ė

0
=

1
ρR

T
t
∙ D

t
=

1
ρR

T
t
∙ L

t
=

1
ρR

T
t
∙ L

t
2 +

1
ρR

T
t
∙ L

t
1 = l2 + l1 , (52)

i.e. the total internal stress powerl also decomposes into the fractionsl1 andl2 of both individual basic components.
Note, due to the symmetry propertyT

t
= T

t

T of the KIRCHHOFF stress tensor, only the symmetric fraction ofL
t

gives a contribution to the scalar productT
t
∙ L

t
. Thus, in eq. (52),D

t
may be replaced byL

t
and vice versa. The

first summand of (52)4 can be transferred to the intermediate configurationBz with (40) and (47) as

l2 =
1
ρR

T
t
∙ L

t
2 =

1
ρR

T
t
∙ D

t
2 =

1
ρR

T
z
∙ Ė

z
2 . (53)

Moreover, the second summand of (52)4 may be rearranged using (40) and (42)2 as

l1 =
1
ρR

T
t
∙ L

t
1 =

1
ρR

T
t
∙ D

t
1 (54)

=
1
ρR

F2T
z
FT

2 ∙ F2L
z
1F

−1
2 =

1
ρR

C
z

2T
z
∙ L

z
1 =

1
ρR

M
z
∙ L

z
1 (55)
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Figure 7: Series connection of two elastic springs

with the definition of the MANDEL stress tensor

M
z

= C
z

2 T
z

. (56)

In the special cases ofM
z

= M
z

T, i.e. if T
z

andC
z

2 are coaxial to each other, the velocity gradientL
z
1 may be

replaced in (55) by its symmetric partD
z

1 =
M
E
z

1 = F−T
1 Ė

0
1 F−1

1 - cf. (5) - and, hence, the stress powerl1 can be

further converted according to

l1 =
1
ρR

M
z
∙ L

z
1 =

1
ρR

M
z
∙ D

z
1 =

1
ρR

F−1
1 M

z
F−T

1 ∙ Ė
0

1 =
1
ρR

M
0
∙ Ė

0
1 (57)

with the transformation - cf. (3) -M
0

= F−1
1 M

z
F−T

1 = C
0

−1
1 C

0
T
0

of the MANDEL stress tensorM
z

to the initial

configurationB0 and the CAUCHY-GREEN type tensorsC
0

1 = FT
1F1 as well asC

0
= FTF.

Landgraf and Ihlemann (2012) have presented a similar approach for the connection of finite rheological elements
based on the multiplicative decomposition of the deformation gradient (32). They have postulated the balance of
the stress power for the initial configuration in order to derive the equilibrium of stresses. However, in the paper at
hand, the balance of stresses (39) is assumed, and hence, the decomposition of the stress power (52) is the outcome.

3.3 Example: Series Connection of Two Elastic Springs

Two elastic springs with different stiffness properties are connected in series - see Figure 7.

According to the general definition of a hyperelastic spring, its free energy is assumed as a function of the GREEN

strain tensorE
0

= 1
2

(
FTF − 1

)
. That means, the free energyψ of the entire network of springs in Figure 7 is

obtained as a function of both GREEN strain type tensors

E
0

1 =
1
2

(
FT

1F1 − 1
)

, E
z

2 =
1
2

(
FT

2F2 − 1
)

(58)

according to

ψ = ψ1

(
E
0

1

)
+ ψ2

(
E
z

2

)
= ψ

(
E
0

1,E
z

2

)
. (59)

The temporal rate of the free energy is

ψ̇ =
∂ψ

∂E
0

1
∙ Ė

0
1 +

∂ψ

∂E
z

2
∙ Ė

z
2 . (60)

In the case of isothermal conditions and by neglecting heat conduction, the internal dissipationδ results as - see
Haupt (2002), p. 511 -

δ = −ψ̇ +
1
ρR

T
0
∙ Ė

0
≥ 0 (61)

and has to be non-negative for any admissible process.
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Assuming that both tensorsC
z

2 andT
z

are coaxial6, the total stress powerl of the system in Fig. 7 may be decom-

posed according to (52)5, (53) and (57) into

l =
1
ρR

T
0
∙ Ė

0
=

1
ρR

(
T
z
∙ Ė

z
2 + M

0
∙ Ė

0
1

)
. (62)

With (60) and (62), the internal dissipation (61) is evaluated as

δ =

(
1
ρR

T
z
−

∂ψ

∂E
z

2

)

∙ Ė
z

2 +

(
1
ρR

M
0
−

∂ψ

∂E
0

1

)

∙ Ė
0

1 ≥ 0 (63)

and yields for arbitrary rates oḟE
0

1 andĖ
z

2 the potential properties for the stress on the intermediate configuration

Bz and the KIRCHHOFFstress on the current oneBt

T
z

= ρR
∂ψ

∂E
z

2
or T

t
= ρR F2

∂ψ

∂E
z

2
FT

2 (64)

as well as to the MANDEL type stress tensors on the initialB0 and the intermediate configurationBz

M
0

= ρR
∂ψ

∂E
0

1
or M

z
= ρR F1

∂ψ

∂E
0

1
FT

1 . (65)

If the free energyψ(E
0

1) is an isotropic tensor function, e.g. as in (15), the relation (64) leads to the property that

C
z

2 andT
z

are coaxial to each other, i.e.M
z

= C
z

2 T
z

= M
z

T andM
0

= F−1
1 M

z
F−T

1 = M
0

T hold. It remainsδ = 0

from the internal dissipation (63), i.e. a reversible material behavior is present in this example.

The interesting outcome from this quite simple network of elastic springs is the following:

• the second spring is naturally connected to the KIRCHHOFFstressT
t

at the current configurationBt as well

as to the stress tensorT
z

= F−1
2 T

t
F−T

2 of the intermediate configurationBz,

• however, the first spring is naturally associated to the MANDEL stress tensorM
z

= C
z

2 T
z

of the intermediate

configurationBz as well as to the stress tensorM
0

= F−1
1 M

z
F−T

1 = C
0

−1
1 C

0
T
0

at the initial configurationB0.

These conclusions may be generalized: In a series connection of two stress inducing basic elements, the second
rheological body is associated to the KIRCHHOFFstressT

t
at the current configurationBt, whereas the first element

is naturally associated to the MANDEL stress tensorM
z

= C
z

2 T
z

of the intermediate configurationBz.

The stress relations of the configurationsB0, Bz andBt may be summarized as

T
0

= ρR C
0

−1C
0

1
∂ψ

∂E
0

1
= ρR F−1

1

∂ψ

∂E
z

2
F−T

1 , (66)

T
z

= C
z

−1
2 M

z
= ρR C

z

−1
2 F1

∂ψ

∂E
0

1
FT

1 = ρR
∂ψ

∂E
z

2
(67)

and

T
t

= ρR B
t

−1
2 F

∂ψ

∂E
0

1
FT = ρR F2

∂ψ

∂E
z

2
FT

2 . (68)

4 Rheological Model of Thermoviscoplasticity for Finite Deformations

By means of the basic elements introduced above, a rheological network of finite thermoviscoplasticity can be
assembled - see Figure 8 - as a generalization of the specific uniaxial model proposed by Bröcker and Matzenmiller

6This property will be verified later on.
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Figure 8: Finite rheological network of thermoviscoplasticity

(2013), representing nonlinear isotropic and kinematic hardening as well as an improved description of energy
storage and dissipation during viscoplastic deformations due to a process-dependent energy storage in the friction
body analogous to the one-dimensional counterpart.

The general structure of the rheological network has been adopted from the material models of finite thermovis-
coplasticity of Lion (2000), Shutov and Kreißig (2008). However, the model at hand provides some additional
features and intermediate configurations associated to the initial yield stressκ0 and the stress of isotropic harden-
ing κ. The rheological network consists of the thermal strain element with the thermal deformation gradientFth

on the left hand side, the complete viscoplastic model setting including seven individual elements associated with
the viscoplastic deformation gradientFvp in the center as well as the elastic spring with the elastic deformation
gradientFel on the right hand side. This means that the thermal, the viscoplastic and the elastic model contribu-
tions are arranged in a threefold series connection between the initialB0 and the current configurationBt - see
Figure 8. The viscoplastic arrangement itself provides four different chains of basic bodies connected in parallel,
each one representing a specific phenomenon of the entire viscoplastic behavior. On top, an elastic spring is ar-
ranged in series connection to a dissipative strain element allowing for nonlinear kinematic hardening. Below, the
hardening element and a dissipative strain component are placed in series arrangement for modeling of nonlinear
isotropic hardening. The next chain consists of the friction body with energy storage and another dissipative strain
element in order to effect the initial yield threshold and an improved behavior of energy storage and dissipation
during viscoplastic loading. In the lowest chain of the viscoplastic network setting, a nonlinear dashpot is placed
to account for strain rate effects.

4.1 Kinematics

The fundamental kinematical relations of the thermoviscoplastic model may directly be taken from the rheological
network in Figure 8, utilizing the network rules (32) and (29) of the connection principles of series and parallel
arrangement of basic element. The total deformation gradientF of the network is decomposed multiplicatively
into the mechanical and the thermal fractions with (25) as

F = FMFth , Fth = ϕ̂(θ)1 , (69)

which in turn implies the thermal intermediate configurationBth. As well, the mechanical contributionFM is split
multiplicatively into the elastic and the viscoplastic parts

FM = FelFvp . (70)

Hence, a viscoplastic intermediate configurationBvp is obtained. Plastic incompressibility is assumed as usually
for metal plasticity in absence of damage, i.e. the relation

det(Fvp) = 1 (71)
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holds. Hence,Fvp turns out as a unimodular tensorFvp = F̂vp - cf. (7)2, which implies the properties thatL
vp

vp

andD
vp

vp are deviators7

L
vp

vp = L
vp

D
vp , D

vp
vp = D

vp

D
vp (72)

and, furthermore, the associated right CAUCHY-GREEN type tensor is unimodular as well

C
th

vp = FT
vpFvp , det

(

C
th

vp

)

= 1 . (73)

The viscoplastic setting of the rheological model in Figure 8 provides a threefold multiplicative decomposition of
the viscoplastic part of the deformation gradient

Fvp = FξeFξd = FκeFκd = Fκ0eFκ0d (74)

according to the three chains comprising the series connections of dissipative strain elements and the spring, the
hardening body and the friction element, respectively. The multiple split (74) yields three additional intermediate
configurationBξ, Bκ andBκ0 , which are associated to kinematic (indexξ) and isotropic hardening (indexκ) as
well as to the process-dependent energy storage in the friction element (indexκ0). Similar to property (71), it is
reasonably assumed that

det(Fξe) = det(Fξd) = det(Fκe) = det(Fκd) = det(Fκ0e) = det(Fκ0d) = 1 (75)

holds for the decomposition (74), i.e. all the partial mappings are volume preserving. According to (48) up to (51),
the relations

L
vp

D
vp = L

vp

D
γe + L

vp

D
γd , L

vp

D
γd = Fγe L

γ

D
γd F−1

γe , D
vp

D
vp = D

vp

D
γe + D

vp

D
γd (76)

with the velocity gradients

L
vp

γe = ḞγeF
−1
γe = L

vp

D
γe , L

γ
γd = ḞγdF

−1
γd = L

γ

D
γd (77)

are valid on the viscoplastic intermediate configurationBvp, where the subscriptsγ = κ0, γ = κ andγ = ξ denote
the various deformation measures of the motion from the thermalBth to the viscoplastic configurationBvp.

4.2 Equilibrium of Stresses and Free Energy

T
vp

κ0

T
vp

κ

T
vp

ξ

BvpT
vp

η

T
vp

Figure 9: Sketch of equilibrium of stresses on viscoplastic intermediate configurationBvp

The equilibrium of stresses is considered on the viscoplastic intermediate configurationBvp of the rheological
model in Figure 8. The total stressT

vp
= F−1

el T
t
F−T

el onBvp results from the individual contributions of all four

parallel chains of the viscoplastic network according to (31), i.e. from the nonlinear dashpotT
vp

η, the friction body

T
vp

κ0 , the hardening elementT
vp

κ and the spring of kinematic hardeningT
vp

ξ as - see Figure 9 -

T
vp

= T
vp

η + T
vp

κ0 + T
vp

κ + T
vp

ξ . (78)

7For the unimodular deformation gradientF̂ =
(
detF

)− 1
3 F and with the relations˙̂F =

(
detF

)− 1
3

(
Ḟ − 1

3
(1 ∙ L

t
)F
)

andF̂−1 =

(
detF

) 1
3 F−1, it follows thatL̂

t
=

˙̂
FF̂−1 = L

t

D holds.
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In terms of the MANDEL stress tensor - cf. eq. (56), the equilibrium of stresses (78) is

M
vp

= C
vp

el T
vp

= M
vp

η + M
vp

κ0 + M
vp

κ + M
vp

ξ (79)

with the elastic CAUCHY-GREEN type tensorC
vp

el = FT
elFel and the partial stress quantities

M
vp

η = C
vp

el T
vp

η , M
vp

κ0 = C
vp

el T
vp

κ0 , M
vp

κ = C
vp

el T
vp

κ , M
vp

ξ = C
vp

el T
vp

ξ . (80)

The total free energy is obtained from the contributionsψth, ψel, ψξ, ψκ andψκ0 of the basic elements with the
capability of energy storage according to their specific position in the rheological network, i.e. from the thermal
strain elementψth, the elastic springψel, the spring of kinematic hardeningψξ, the hardening elementψκ as well
as the friction bodyψκ0 according to the relations (28), (15), (21) and (19) as

ψ = ψth

(
θ
)

+ ψel

(
E
vp

el

)
+ ψξ

(
E
ξ

ξe

)
+ ψκ

(
ε̄κe

)
+ ψκ0

(
ε̄κ0e

)
(81)

= Q̂(θ) +
1

2ρR

(

K (Jel − 1)2 + G
(
1 ∙ Ĉ

vp
el − 3

)
+ Gξ

(
1 ∙ Ĉ

ξ
ξe − 3

)
+ Eκ ε̄2

κe + 2 κ0 ε̄κ0e

)

(82)

with the strain tensors of GREEN type

E
vp

el =
1
2

(
FT

elFel − 1
)

=
1
2

(
C
vp

el − 1
)

, E
ξ

ξe =
1
2

(
FT

ξeFξe − 1
)

=
1
2

(
C
ξ

ξe − 1
)

(83)

and the determinantJel = detFel andJξe = detFξe = 1 of both springs as well as with the arclength of the
friction and the hardening body according to the definition (14)

ε̄κ0e =

√
2
3

∫ t

0

‖D
vp

κ0e‖ dτ =
∫ t

0

˙̄εκ0e dτ , ˙̄εκ0e =

√
2
3
‖D
vp

κ0e‖ , (84)

ε̄κe =

√
2
3

∫ t

0

‖D
vp

κe‖ dτ =
∫ t

0

˙̄εκe dτ , ˙̄εκe =

√
2
3
‖D
vp

κe‖ . (85)

Hence, the free energy (81) may generally be summarized as a function of its arguments

ψ = ψ

(

E
vp

el, θ,E
ξ

ξe, ε̄κe, ε̄κ0e, ~gR

)

. (86)

Note, the temperature gradient~gR with respect to the material coordinates

~gR =
∂θ

∂ ~X
(87)

has been added to the list of arguments of the free energyψ as usually done - see e.g. Haupt (2002), p. 514, since
the heat flux~qR has to be a function of~gR. The rate of the free energy (86) results with (84)3 and (85)3 as

ψ̇ =
∂ψ

∂E
vp

el
∙ Ė
vp

el +
∂ψ

∂θ
θ̇ +

∂ψ

∂E
ξ

ξe
∙ Ė

ξ
ξe +

√
2
3

∂ψ

∂ε̄κe
‖D
vp

κe‖ +

√
2
3

∂ψ

∂ε̄κ0e
‖D
vp

κ0e‖ +
∂ψ

∂~gR
∙ ~̇gR . (88)

4.3 Decomposition of Stress Power

The total internal stress powerl decomposes according to (52), (53)3 and (55)2 as - see Lion (2000) -

l =
1
ρR

T
0
∙ Ė

0
=

1
ρR

(

T
th
∙ Ė
th

M + C
th

M T
th
∙ L
th

th

)

= lM + lth (89)

into the mechanicallM and the thermal contributionlth. The mechanical stress power in turn splits according to
(52), (53)3, (55)3 and (72) as8

lM =
1
ρR

T
th
∙ Ė
th

M =
1
ρR

(

T
vp

∙ Ė
vp

el + M
vp

∙ L
vp

D
vp

)

= lel + lvp (90)

8Note thatL
vp

vp is naturally deviatoric due to the assumption of plastic incompressibility in (71). However, in order to visualize this

important property, the superscript(.)D is additionally appended to the measureL
vp

vp as well as to its decomposed fractions in (94) and (95).
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- see Lion (2000) - into the elasticlel and the viscoplastic fractionlvp of the total stress powerl. Hence, the
total stressT

vp
is the natural stress measure of the elastic stress powerlel, whereas the MANDEL stress stateM

vp
is

naturally associated to the viscoplastic stress powerlvp. Notice that the volumetric part of the total MANDEL stress
M
vp

does not lead to any contribution in the viscoplastic stress powerM
vp

∙ L
vp

D
vp, sinceL

vp

D
vp is a deviator. Moreover,

the viscoplastic stress powerlvp is decomposed using the equilibrium relation (79) as

lvp =
1
ρR

M
vp

∙ L
vp

D
vp =

1
ρR

(

M
vp

η ∙ L
vp

D
vp + M

vp
κ0 ∙ L

vp

D
vp + M

vp
κ ∙ L

vp

D
vp + M

vp
ξ ∙ L

vp

D
vp

)

. (91)

The MANDEL stress tensor is supposed to be symmetric:

M
vp

= M
vp

T , (92)

which means thatC
vp

el andT
vp

have to be coaxial to each other. The property (92) seems somehow to be an arbitrary

assumption, but the symmetry will be proven later on. The relation (92) implies that for reasons of plausibility, the
partial stresses of the rheological model in (79) have to be symmetric as well9

M
vp

η = M
vp

T
η , M

vp
κ0 = M

vp

T
κ0

, M
vp

κ = M
vp

T
κ , M

vp
ξ = M

vp

T
ξ . (93)

According to (93)2,3 and (76)3, the relations

M
vp

κ0 ∙ L
vp

D
vp = M

vp
κ0 ∙ D

vp

D
κ0e + M

vp
κ0 ∙ D

vp

D
κ0d , M

vp
κ ∙ L

vp

D
vp = M

vp
κ ∙ D

vp

D
κe + M

vp
κ ∙ D

vp

D
κd (94)

hold for the parallel chains of the viscoplastic network contribution with the intermediate configurationsBκ0 and
Bκ. Furthermore, with (52)4, (76)1, (93)4, (53)3 and (55)2, the decomposition

M
vp

ξ ∙ L
vp

D
vp = M

vp

D
ξ ∙ L

vp

D
vp = M

vp

D
ξ ∙ D

vp

D
ξe + M

vp

D
ξ ∙ L

vp

D
ξd = M

ξ

∗
ξ ∙ Ė

ξ
ξe + C

ξ
ξe M

ξ

∗
ξ ∙ L

ξ

D
ξd (95)

is obtained10 for the intermediate configurationBξ with the transformed MANDEL type stress measure of kinematic
hardening

M
ξ

∗
ξ = F−1

ξe M
vp

D
ξ F−T

ξe . (96)

With (90), (91), (94), (95), (24) and (23), the total stress power (89) results as

l =
1
ρR

(

T
vp

∙ Ė
vp

el + C
th

M T
th
∙ α̂
th

th θ̇ + M
vp

η ∙ D
vp

D
vp + M

vp
κ0 ∙ Dvp

D
κ0e + M

vp
κ0 ∙ Dvp

D
κ0d

+M
vp

κ ∙ D
vp

D
κe + M

vp
κ ∙ D

vp

D
κd + M

ξ

∗
ξ ∙ Ė

ξ
ξe + C

ξ
ξe M

ξ

∗
ξ ∙ L

ξ

D
ξd

)

. (97)

Notice that each individual summand in (97) represents the stress power associated with exactly one of the basic
elements of the rheological model in Figure 8.

4.4 Evaluation of Internal Dissipation

The inequality of the internal dissipationδ results from the balance equations for energy and entropy in combination
with the second law of thermodynamics - see Haupt (2002), p. 511 - as

δ = −ψ̇ − θ̇s +
1
ρR

T
0
∙ Ė

0
−

1
ρRθ

~qR ∙ ~gR ≥ 0 (98)

and has to be satisfied by the constitutive model. In (98),s denotes the entropy, besides all the other quantities
already known from above. Inserting the rate of the free energy (88) and the decomposed stress power (97) into

9This means,L
vp

D
vp may be replaced by its symmetric fractionD

vp

D
vp in (91).

10The rateD
vp

ξe is naturally deviatoric, which means1 ∙ D
vp

ξe = 0 holds. However, this property is lost forĖ
ξ

ξe due to the transformation

Ė
ξ

ξe = FT
ξeDvp

ξeFξe, i.e. Ė
ξ

ξe is not a deviator. Similarly, the pull-backward operation (96) yields a non-deviatoric stress measureM
ξ

∗
ξ onBξ .
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(98) yields for the internal dissipation11:

δ =



 1
ρR

T
vp

−
∂ψ

∂E
vp

el



 ∙ Ė
vp

el +



 1
ρR
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 ∙ Ė
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M
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D
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D
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)

−

√
2
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‖D
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1
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M
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D
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D
κ0e
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−

√
2
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∂ψ

∂ε̄κ0e

)

‖D
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κ0e‖

−
1

ρRθ
~qR ∙ ~gR +

1
ρR

(

M
vp

η ∙ D
vp

D
vp + C

ξ
ξe M
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∗
ξ ∙ L

ξ

D
ξd + M

vp
κ ∙ D
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D
κd + M
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κ0 ∙ Dvp

D
κ0d
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. (99)

For arbitrary rateṡE
vp

el, Ė
ξ

ξe, θ̇, ~̇gR, ‖D
vp

κe‖, ‖D
vp

κ0e‖ and an arbitrary temperature gradient~gR, it follows according

to the standard argumentation of Coleman and Gurtin (1967) that the factors ahead of these rates have to vanish
for any admissible thermomechanical process. Hence, the potential relations

T
vp

= ρR
∂ψ

∂E
vp

el
, M

ξ

∗
ξ = ρR

∂ψ

∂E
ξ

ξe
(100)

and

s =
1
ρR

C
th

M T
th
∙ α̂
th

th −
∂ψ

∂θ
(101)

are obtained for the total stressT
vp

onBvp, the MANDEL type stress tensorM
ξ

∗
ξ of kinematic hardening onBξ as

well as for the entropys. The relations (100) reveal thatT
vp

andC
vp

el as well asM
ξ

∗
ξ andC

ξ
ξe are coaxial to each other

for the free energy (82). Hence, the symmetry assumption (92) is verified. Furthermore, (99) yields the property

∂ψ

∂~gR
= ~0 , (102)

i.e. the free energy must be independent of the temperature gradient~gR:

ψ = ψ

(

E
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el, θ,E
ξ

ξe, ε̄κe, ε̄κ0e

)

. (103)

Moreover, the fifth and the sixth summand of (99) provide the relations

M
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∂ψ
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= 0 , (104)

which may be rearranged by means of the propertiesA ∙ BD = AD ∙ BD and (11)2 according to
(

M
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D
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and
(
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D
κ0e

)

= 0 . (106)

Both equations (105) and (106) must be satisfied for arbitrary ratesD
vp

D
κe 6= 0 andD

vp

D
κ0e 6= 0, leading to the

additional potential relations
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κe 6= 0 (107)

and

M
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D
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, κ0 = ρR
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D
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11Note, L
vp

κe andL
vp

κ0e are deviatoric, sinceL
vp

vp is a deviator - see (72). Hence, the propertiesD
vp

κe = D
vp

D
κe andD

vp
κ0e = D

vp

D
κ0e hold.
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for the stress state in the hardening and the friction body in terms of the quantities of the viscoplastic intermediate
configurationBvp. The scalarκ denotes the internal stress in the isotropic hardening part. Both variablesκ and
κ0 in (107)3 and (108)3 are strictly non-negative, if the associated energy contributions of the hardening and
friction bodyψκ andψκ0 in (81) meet the following demands:ψκ andψκ0 have to be convex functions of their
arguments̄εκe andε̄κ0e with the initial statesψκ(ε̄κe=0) = 0 andψκ0(ε̄κ0e=0) = 0. Furthermore, the properties
ψκ(ε̄κe>0) > 0 andψκ0(ε̄κ0e>0) > 0 must be fulfilled during loading. Thus, the internal dissipation (99) is
reduced to the residual inequality

δ = −
1

ρRθ
~qR ∙ ~gR +

1
ρR

(

M
vp

η ∙ D
vp

D
vp + C

ξ
ξe M
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D
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D
κ0d

)

= δth + δM ≥ 0 , (109)

and separated into its thermalδth and mechanical contributionsδM. The thermal dissipation

δth = −
1

ρRθ
~qR ∙ ~gR ≥ 0 (110)

is usually satisfied by means of FOURIER’s model of heat conduction

~qR = −K~gR (111)

with K representing a positive definit tensor in general or withK = k 1 in the case of isotropic heat conduction.
By using the propertyC

ξ
ξe M

ξ

∗
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(
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)
D, the mechanical dissipation results as
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≥ 0 . (112)

In order to ensureδM ≥ 0 in any case, the following sufficient condition may be specified for the nonlinear dashpot
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= N
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(113)

as well as for the three dissipative strain elements
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. (114)

Satisfying (113) and (114) and using (9) as well as (11)2, the mechanical dissipation (112) is always non-negative
and results as

δM =
1
ρR

(

‖M
vp

D
η ‖ ‖D

vp

D
vp‖ + ‖(C

ξ
ξe M

ξ
ξ)

D‖ ‖D
ξ

D
ξd‖ + ‖M

vp

D
κ‖ ‖D

vp

D
κd‖ + ‖M

vp

D
κ0
‖ ‖D

vp

D
κ0d‖

)

≥ 0 . (115)

According to (114)2,3, (107) and (108), the relations
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(116)

are obtained for the directions of the internal rates of deformation. Moreover, the decomposition (49) ofD
vp

D
vp on

Bvp leads with (9) and (116) according to
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to the important properties
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(118)

as well as

‖D
vp
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. (119)

This means that all the directions of the internal rates of deformation on the viscoplastic intermediate configuration
Bvp - resulting from the parallel chains of the friction and the hardening element in the viscoplastic network setting

- are equal to the direction of the viscoplastic flowN

(

D
vp

D
vp

)

. Furthermore, the norm‖D
vp

D
vp‖ splits additively into

the norm of the hardening body and the one of the dissipative strain element - see eq. (118)1 - as well as similarly
into the norms of the friction component and the associated dissipative strain element in (119)1.
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4.5 Yield Function and Direction of Viscoplastic Flow

The deviatoric part of the MANDEL stress tensors12 in the equilibrium relation (79) is evaluated onBvp, by using
the component stresses (107) and (108) as well as the split in (9) and the condition in (113):

M
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)

+ M
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D
ξ . (120)

Rearranging (120) with the relations (9), (118)2 and (119)2 leads to the expression13
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. (121)

Since all summands in the bracket on the right hand side of (121) may only have non-negative values, equation
(121) can be separated into its direction and its norm, which directly gives the direction of evolution for the
viscoplastic flowD

vp

D
vp according to

N

(
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)

= N

(

M
vp
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. (122)

Moreover, the scalar equation
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D
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√
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vp

D − M
vp

D
ξ ‖ − (κ0 + κ) =: F (123)

is obtained from (121) by comparison of the coefficients. The relation (123) implies a mathematical contradiction
for all model states ofF < 0, since the stress equilibrium, as evaluated in (120), holds for non-zero viscoplastic
flow D

vp

D
vp 6= 0 only - see footnote 13. This means that viscoplastic strain may evolve solely during processes with

F > 0 and, furthermore,F < 0 indicates the thermoelastic range of the model. Hence, the yield functionF turns
out in (123) with the case distinction - see also Bröcker and Matzenmiller (2013):

F =

{
≤ 0 elastic domain
> 0 viscoplastic domain

. (124)

4.6 Viscoplastic Flow and Evolution Equations of Dissipative Strain Elements

Viscoplastic Flow

Since the nonlinear dashpot is arranged in a series connection to the elastic spring in the rheological network of
Figure 8, the dashpot provides a MANDEL type stress measure14 on the viscoplastic intermediate configuration
Bvp, which turns out according to the definition (17) as

M
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d0 N
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Inserting the norm of the dashpot stress (125) into (123) yields the relation

√
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‖M

vp

D
η ‖ =

(

η ‖D
vp

D
vp‖

)1/m

d0 = 〈F 〉 , (126)

12Note, sinceFvp is a unimodular tensor, no spherical stress contribution may arise from the viscoplastic setting of the rheological network.
However, the hydrostatic state of stress, resulting from the elastic spring between the configurationsBvp andBt, affects the total rheological
model in consequence of the equilibrium of stresses (39) in the series connections of the elements.

13The stress relations (107) and (108) hold only forD
vp

D
κe 6= 0 andD

vp

D
κ0e 6= 0. Hence, in consequence of (118)2 and (119)2, equation (120)

is valid only for all states ofD
vp

D
vp 6= 0.

14See also the stress relation of the first elastic spring and the conclusions in Section 3.3.
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where additionally the Macauley-brackets〈x〉 = (x + |x|)/2 have been introduced for the yield functionF in
order to distinguish loadingF > 0. Rearranging of (126) provides the norm of the viscoplastic flow tensor

‖D
vp

D
vp‖ =

1
η

〈
F

d0

〉m

= λ , (127)

which is abbreviated with the symbolλ and denoted as the viscoplastic multiplier. Combining relation (122) and
(127) gives the flow rule for the evolution of the viscoplastic strains

D
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)

. (128)

According to the definition in (14), the arclength of the viscoplastic strain rate is obtained as
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Dissipative Strain Element of Kinematic Hardening

Motivated by the sufficient condition (114)1 and the uniaxial model of Bröcker and Matzenmiller (2013), the norm
‖D

ξ

D
ξd‖ is chosen for the dissipative strain element in the series connection with the spring of kinematic hardening

according to
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with ξ∞ as the saturation value of the norm‖
(
C
ξ

ξe M
ξ

ξ

)
D‖ and the factorλ driving the change of the internal strain

rate. Hence, the evolution equation ofD
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D
ξd is obtained from (114)1 and (130) as
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Dissipative Strain Element of Isotropic Hardening

The ansatz for the norm‖D
vp

D
κd‖ is taken similarly as for the case of the uniaxial model of Bröcker and Matzenmiller

(2013):

‖D
vp

D
κd‖ =

κ

κ∞
λ , (132)

which yields with (9), (118)2 and (127) to the evolution equation

D
vp

D
κd =

κ

κ∞
D
vp

D
vp (133)

with κ∞ as the saturation value of the stress of isotropic hardeningκ.

Dissipative Strain Element of Friction Body

The norm‖D
vp

D
κ0d

‖ for the third dissipative strain element is adopted from the uniaxial model of Bröcker and

Matzenmiller (2013) as

‖D
vp

D
κ0d‖ =

(
1 − β1 exp (−β2 ε̄vp)

)
λ (134)

with the arclength̄εvp of the viscoplastic strain rate according to (129). Hence, with (9), (134), (119)2 and (127),
the evolution equation of this dissipation body in the series arrangement to the friction element reads as

D
vp

D
κ0d =

(
1 − β1 exp (−β2 ε̄vp)

)
D
vp

D
vp . (135)
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4.7 Constitutive Relation of Total and Partial Stresses and Mechanical Dissipation

By means of the potential relation (100)1, the total stress state on the viscoplastic intermediate configurationBvp

is calculated from the free energy (82) - see also (16)

T
vp

= 2ρR
∂ψ

∂C
vp

el
=

(

K Jel(Jel − 1)1 + G Ĉ
vp

D
el

)

C
vp

−1
el . (136)

The MANDEL type stress of kinematic hardening becomes with the help of (82) and (100)2 at the intermediate
configurationBξ

M
ξ

∗
ξ = 2ρR

∂ψ

∂C
ξ

ξe
= Gξ C

ξ

D
ξe C

ξ

−1
ξe (137)

and the propertyC
ξ

D
ξe = Ĉ

ξ

D
ξe holds. Moreover, the scalar stress of isotropic hardening emerges from the free energy

(82) according to (107)3 as

κ = Eκ ε̄κe , (138)

and its evolution equation is obtained from (138) with (85)3, (118)1, (132) and (129)3 as

κ̇ = Eκ ˙̄εκe = Eκ

√
2
3
‖D
vp

D
κe‖ = Eκ

(
1 −

κ

κ∞

)
˙̄εvp , (139)

i.e. the structure of (139) is identical to the one of the uniaxial model.

The internal ratė̄εκ0e of energy storageψκ0 in the friction body - see (81) - may be determined from (84)3, (119)1,
(134) and (129)3:

˙̄εκ0e =

√
2
3
‖D
vp

D
κ0e‖ = β1 exp (−β2 ε̄vp) ˙̄εvp . (140)

The mechanical dissipation (115) leads to the non-negative expression forδM by using the relations (107)2, (108)2,
(123), (127), (129)3, (130), (132) and (134):

δM =
1
ρR
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‖(C

ξ
ξe M

ξ
ξ)

D‖2 +
κ2

κ∞
+ κ0

(
1 − β1 exp (−β2 ε̄vp)

))
˙̄εvp ≥ 0 . (141)

The set of constitutive equations (136) – (141) is completed with the thermal contribution of the deformation
gradient (69)2, the yield function (123), the flow rule (128) together with the viscoplastic multiplier (127) as well
as with the evolution equation of the dissipative strain element of kinematic hardening in (131) for the rheological
model of thermoviscoplasticity in Figure 8 .

Remark:
All material parameters of the model may in general be non-negative functions of the temperatureθ. This yields
for each temperature-dependent parameter of the free energy (82) one additional summand in the entropy (101)

besides the partial derivative∂Q̂
∂θ . However, the validity of the mechanical dissipation (141) and the entire line of

argumentation in Section 4 remain unaffected, if some or all the parameters are assumed as temperature dependent.

4.8 Summary of Constitutive Model on Initial B0 and Thermal Intermediate Configuration Bth

By means of some lengthy mathematical rearrangements, the constitutive model can be transferred to the initial
B0 or the thermal intermediate configurationBth. These two configurations only differ from each other due to the
isotropic thermal expansion - see (69)2. Hence, the second PIOLA -KIRCHHOFFstress is expressed in terms of the
configurationsB0 andBth according to

T
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0
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(
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Ĉ
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th
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)
D
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, Jel =
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ϕ̂(θ)3
(142)
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with the temperature dependent functionϕ̂(θ) specifying the thermal deformation. The yield functionF results to
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with the stress type tensor
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and the propertyC
th

vp M
th

∗
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th
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)
D. The viscoplastic flow rule is obtained as

Ċ
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The scalar stress of isotropic hardening is governed by the evolution equation
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λ . (146)

The MANDEL type stress tensor of kinematic hardening is calculated as
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with the flow rule of the associated dissipative strain element
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ξd . (148)

Besides the capability of thermal expansion and the volumetric stress relation, the mechanical behavior of the
constitutive equations summarized above in this section are equivalent to the material model proposed by Shutov
and Kreißig (2008). However, in the paper at hand, a novel method has been utilized for deducing the constitutive
relations by means of a rheological network of finite deformations as a generalization of the procedure applied by
Bröcker and Matzenmiller (2013). Moreover, the resulting mechanical dissipation

δM =
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F + κ0
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1 − β1 exp (−β2 ε̄vp)
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+
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κ∞
+

1
ξ∞

tr

(
(
C
th

vp M
th

∗
ξ

)2
) )

˙̄εvp ≥ 0 (149)

differs from the model of Shutov and Kreißig (2008), since a process-dependent energy storage is assumed for the
friction body, and hence, the stress powerlκ0 = 1

ρR
κ0 ˙̄εvp, associated with ideal plasticity, is partly dissipated as

heat only - see the second summand of (149).

5 Enhancement for Damage Representation

In continuum damage mechanics, the concept of effective stresses has been established to account for damage
evolution in solids - see Lemaitre and Chaboche (1990), Lemaitre and Desmorat (2005). Its main idea is summa-
rized in Figure 10. During a loading process, defects are generated in solid materials. These imperfections in the
physical space reduce the areaA0 of the cross section, which effectively transfers the external forceF . This fact
motivates the transformation of the physical space into an effective one, whose cross sectionA is reduced for the
fraction of the defectsAdef , i.e. A = A0 − Adef holds for the effective space. The equilibrium of forces of both
spaces gives

F = σaA0 = σ(A0 − Adef) (150)

with σa representing the actual stress of the physical space with damage andσ denoting the effective stress. By
means of the definition of the scalar internal damage variable

D =
Adef

A0
D ∈ [0, 1) , (151)

with the range of values fromD = 0 (undamaged state) toD → 1 approaching one (total fracture), eq. (150) may
be rearranged according to

σ =
σa

(1 − D)
⇔ σa = (1 − D) σ . (152)
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Figure 10: Concept of effective stress and application to rheological models

Thus, the stress in the damaged stateσa is related to the effective counterpartσ by means of the damage or
degradation factor(1 − D). The damage variableD has to be calculated by a closed form damage criterion or an
evolution equation. This may be chosen for example in one of the most simple cases as

D =

〈
ε̄ − εc

εf − εc

〉nD

⇔ Ḋ =
nD

εf − εc

〈
ε̄ − εc

εf − εc

〉nD−1

˙̄ε , (153)

in which nD is a positive exponent,εc ≥ 0 is the critical threshold of the arclength̄ε =
∫ t

0
|ε̇| dτ , where damage

processes are initialized, andεf > εc is the associated state of failure, i.e.D(ε̄ = εf) = 1.

The relationship (152) may be formally introduced into the rheological networks as well, leading to damage repre-
sentation in rheological models - see Bröcker and Matzenmiller (2012). In the framework of continuum mechanics
and thermomechanically consistent material modeling, the constitutive equations may be deduced from the rheo-
logical network in agreement to the well established concept of effective stresses of continuum damage mechanics
(Lemaitre and Chaboche, 1990). It turns out that the strain equivalence holds for the the total and the partial strain
measures, i.e. the strain responses of the effective and the damaged state of the model are equivalent. Moreover,
in the special case of isothermal conditions, a linear relationship turns out between the actual (damaged) and the
effective (undamaged) state of the constitutive model15. Hence, the damaged state of the model is calculated by
multiplying the total and internal effective stresses with the degradation/damage factor(1−D), i.e. the stress state
affected by damage reads

σa = (1 − D) σ (154)

in the uniaxial case or

T
0

a = (1 − D)T
0

⇔ T
vp

a = (1 − D) T
vp

⇔ T
t

a = (1 − D)T
t

(155)

in applications of finite deformation kinematics. Analogously, the internal stresses of hardening and the initial
yield limit are obtained according to

M
ξ

a = (1 − D)M
ξ

ξ , κa = (1 − D) κ , κa
0 = (1 − D) κ0 . (156)

In finite thermoviscoplasticity, the evolution equation of damageḊ may be specified as given in (153)2, with the
arclengthε̄ of the total strain substituted with the viscoplastic oneε̄vp. The mechanical dissipationδa

M for the
damaged state of the material results as

δa
M = (1 − D) δM + ψM Ḋ ≥ 0 (157)

15In general there is a coupling between the effective and the nominal state of the model due to the temperature dependency of the material
parameters and the dissipation of heat during the loading process.
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with δM from (149) and the mechanical contribution

ψM = ψel + ψξ + ψκ + ψκ0 (158)

of the free energy in the equations (81) and (82). Hence, the first summand of the dissipation power (157) is driven
by viscoplastic deformation and the second contribution of (157) is due to damage evolution.

6 Conclusions

The enhanced concept of rheological modeling (Bröcker and Matzenmiller, 2013) is generalized to finite deforma-
tions. By assembling the basic bodies into a network, kinematical and kinetic relations of the constitutive model
arise using the elementary properties of series and parallel arrangement of elements within the concept of dual
variables. Hence, the finite material equations are obtained in an analogous procedure as in the uniaxial case,
providing the yield function and the flow rule naturally from the equilibrium of stresses. The resulting constitutive
theory is very similar to well-known approaches of viscoplasticity in the literature, however, derived differently
as usual and extended to an improved description of energy storage. Moreover, damage evolution is additionally
considered for the proposed model.
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Altenbach, J.; Altenbach, H.:Einführung in die Kontinuumsmechanik. Teubner (1994).

Bertram, A.: An alternative approach to finite plasticity based on material isomorphisms.International Journal of
Plasticity, 15, 3, (1999), 353–374.

Bertram, A.: Finite thermoplasticity based on isomorphisms.International Journal of Plasticity, 19, 11, (2003),
2027–2050.
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