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Nanoindentation of Soft Polymers: Modeling, Experiments and
Parameter Identification

Z. Chen, S. Diebels

Since the nanoindentation technique is able to measure the mechanical properties of extremely thin layers and
small volumes with a high resolution, it also became one of the most important testing techniques for thin polymer
layers and coatings. This work is focusing on the characterization of polymers using nanoindentation, which is
dealt with by means of numerical computation, experiments and parameter identification. An analysis procedure
is developed using the FEM based inverse method to evaluate the hyperelasticity and time-dependent properties.
This procedure is firstly verified with a parameter re-identification concept. An important issue in this publication
is to take into account the error contributions in real nanoindentation experiments. Therefore, the effects of sur-
face roughness, adhesion force and the real shape of the tip are involved in the numerical model to minimize the
systematic error between the experimental responses and the numerical predictions. The effects are quantified as
functions or models with corresponding parameters to be identified.

1 Introduction

Nanoindentation testing is a fairly mature technique for hard metals, which uses the continuously sensed inden-
tation depth combined with the measured applied force to determine the elastic modulus and the hardness of the
test specimen. Since this technique is able to measure the local properties of extremely small volumes with a high
resolution, it also became one of the primary testing techniques for the mechanical characterization of polymers
and biological tissues. However, a lot of questions still need to be answered in order to enable a wide adaption of
nanoindentation in polymers.
Most of the polymeric materials show highly elastic and viscous material behavior at the same time, called vis-
coelasticity. In the past decades, investigations of viscoelastic effects of polymeric materials using experimental
testing, constitutive modeling and numerical computation have been published in e. g. (Holzapfel, 1996; Huber
and Tsakmakis, 2000; Hartmann, 2002; Lion, 1996, 1998; Lubliner, 1985; Heimes, 2005). Therefore, creep of
polymers during nanoindentation has the same effect on the measured force-displacement data as thermal drift.
It is difficult to quantify the thermal drift as a linear function of time. A pronounced error may be included in
the force-displacement data, if a long testing time is required in creep or relaxation loading histories. The main
problem concerns the analysis method to characterize the viscoelasticity of a polymer by nanoindentation, which is
still not resolved. The analysis procedure, which is used in most indentation instruments to determine the hardness
and elastic modulus, is based on the Oliver & Pharr method (Oliver and Pharr, 1992, 2004). This analysis method
assumes that the material behaves in an elastic-plastic manner and does not exhibit any time-dependent behavior
or load rate dependence. This method is not applicable to a viscoelastic polymer. Furthermore, the measured
hardness and elastic modulus are not sufficient to represent the rate-dependent properties. In order to identify the
viscoelastic behavior of polymers by nanoindentation, two ways have been documented in the literature instead of
the Oliver & Pharr method. The first method is based on analytical or semi-analytical solutions. These solutions
are based on parameters of the respective viscoelastic model and represent the relationship between indentation
force and displacement. The model parameters are then obtained by using the analytical functions in accordance
with the experimental force-displacement data. Since the linear viscoelastic contact solutions are derived from the
Hertz elastic contact theory according to the correspondence principle, this method is restricted as it only provides
accurate identification for specific linear viscoelastic models under fixed experimental processes.

Besides, effects like non-linear friction, adhesion and surface roughness in nanoindentation experiments are not
taken into account in the analytical solutions. The second method, the so-called inverse method, is performed
by combining finite element method (FEM) modeling and numerical optimization. In this method, the objective
function, which is the difference between experimental and numerical data, is minimized with respect to the model
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parameters using numerical optimization. The parameters of the constitutive models are identified as the optimized
solution. Basic investigation on different optimization methods and inhomogeneous deformation fields of this in-
verse method have been presented in the literature, e. g. (Benedix et al., 1998; Kreissig, 1998; Mahnken, 2004).
Huber et al. (Huber et al., 2002; Huber and Tyulyukovskiy, 2004; Klötzer et al., 2006; Tyulyukovskiy and Huber,
2006) have been the first to apply this method in indentation. They used neural networks to identify the material
parameters from indentation experiments on metals. However, the inverse method is still a new topic regarding
nanoindentation problems of polymeric materials. Hartmann (Hartmann et al., 2006) identified the viscoplastic
model parameters with uniaxial tests and validated them using indentation tests. Rauchs (Rauchs et al., 2010;
Rauchs and Bardon, 2011) employed a gradient-based numerical optimization method to identify viscous hyper-
elastic and elasto-viscoplastic material parameters. Guessasma (Guessasma et al., 2008) determined viscoelastic
properties of biopolymer composite materials using the finite element calculation and nanoindentation experiments.
Saux et al. (Le Saux et al., 2011) identified the constitutive model for rubber-like elasticity with micro-indentation
tests. As the inverse method permits us to handle any material model with non-linear properties and to include
additional effects in the numerical model, it is a useful new method to deal with the problems of identifying rate-
dependent material properties by nanoindentation. Finally, as mentioned at the beginning, nanoindentation has a
considerable advantage in determining local properties from continuously measured force-displacement data with
a high resolution. Unfortunately, there are various problems that influence the actual material response during
indentation, e. g. friction, adhesion, surface roughness, inhomogeneity and indentation process-associated factors.
These problems result in a systematic error between the numerical and experimental results that often leads to even
larger errors in the parameter identification (Rauchs and Bardon, 2011; Bolzon et al., 2004; Mata and Alcalá, 2004;
Tyulyukovskiy and Huber, 2007). Therefore, quantification of these influences are indispensable to characterize
the material accurately using the inverse method.
In this paper, the investigation on nanoindentation of soft polymers dealing with modeling, experiments and pa-
rameter identification is presented. An analysis procedure is developed with the FEM based inverse method to
identify the equilibrium stress state and the viscous properties. This procedure is firstly verified with a parameters
re-identification concept. An important issue in this article is to take into account the error contributions in real
nanoindentation experiments. Therefore, the effects of surface roughness, adhesion force and the real shape of the
tip are involved in the numerical model to minimize the systematic error between the experimental responses and
the numerical predictions. The effects are quantified as functions or models with corresponding parameters to be
identified.

2 Inverse Method
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Figure 1: Flow-chart of the developed analysis procedure using FE based inverse method

The inverse method is a general framework that is used to convert observed measurements into information about
a physical object or system that we are interested in. The experimental responses of a physical object or system,
which is a prior information on a mathematically described model about this physical object or system, is treated as
reference source to determine the model parameters in the inverse method. The finite element method (FEM) based
inverse method is popular to use because it allows specimens with arbitrary shapes and physical processes with
nonlinear nature and arbitrary loading conditions. This method is especially powerful if the material or structure
properties are complex, e. g. nonlinear, heterogeneous and anisotropic. Since the indentation process on polymers
involves strongly nonlinear contact mechanics as well as nonlinear time-dependent material properties, the FE
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based inverse method is chosen to develop a robust analysis procedure in this study.
Fig. 1 represents the flow-chart of the developed analysis procedure using the FEM based inverse method, which is
a mixed experimental and numerical optimization problem. First of all, the force-displacement data obtained from
nanoindentation experiments are used as reference source and are imported into an optimization procedure. The
error contributions such as adhesion effects, surface roughness and other process associated factors are involved in
the experimental data. The optimization procedure is developed combining the FEM code ABAQUSR©/Standard
with the mathematics tool MATLABR©. In the optimization procedure, the boundary value problem of nanoinden-
tation is simulated in ABAQUSR© taking into account the real geometry and real boundary conditions as in the
experiments. In the numerical model, it is important to choose a suitable contact model between the indenter tip
and the surface, a material model for the specimen and models predicting other affecting responses. It is the goal
to determine the corresponding parameters of these models by this procedure. The principle of the method is to
compare experimental force-displacement data with the computed results from the finite element model. Starting
with guessed initial values, the models’ parameters are iteratively updated by an optimization algorithm. The iden-
tification can then be formulated as an optimization problem where the objective functionf(x) to be minimized is
an error function of the least squares type that expresses the difference between experimental measurements and
the numerical predictions. The argument represents all model parameters, which have to be determined.
The choice of the optimization-based method for minimizing an objective function is a topic of interest. It is gener-
ally advised to use globally convergent optimization algorithms whenever possible. These algorithms are simulated
annealing (Kirkpatrick et al., 1983; Goffe et al., 1994) or genetic algorithms (Schwefel, 1995; Deb, 2000), such as
evolutionary algorithms, or deterministic algorithms like the Simplex method (Lawitts and Biggers, 1991; Lagarias
et al., 1999). The gradient based algorithm is full of troublesome gradient calculation and the further drawback of
local convergence. Genetic or evolutionary algorithms are globally convergent and are the only useful choice in a
multi-objective optimization. Therefore, in this study, the genetic algorithm in MATLABR©’s Optimtool is used.

3 Virtual Experiments and Parameter Re-identification

In this present study, it is investigated how reliable the material parameters can be determined from the numerical
optimization routine. In contrast to the traditional inverse method, virtual experimental data calculated by numer-
ical simulations with chosen parameters replace the real experimental measurements. Such a procedure, which is
called parameter re-identification was used in (Rauchs, 2006; Rauchs and Bardon, 2011) to validate the gradient-
based material parameter identification routine. In this sense, the finite element code ABAQUSR© is used as our
virtual laboratory. An artificial random noise is superimposed on the virtual experimental data to make it more
realistic and to check the stability of the identification procedure.
The numerical simulation of nanoindentation of polymer layers on a substrate, taking the real geometry into ac-
count, can be modeled by an axisymmetric two-dimensional model with a finite element code, e. g. ABAQUSR©.
The indenter is assumed to be a rigid body compared to the soft polymer layer. We define the indenter as an
analytical rigid surface, in such a way that the indenter geometry can be modeled exactly with a smooth curve. In
view of the strong nonlinear stiffness in contact problems, linear quadrilateral elements are used to get convergent
results. Linear axisymmetric 4-node element type CAX4 is used for substrate since the deformation of substrate
is very small and it is assumed that the substrate behaves in a linear elastic way. Considering the polymer layer in
study as an incompressible material, the linear axisymmetric 4-node hybrid element type CAX4H in ABAQUSR© is
chosen. Since a very small change in displacement for incompressible material produces extremely large changes
in pressure, a purely displacement-based solution is too sensitive to be useful numerically. ABAQUSR© removes
this singular behavior in the system by using hybrid elements, which are mixed formulation elements, using a mix-
ture of displacement and stress variables with an augmented variational principle to approximate the equilibrium
equations and compatibility conditions. The hybrid elements also remedy the problem of volume strain locking.
A mesh convergence investigation has been performed by refining mesh gradually. It is essential that the density
of nodes close to the indenter tip is high enough to consider the localized deformation of the layer. The nodes
at the axis of symmetry are fixed in the horizontal direction, while those nodes at the bottom cannot move in the
vertical direction. The geometry and boundary conditions of the spherical nanoindentation are illustrated in Fig.
2. Concerning the numerical treatment of the contact problem, the indenter is defined as master surface while
the layer is defined as slave surface, both forming a contact pair. A contact formulation of finite-sliding interac-
tion between a deformable and a rigid body in ABAQUSR©/Standard is used to establish the frictionless contact
model between indenter and layer. In this case, the formulation of the normal contact is used as a constraint for
non-penetration which treats the normal contact as a unilateral constraint problem. The normal contact pressure
cannot be calculated from a contact constitutive equation, but is then obtained as a reaction in the contact area and,
hence, can be deduced from the constraint equations with the often used Lagrange multiplier method or the penalty
method, for details please see (Wriggers, 2006).
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Figure 2: Sketch of FEM model of spherical nanoindentation

3.1 Hyperelasticity of Polymer Thin Film

3.1.1 Hyperelastic Models and the Corresponding Behaviors

We now restrict attention to isotropic and incompressible hyperelastic material models under isothermal regime,
i. e. so-called perfectly elastic material models, because such hyperelastic models can well represent the behav-
ior of the solid polymeric materials e. g. rubber-like materials (Holzapfel, 2001; Marckmann and Verron, 2005).
With respect to the kinematics of continuum mechanics and the Helmholtz free-energy functionΨ, the2nd Piola-
Kirchhoff stress tensorS and the Cauchy stress tensorT can be derived as (details see e. g. (Holzapfel, 2001,
Chp. 6))

S = −pC−1 + 2
∂Ψ(C)

∂C
= −pC−1 + 2

∂Ψ
∂I1C

I + 2
∂Ψ

∂I2C
(I1CI − C), (1)

T = −pI + 2B
∂Ψ(B)

∂B
= −pI + 2

∂Ψ
∂I1B

B + 2
∂Ψ

∂I2B
B−1. (2)

Therefore, the constitutive equations of an isotropic and incompressible hyperelastic material under isothermal
condition are given by eq. (1) and (2).BandC are the left and right Cauchy Green deformation tensors, respectively.
The constitutive equations are split into one part governed by the hydrostatic pressurep and the other part governed
by the deformation of the material. There are numerous specific forms of strain-energy functions to describe the
hyperelastic properties, whereas we only focus on three isotropic and incompressible hyperelastic models, namely
the neo-Hooke, the Mooney-Rivlin and the Yeoh form:

ΨNH = C10 (I1C − 3), (3)

ΨMR = C10 (I1C − 3) + C01 (I2C − 3), (4)

ΨY = C10 (I1C − 3) + C20 (I1C − 3)2 + C30 (I1C − 3)3. (5)

These forms are often used in the literature to model elastic properties of polymers.ΨNH involves only one single
parameter and provides a mathematically simple and reliable constitutive model for the non-linear deformation
behavior of isotropic rubber-like materials. It is physically-founded and includes typical effects known from non-
linear elasticity within the small strain domain (Holzapfel, 2001; Marckmann and Verron, 2005; Rivlin, 1948). The
free energy functionΨMR of the Mooney-Rivlin model is derived on the basis of mathematical arguments with
consideration of symmetry (Mooney, 1940). It is often employed in the description of the non-linear behavior of
isotropic rubber-like materials at moderate strain (Giannakopoulos and Triantafyllou, 2007; Holzapfel, 2001; Mar-
ckmann and Verron, 2005). Yeoh made the simplifying assumption that∂Ψ/∂I2 is zero and proposed a function
ΨY depending only on the first principle invariant. This phenomenological material model is motivated in order
to simulate the mechanical behavior of carbon-black filled rubber showing a typical stiffening effect in the large
strain domain (Holzapfel, 2001; Yeoh, 1990).
The parameters of the three models are chosen in such a way that the shear moduli at the reference configuration
are the same for all methods, as listed in Table 1. It should be noted that the linearization of the three models at
the small strain region yields the same Young’s modulusE = 2μ(1 + ν) (ν = 0.5 is chosen for incompressible
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Figure 3: The1st Piola-Kirchhoff component over the stretch in the tension direction under uniaxial tension test: on
the left side, the behavior of the neo-Hooke and Mooney-Rivlin models is shown and three models are compared;
on the right side, the behavior of the Yeoh model is shown in the whole stretch range0.5 ≤ λ1 ≤ 3

material) if Hooke’s law is applied, i. e. the finite elasticity laws are set up in such a way that a uni-axial tension
test yields the same tangent to the stress-strain curve in the origin, as shown in Fig. 3. As can be seen from the
curves in Fig. 3, the elastic behavior of the Yeoh model displays the strongest non-linearity while the neo-Hooke
model exhibits slight non-linear elasticity within the small strain domain. As expected in the parameter setting,
the uniaxial tension tests of the three different hyperelastic models yield the same tangent to the stress-strain curve
close to the origin0.9 ≤ λ1 ≤ 1.1. Otherwise, the behavior of those models can be explicitly separated in the
stretch range. The difference between the behavior of the Yeoh model and of the other two models is huge in
the large strain domain. Therefore, the behavior of the three models under nanoindentation can be expected to be
separated, too.

3.1.2 Results of Parameters Re-identification and Discussions

The friction effects between the indenter and the polymer layer as well as the friction between the polymer layer
and the substrate are not taken into account. The algorithm requires bounds for each parameter as shown in Table 1.
The computational cost can be reduced if narrow bounds are chosen. In general the choice of the bounds depends
on the problem and the experience of the user. Also the choice of the starting vector has influence on the convergent
speed to the optimal results. We investigates the evolution process of the material parameters of the Yeoh model
with different starting vectors [0.1,0.5,1] and [0.1,1,1]. The result shows that the identified parameters with two
different sets of initial vector are more or less the same. But the number of the generations used in the first case
([0.1,0.5,1]) is much lower than the number used in the second case ([0.1,1,1]). In this work, the starting vector
[0.1,0.5,1] is used. The chosen parameters of the three material models are re-identified from the nanoindentation
boundary value problem. Two maximum indentation depths, 5μm and 40μm, are chosen to investigate whether
the accuracy of the identified parameters of the non-linear elastic models are dependent on the magnitude of the
deformation under indentation. According to our former work (Chen and Diebels, 2012), the influence of the
substrate is excluded if the maximum indentation depth is set to 5μm i. e.u/HL is smaller than 5%. One should
keep in mind that the parameters of the three non-linear models are chosen in such a way that the linearization
of the three models at small strain regime yields the same Young’s modulusE. Therefore, as shown in Fig. 4,
the relations of the force-displacement of the three models are more or less the same if the maximum indentation
depth is restricted to 5μm. This case can be considered as small deformation. If the maximum indentation depth
is increased to 40μm i. e. u/HL = 40% , the non-linear behavior of the hyperelastic models especially of the
Yeoh form is fully developed under such finite deformation without excluding the influence of the substrate. The
parameter identification is performed assuming that the properties of the substrate are known.
The re-identified parameters are listed in Table 1. Compared to the chosen values, the parameterC10 of the neo-
Hooke model can always be identified perfectly independent on the degree of deformation and on the noise. For
the Mooney-Rivlin model, a difference of the identified results at a maximum indentation depth of 5μm and of 40
μm appears.C10 andC01 can be accurately identified only if the virtual experimental data at finite deformation
is free of noise. For both cases of virtual experimental data with noise, the identified values ofC10 andC01
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Figure 4: The response of the three hyperelastic models in nanoindentation simulation

Table 1: The re-identified parameters with maximum indentation depth 5μm and 40μm

Noise neo-Hooke Mooney-Rivlin Yeoh form

% C10 C10 C01 C10+C01 C10 C20 C30

chosen value 0.6513 0.1640 0.4873 0.6513 0.6513 2.5870 5.0

bounds (0.01;5) (0.01;1) (0.01;1) — (0.1;5) (0.1;20) (0.1;20)

initial 0.1 0.1 0.1 — 0.1 0.5 1

maximum indentation depth 5μm

0.0 0.6513 0.2060 0.4483 0.6509 0.6517 2.4920 7.7901

0.5 0.6533 0.2243 0.4316 0.6559 0.6733 0.9107 8.8551

2.0 0.6581 0.4375 0.2323 0.6698 0.6801 1.1695 1.4284

5.0 0.6640 0.5814 0.1097 0.6911 0.7096 0.1001 0.1022

sensitivity 3.045e4 3.048e4 3.157e4 — 3.052e4 3.377e2 7.290

maximum indentation depth 40μm

0.0 0.6513 0.1602 0.4903 0.6505 0.6515 2.5852 5.0026

0.5 0.6528 0.1845 0.4728 0.6573 0.6557 2.6019 4.9607

2.0 0.6578 0.2125 0.4547 0.6672 0.6721 2.6498 4.9230

5.0 0.6640 0.4722 0.2692 0.7414 0.7716 2.7291 4.5014

sensitivity 1.099e6 1.100e6 1.362e6 — 1.054e6 2.989e5 1.305e5

have a larger deviation from the chosen ones with the increament of the noise level. But the sumC10 + C01 can
always be identified exactly like the single parameter of the neo-Hooke model. The phenomenon is associated
with the parameters coupling, as shown in Fig. 5. These findings also agree well with the theoretical analysis and
experimental results reported in (Giannakopoulos and Panagiotopoulos, 2009; Giannakopoulos and Triantafyllou,
2007; Rauchs et al., 2010). The effect of parameters coupling decreases if the maximum displacement increases to
40μm.
Now the focus lies on the identified results of the Yeoh model. For this model huge differences arise at small and
finite deformation. At small deformation, except the first two parametersC10, C20 are identified exactly when the
virtual experimental data is free of noise. The identification ofC30 is worse. If some noise is superimposed,C20

andC30 are worse to identify and finally they tend to the lower bounds. However,C10 can always be identified
accurately. Attention should be paid to the results at large deformation, where all of the three parameters are
identified exactly when the virtual experimental data is free of noise. In spite of the noise level increases up to
5% the biggest deviation of the identified parameters from the chosen parameters is less than 20%, which is still
tolerable.
The reason for this behavior is related to the sensitivity of the indentation reaction forceF with respect to the
parameters (Mahnken and Stein, 1994). The sensitivity∂F/∂κi can be identified mathematically as follows:

F := F(<, κ1, ..., κi, ..., κn) (6)
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Figure 5: Parameters coupling during identification of parameters in Mooney-Rivlin model at small deformation
with a noise level of 2.0%: the convergence of objective function (left), the evolution of both parameters (right)

Figure 6: Comparison of virtual experimental data with 0.5% noise and numerical data with identified parameters:
at small deformation (left), at finite deformation (right)

∂F
∂κi

≈
‖F(<, κ1, ..., κi + δμ, ..., κn) − F(<, κ1, ..., κi, ..., κn)‖

|δμ|
(7)

Herein,< is the model of interest,δμ is the mutation increment or an increment of the parameterκi. Here we
chooseδμ as a relative value that is 10% ofκi. The sensitivities with respect toκi are listed in Table 1: It shows
that the more exactly re-identified parameters have a higher sensitivity than the parameters which are worse to
identify. Although some parameters are not identified accurately, Fig. 6 shows good consistency of the virtual
experimental data with 0.5% noise and the numerical data obtained with the re-identified parameters of Mooney-
Rivlin and Yeoh models at both small and finite deformation. It should be pointed out that, even though the
objective function is convergent to a minimum, the accuracy of each identified parameters of the polynomial-
type hyperelastic models is not guaranteed. Similar findings are also included in the literature e. g. (Hartmann
et al., 2001, 2003), that even the objective function is convergent, the material parameters are changing. In the
present work, for Mooney-Rivlin model at small deformation, the contributions fromC10 andC01 to the force-
displacement relation cannot be divided. Because of this fact the force-displacement curve overlaps with the virtual
experimental even though parameters coupling exists. For Yeoh model at small deformation,C20 andC30 are not
identified successfully but the reaction force is not sensitive to them as shown in Table 1. That is to say, their
contributions to the force-displacement results is much less than the contribution fromC10.

3.2 Identification of Hyperelasticity with Surface Roughness Effects

It is recognized from the experimental and the numerical investigations that the surface roughness has a significant
influence on the force-displacement data at a small or a moderate indentation depth, which is comparable to the
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height of the surface asperities (Bobji et al., 1999; Berke et al., 2010; Kumar et al., 2006; Walter and Mitterer, 2008;
Miller et al., 2008). In this part of work, the behavior of two hyperelastic soft polymers under nanoindentation
is investigated numerically taking into account the effects of the surface roughness. The influence of the surface
roughness is quantified phenomenological as a function of the sine curve parameters as well as of the indentation
parameters.

3.2.1 Hyperelastic Material Models

Nanoindentation of two incompressible soft polymers by numerical simulation is considered here: polydimethyl-
siloxane (PDMS) 1:10 used in (Deuschle, 2008) and silicone rubber ELASTOSILR© RT 265 used in (Johlitz and
Diebels, 2011). In the framework of finite strain continuum mechanics, the constitutive models of a nearly in-
compressible hyperelastic material can be derived by additively decomposing the Helmholtz free-energy function
Ψ into the volumetric elastic partΨvol and the isochoric elastic partΨiso. For isotropic materials, it is further
assumed thatΨ is expressed in terms of the principle invariant of the modified Cauchy-Green tensorsC̄ or B̄.

Ψ = Ψvol(J) + Ψiso[Ī1(C̄), Ī2(C̄)] = Ψvol(J) + Ψiso[Ī1(B̄), Ī2(B̄)] (8)

The strain invariant̄Ia(a = 1, 2) are the two modified principle invariants ofC̄ andB̄. The constitutive equation
of the2nd Piola-Kirchhoff stress tensorS in terms of the JacobianJ and the modified invariant̄I1, Ī2 (details see
e. g. the textbook (Holzapfel, 2001, Chp. 6))

S = 2
∂Ψ(C)

∂C
= Tvol + Tiso (9)

= J
∂Ψvol(J)

∂J
C−1 + 2

∂Ψiso(Ī1, Ī2)
∂Ī1

:
∂Ī1

∂C
+ 2

∂Ψiso(Ī1, Ī2)
∂Ī2

:
∂Ī2

∂C
. (10)

According to (Deuschle, 2008; Johlitz and Diebels, 2011), the considered PDMS 1:10 will be modeled by a neo-
Hooke model and the silicone rubber by a Mooney-Rivlin model (Simo and Taylor, 1982):

ΨNH = Ψiso(Ī1) + Ψvol(J) = C10 (̄I1 − 3) +
1

D1
[(J − 1)2 + (lnJ)2]/2, (11)

ΨMR = Ψiso(Ī1, Ī2) + Ψvol(J) (12)

= C10 (̄I1 − 3) + C01 (̄I2 − 3) +
1

D1
[(J − 1)2 + (lnJ)2]/2.

The initial shear modulusμ0 and the initial compression modulusK0 are related to the coefficients in the following
way:

μ0 = 2
∂Ψiso

∂Īa
|Īa→1= 2(C10 + C01), (13)

K0 =
∂2Ψvol

∂J2
|J→1=

2
D1

. (14)

The compressibility parameterD1 can be interpreted as a penalty parameter that enforces incompressibility if small
values are chosen forD1. The chosen parameters are listed in Table 2. In this study,D1 of the silicone rubber is
very small and hence it is not taken into account during the procedure of the parameters identification.

Table 2: Chosen material models and parameters of the indented polymers
Materials Chosenmodels Parameters Shearmodulus

PDMS neo-Hooke
C10 D1 μ0

0.662 MPa 0.255 MPa 1.324MPa

Silicone
Mooney-Rivlin

C10 C01 D1 μ0

Rubber 0.111 MPa 0.039 MPa 0.001MPa 0.300 MPa
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3.2.2 Parametric Investigation of Surface Roughness Effects

Generally speaking, a 3D model is necessary to represent the inhomogeneous properties of the realistic surface
topography. However, the computing time occupies a large part in the inverse method and is, as a consequence,
a key problem of the method. This often results in a trade-off between the computing cost and the quality of the
numerical model. For instance, a 2D plane model or an axisymmetric model is used most commonly to save the
computing cost. A plane strain modeling assumption is preferred, because the commonly real surface topography
has a lack of axisymmetry and the position of the indenter can be set randomly on the rough surface in the plane
strain model. The used spherical indenter with radius of 100nm can be assumed to be a rigid body compared
to the soft polymers. The geometrical size of the polymer sample is2 μm × 2 μm, which is sufficiently large to
obtain a homogeneous stress distribution at the bottom and on the side boundaries of the model. The maximum
indentation depth is 50nm, which is limited to only 2.5% of the layer thickness. Therefore, the influence of the
substrate and the friction between the indenter and the layer can be neglected according to (Chen et al., 2011).
The surface roughness effects are investigated numerically based on a phenomenological approach. A simple
representation of the surface is chosen considering only a one-level of protuberance-on-protuberance profile de-
scribed by a sine functionf(x) = H sin 2π

λ x. Although this simplest model is only a regular wavy surface, it
is the preferred model for us to perform the parametric investigation of the surface roughness effects. Moreover,
most man-made surfaces such as those produced by grinding or machining, have a pronounced ”lay”, which may
be modeled to a first approximation by this sinusoidal profile (Johnson, 1985). The parameters of the sinusoidal

Figure 7: The mesh configuration of the one-level protuberance-on-protuberance profile

surface profile as well as the indentation geometric parameters are illustrated in Figure 7: the wave lengthλ, the
roughness asperity heightH, the spherical radiusR and the indentation depthu. The whole indented sample sur-
face, not only the part just under the indenter, is represented by the sinusoidal profile. This means that the influence
of the interaction between the neighboring asperities of the real surface roughness is also taken into account. It has
been shown experimentally that the influence of the surface roughness is dependent on the asperity shape (Berke
et al., 2010). A large range of roughness asperity shapes from relatively sharp to smooth geometries is obtained by
varying the asperity heightH = [5nm ∙ ∙ ∙ 50nm] and by varying the wave lengthλ = [5nm ∙ ∙ ∙ 200nm].
A parametric investigation is performed to study the dependence of the surface roughness effects on the roughness
profile. It is first focused on varying the wave lengthλ from 5 nm to 200nm with an invariant asperity height of
20 nm. The results show that the surface roughness can have a twofold effect resulting in either higher or lower
contact stiffness. This twofold effect depends on the indentation position once the wave length increases to be
comparable to the indenter radius and does not depend on the material. As shown in Figure 7, the three indenta-
tion positions are noted as P1, P2 and P3, denoting the indentation performed on the top, in a roughness valley
and between the valley and the top respectively. The force-displacement data of the PDMS with low ratioλ/H
are shown in Figure 8. The surface roughness has an effect resulting in much lower contact stiffness especially
at the very beginning of the indentation. A physically sound reason can be the response of the extremely sharp
asperity, which decreases the material stiffness. The criteria to remove the surface roughness effect suggested in
(Jiang et al., 2008) by using a sufficiently large spherical indenter, has no use in this case. Nevertheless, the surface
roughness effect on the force-displacement curve can be removed if a new initial indentation point is defined as
shown in Figure 8. The initial contact point between indenter and surface can be re-defined to throw off the contact
part in which the contact stiffness is nearly zero. The surface roughness effect decreases with an increasing wave
length up to 50nm. The roughness effect depends on the indentation position if the wave length is larger than 50
nm as shown in Figure 9. It can be seen explicitly that the surface roughness results in higher contact stiffness if
the indentation is placed in a roughness valley and a lower stiffness if an asperity top is indented. This discovery
has the same results as documented in (Berke et al., 2010). In the real nanoindentation test it is difficult to choose
the indentation position neither in the valley or on the top. Therefore, it is reasonable to perform a sufficiently large
number of indentations on various positions with statistical distribution. It is a good choice to take the mean value
of the data with a reasonable discreteness in order to decrease the surface roughness effect. For instance, we can
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Figure 8: The force-displacement data obtained from indentation on flat surface and regular rough surface of
PDMS, with a varying wave length: a)λ = 5 nm; b) λ = 10 nm. Remark: The new initial point of the force-
displacement data is defined by a threshold of the measured reaction force that the reaction force is able to be
measured. This is the usual way to define the initial contact of indents and surface in real experiments.

Figure 9: The force-displacement data obtained from indentation on flat surface and regular rough surface of
PDMS, with a varying wave length: a)λ = 100 nm; b) λ = 200 nm

take the mean values “λ = 100 P2 & P3” in Figure 9 a) and “λ = 200 P1 & P3” in Figure 9 b) as the measured
force-displacement data. We can also find similar conclusions in experimental as well as numerical investigations
on hard metals in (Walter et al., 2007; Walter and Mitterer, 2008; Bouzakis et al., 2003).
The dependence of the surface roughness effect on the asperity height is investigated in the second step. In this
case, the wave length is firstly fixed to 50nm while the asperity height varies in a physically sound range from 5
nm to 50nm. As the surface roughness has the same influence for the two investigated materials, only the results
of the silicone are shown in Figure 10 in this time. The surface roughness has an effect on the force-displacement
data depending on the ratio of the asperity height to the indentation depthH/u. The influence of the surface
roughness in the force-displacement curve is negligible whenH/u is sufficiently small, e. g. 1:10 (Figure 10 a)).
The indentation result on a perfectly flat surface can still be used to approximate the measured data indented on a
rough surface while the ratioH/u is below 1:3 (Figure 10 b)). A similar finding was also obtained by Donnelly
et al. (Donnelly et al., 2006) in an experimental investigation of the indentation on cancellous bone. Nevertheless,
the surface roughness effect results in decreasing contact stiffness of approximately 50% lower if the indentation
depth is identical to the asperity height (Figure 10 c)).
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Figure 10: The force-displacement data obtained from an indentation on a flat surface and a regular rough surface
of silicone rubber with varying asperity height: a)H = 5 nm; b) H = 20 nm; c) H = 50 nm

Table 3: The identified parameters and their deviation compared with the chosen values listed in parentheses:
indentation on a regular surfaceroughness

Virtual experimental data
Identified parameters Evaluated

C10 D1/C01 μ0

PDMS

bounds (0.01;1) (0.01;1) —

initial 0.05 0.05 —

Wave lengthλ = 5 0.2941 (-55.57%) 0.1001(-60.78%) 0.5882(-55.57%)

Initial point variedλ = 5 0.6288 (-5.02%) 0.2182(-14.43%) 1.258(-5.02%)

λ = 100 P1 0.6908 (+4.35%) 0.9818(+285.02%) 1.382(+4.35%)

Average P2+P3λ = 100 0.6740 (+1.81%) 0.2476(-2.90%) 1.348(+1.81%)

SiliconeRubber

H = 5 P2 0.1017 (-8.38%) 0.0429(+10.00%) 0.2889(-3.60%)

H = 20 P2 0.0605 (-45.50%) 0.0769(+97.18%) 0.2748(-8.40%)

H = 50 P2 0.0318 (-71.32%) 0.0265(-32.05%) 0.1167(-61.11%)

3.2.3 Results and Discussion of Parameters Re-identification

The surface roughness effects are further quantified by the parameters re-identification. The virtual experimental
data shown in Figures 8, 9 and 10 represent the indentation results obtained with the regular surface roughness
model. The numerical data are the simulation results of the indentation on a perfectly flat surface with an arbitrary
set of material parameters. All of the other geometrical parameters and of the boundary value problems of the
virtual experimental setup and the numerical model are identical. The comparison of the identified parameters
with the chosen values can be used to quantify the surface roughness effects. As it is described in Section 3.1.2,
the bounds and the initial values of the model parameters are required within the identification procedure. The
same bounds and the same initial values, which are listed in Table 3, are set for all the parameters to test the
convergence. The identified parameters and the corresponding deviation are compared with the chosen values as
shown in Table 3. The identified parametersC10 andD1 of the neo-Hooke model are about 60% lower than the
chosen values due to the effects of surface roughness with a wave length of 5nm. It is worth to note thatC10 and
D1 are accurately identified if a new initial point is defined to remove the surface roughness effects. The effects
result in a much larger identifiedD1 if the experiments are performed on the top of the asperity with a wave length
of 100nm. Nevertheless, if the virtual experimental data is replaced by the mean value of the indentation results
on different positions,C10 andD1 are exactly identified for the neo-Hooke model. The two parametersC10 and
C01 of the Mooney-Rivlin model are accurately identified if the surface roughness possesses a low asperity height
of 5 nm. The surface roughness with the asperity height of 20nm leads to deviations of -45.50% and +97.18%
for C10 andC01 respectively. But the evaluated initial shear modulusμ0 using the identified parameters has an
acceptable deviation from the reference value. The surface roughness effects can be neglected with respect to the
results shown in Figure 10 b) and w. r. t. to the evaluated shear modulusμ0. The existing parameters coupling is
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the main reason to cause a big deviation to the identifiedC10 andC01. The surface roughness has an effect on the
evaluatedμ0 resulting in a 61.11% lower value.

3.3 Viscoelasticity at Small Deformation

Viscoelasticity is another important property of polymeric materials. In this part of the work, we focus on identifi-
cation of the viscoelastic model parameters from nanoindentation of polymer layers with various loading histories
using the developed FEM based inverse procedure. A well known 3D linear viscoelastic model for small strain is
taken into account (Lubliner, 1985). The incompressibility is expressed by splitting the deformation of the material
into a deviatoric part and a volumetric part. Experimental investigations have shown that in many cases viscoelastic
behavior is mainly related to the deviatoric part of the deformation (Kaliske and Rothert, 1997). The Cauchy stress
tensorσ is expressed by

σ = σeq + σneq = K(trε)I + 2μεD +
n∑

j=1

2μj
eε

jD

e , (15)

with a linear evolution equation

ε̇jD

i =
1
rj

(εD − εjD

i ). (16)

Here,εjD

e = εD −εjD

i . K andμ are the bulk modulus and shear modulus, respectively.εD is the deviatoric strain

tensor.εjD

i is the so-called deviatoric internal variable, which represents the viscous strain of the dashpot in the
jth Maxwell element. The relaxation time of each Maxwell element is given byrj = ηj/2μj

e. The FEM model
of nanoindentation on polymer layer described in Section 3 for the parameter re-identification of hyperelasticity is
used again to identify the viscoelasticity.
In the virtual experiments, three Maxwell elements are chosen with the corresponding parameters listed in Table 4.
The displacement controlled nanoindentation tests with three kinds of relaxation paths are chosen to identify the
model parameters, as shown in Fig. 11 and 13. It is aimed to investigate whether the multi-parameters’ identi-
fication of the considered viscoelastic model depends on the loading history in nanoindentation. First of all, we

Figure 11: The loading history chosen for parameters identification and the corresponding force plotted at each
time increment: single step relaxation with a loading time of 0.1s (left) and with a loading time of 1s (right)

focus on the identified results obtained from the two single step relaxation tests, which reach the same maximum
indentation depth after a loading time of 0.1 s (Fig. 11 (left)) and of 1s (Fig. 11 (right)). These two loading times
are in the same decade with the relaxation timer1 andr2, respectively. The holding times of the two loading
cases are kept the same as 30 s. Since the real model parameters are unknown in the traditional inverse method,
a close match between the virtual experimental data and the prediction of the numerical model is the only way to
judge the accuracy of the parameters identification. Fig. 12, left, shows the results of the single step relaxation
with a loading time of 0.1 s. A close match between the virtual experimental data and the numerical results can
be seen. Indeed, the match of the numerical data obtained with the parameters identified from the relaxation test
with a loading time of 1 s is preferred except the force att = 0.1 s. A deviation of 17% at this point can be
seen from Fig. 12. Fig. 12, right, shows the comparable results of the relaxation test with a loading time of 1 s.
The matches between the virtual experimental data and the numerical data obtained with both loading cases in
Fig. 11 are great. According to the traditional way of judgment, we are confident to point out that the parameters
identified from the two relaxation test should be accurate. The advantage of parameter re-identification allows us
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Figure 12: Comparison of the virtual experimental data with numerical simulation of a single step relaxation test:
with a loading time of 0.1 s (left); with a loading time of 1 s (right).Remark: herein, Numericaldata0.1s 30s
and Numericaldata1s 30s are the numerical simulation results with the parameters identified from the single step
relaxation test with a loading time of 0.1 s and 30 s respectively

verifying the most often used way of judgment. The relative errors listed in Table 4 of the re-identified parameters
with respect to the chosen values yield a contrary conclusion. In the relaxation test with a loading time of 0.1 s,
the shear modulusμ3

e and the relaxation timesr2 andr3 are not accurately identified that the deviation ofμ3
e is

as high as 121.60%. In the relaxation test with a loading time of 1 s, the shear moduliμ1
e, μ3

e and the relaxation
timesr1, r2 are worse identified that the identifiedμ1

e is 147.04% greater than the chosen value. Therefore, in the
case of multi-parameters identification, the perfect match between the virtual experimental data and the numerical
prediction does not guarantee the accurate identification of each parameters. It seems that the identification of the
shear moduliμj

e and the relaxation timesrj of the Maxwell elements are strongly dependent on the loading part
of the relaxation tests. The reason may be that the sensitivity in eq. (7) of the reaction force with respect to the
model parameters are different in various loading histories. These worse identified parameters have only a slight
contribution to the reaction force due to a small sensitivity. This should also be the reason of the deviation of 17%
in the force values shown in the left diagram of Fig. 12. The multistep relaxation paths contains seven single step

Figure 13: The loading history chosen for parameters identification and the corresponding force plotted at each
time increment: multistep relaxation (left) and sinusoidal oscillatory (right) testing

relaxations with a loading time of 1 s and a 20 s holding stage as shown in Fig. 13, left. Fig. 14, left shows an
extremely good match between the virtual experimental data and the numerical simulation using the same multi-
step relaxation paths. Indeed, if the simulation is performed with the parameters identified from both single step
relaxation tests, the deviation is still acceptable. In contrast to that, the relative errors of the parameters identified
from multistep relaxation testing in Table 4 show absolutely not an optimistic result for all of the seven parameters
compared with the chosen values. The basic elasticity is accurately captured by the multistep relaxation testing.
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Table 4: Re-identified parameters and their deviations compared with the chosen values for viscoelastic model
being used.Remark: numbers in bold and italic font are those, whose absolute value is smaller than20%.

Parameters μ μ1
e μ2

e μ3
e r1 r2 r3

Chosen 1.3MPa 0.8MPa 0.4MPa 0.1MPa 0.2s 3s 100s

Relax (Tload = 0.1s)
1.2325 0.7435 0.4030 0.2216 0.1869 2.046749.2780

-5.19% -7.06% +0.75% +121.60% -6.55% -31.78% -50.72%

Relax (Tload = 1s)
1.2596 1.9763 0.4764 0.1732 0.0461 2.730758.9804

-3.11% +147.04% +19.10% +73.20% -76.95% -8.98% -41.02%

Multistep
1.3238 0.3582 0.5762 0.1066 0.1857 1.668642.8211

+1.83% -55.23% +44.05% +6.60% -7.15% -44.38% -57.18%

Oscillatory
1.2397 0.5914 0.4971 0.1536 0.2038 1.318464.0938

-4.64% -26.08% +24.28% +53.60% +1.90% -56.05% -35.91%

Figure 14: Comparison of the virtual experimental data with numerical simulation: multistep relaxation testing
(left); sinusoidal oscillatory testing (right).Remark: herein,Numerical mono andNumerical sinu are numerical
data obtained with the parameters identified from multistep relaxation and sinusoidal oscillatory testing respec-
tively

Although the multistep relaxation test is composed with several single step relaxations, the identification results
are really different from the results of the single step relaxation. The sinusoidal oscillatory test is performed with
a 10 s ramping stage up to the maximum indentation depth 5μm followed with a 20 s sinusoidal oscillatory load-
ing. The sine function is designed with a frequency of 2Hz and with an amplitude of 0.1μm and is simulated in
ABAQUS R© with a step-size of 0.05 s. The comparison between the virtual experimental data and the numerical
results is presented by the diagram in Fig. 14, right. These two curves overlap each other. A similar good result
can also be seen in Table 4 except the identified value ofμ3

e andr2. Compared with the single step relaxation and
the multistep relaxation testing, the parameters identified by the sinusoidal oscillatory loading history yield more
harmonious results. The identified value of the longest relaxation timer3 is much better than the results in other
loading histories.
As a conclusion of this part of work, the parameters to be identified in the used viscoelastic model can be split
into two sets: one set contains the shear modulusμ of the extra spring governed by the basic elasticity; the other
set contains the shear moduliμj

e and the relaxation timesrj of the Maxwell elements governed by the viscoelas-
tic behavior. Usually, the basic elasticity can be captured with a single step relaxation test with a sufficient long
holding time. However, for the real polymers with a relaxation time of several months, it is effective to use the
multistep relaxation testing to approximate the basic elasticity. It is found that the identification of the parameters
in the Maxwell-elements is dependent on the relaxation paths. A suitable path which can address all the material
parameters in this linear viscoelastic model is interesting for further investigation. Furthermore, the identified re-
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sults of each loading paths show that the optimal parameters depend in a certain manner on each other. Therefore,
similar to the investigation of elastic-plastic models to predict the inhomogeneous stress-strain fields in (Kreissig
et al., 2001) and homogeneous stress-strain states in (Krämer et al., 2013), a description of parameters’ correlation
in indentation will be helpful in evaluating the modeling of material behaviors.

4 Real Experiments and Parameter Identification

The developed inverse procedure, which has been efficiently applied to re-identify the hyperelastic and viscoelastic
models above, will be extended to characterize polymers from real nanoindentation tests. Silicone rubber, which
can be assumed to be an isotropic elastomer, is chosen to be investigated. According to the experimental behavior
in the obtained force-displacement data, a finite strain viscoelasticity model is required to predict the responses
with consideration of adhesion effects. The parameters of the viscoelastic constitutive model and the adhesive
contact model can then be identified by matching the response of the numerical model with the experimental
force-displacement curves. The real geometry of the Berkovich tip (Fischer-Cripps, 2004) is taken into account to
minimize the systematic error between the numerical model and the experiments.

4.1 Nanoindentation Experiments

The silicone rubber ELASTOSILR© RT 625 is produced by WACKER Chemie GmbH in Germany. The final
specimen is of cylindrical shape with a diameter of 10 mm and a thickness about 2.02 mm. The surface roughness
characterization is performed by scanning electron microscopy (SEM) and the In-Situ SPM Imaging mode of the
HysitronR© indenter1. The two-dimensional optical analysis in Fig. 15 (left) clearly shows a perfectly smooth
surface in the micron range. The local surface roughness obtained from the In-Situ SPM imaging is illustrated in
Fig. 15 (right) and results in a RMS value of around 12 nm, which is not comparable to a maximum indentation
depth of 3μm during indentation. The characterized smooth surface implies two side-effects: on the one hand, it

Figure 15: The surface topography of the tested silicone rubber: 2D surface by scanning electron microscopy (left),
3D topography from In-Situ SPM imaging mode using a Berkovich indentation tip (right)

guarantees that the influence of the surface roughness is negligible according to results in the part 3.2; on the other
hand, adhesion forces are very likely to be present, as there is a contact between two very smooth surfaces. Hence,
the adhesion effects may have a potential influence on the measured force-displacement data.
The nanoindentation experiments2 have been performed on a TI 900 TriboIndenterR© of Hysitron Inc., MN, USA.
In the present study, all experiments have been performed in a quasi-static process by either closed-loop force or
displacement controlled mode with peak values of 50μN or 3000 nm, respectively. As shown in Fig. 16 (left)
and Fig. 17 (left), a holding step of constant displacement or force is added between the loading and unloading
step. The relaxation of the applied force as well as the deformation creep can be observed in the holding stage.
The resulting observations are distinctive evidences for the viscoelastic behavior of the investigated material. The
relaxation protocol uses the described load function in displacement controlled mode with a holding step lasting for
60 s at the peak displacement of 3000 nm. The loading and unloading steps were performed in 20 s, respectively.
At the end of the experiment, a negative force value is observed even for zero displacement. This phenomenon is

1The surface scanning was performed using the device in Leibniz Institute for New Materials, Saarbrücken, Germany
2The nanoindentation experiments were performed using the device of the Chair of Material Science and Methodology at Saarland Univer-

sity under the direction of Prof. H. Vehoff.
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Figure 16: The force-displacement curves of nanoindentation experiments on silicone rubber using the relaxation
testing protocol: Force-displacement curve (left), Relaxation behavior (right)
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Figure 17: The force-displacement curves of nanoindentation experiments on silicone rubber using the creep
testing protocol: Force-displacement curve (left), Creep behavior (right)

an evidence that adhesion is present during the indentation process (Cao et al., 2005; Carrillo et al., 2005; Liao
et al., 2010; Cakmak et al., 2012). Fig. 16 (right) only presents the relaxation behavior of the experiment. The force
relaxes 6% with respect to the maximum force within 60 s towards the equilibrium state. Fig. 17 demonstrates the
creep behavior of the material. The force is ramped to the peak force of 50μN in 20 s. Subsequently it is reduced
to zero with the same rate after holding the peak force for 100 s. In the force-displacement curve, it is obvious
that the residual displacement is comparably large. The reasons may be viscous dissipation as well as adhesion
effects (Gupta et al., 2007; Cakmak et al., 2012; Charitidis, 2011). The displacement increases about 5% during
the holding step and could reach the equilibrium state if the holding time would be long enough. Consequently, it
is possible to simultaneously identify the viscoelastic behavior and the adhesion effect from the force-displacement
data of the nanoindentation experiments. The other type of loading history is the monotonic testing protocol, in
which a stepwise ramping to the peak load or displacement is created by alternating loading and holding steps,
c. f. Fig. 18. It is followed by a stepwise decrease back to zero using the same steps. Displacement control mode
uses a loading and unloading rate of 200 nm/s and shows holding steps at 1000 nm, 2000 nm and 3000 nm, while
in force control mode the steps are performed at 20 N, 30 N, 40 N and 50 N with rates of 2 N/s. All holding
steps last for 20 s. As shown in Fig. 18 (left), if the displacement is held constant, the force relaxes during the
loading stage but increases during the unloading stage. Similar results are also obtained from the force controlled
testing that is presented in Fig. 18 (right). If the holding stage is sufficiently long, the two points should be close
to the equilibrium state. The cross point can be considered as the equilibrium point. Usually, if the relaxation time
is extra long, the average values of the static states after the relaxation of loading and unloading stages could be
considered as approximated equilibrium points. The adhesion effects are shown clearly in both the displacement
and the force controlled monotonic force-displacement curves.

181



0 1000 2000 3000

0

20

40

60

0 40 80 120
0

1000

2000

3000

4000

0

20

40

60
F

or
ce

 

Displacement 
F

 

D
 

T 

 Displacement
 Force

0 1000 2000 3000

0

20

40

60

0 100 200

0

20

40

60

0

1000

2000

3000

F
or

ce
 

Displacement 

D
 F
 

Time 

 Force
 Displacement

Figure 18: The force-displacement curves of nanoindentation experiments on silicone rubber using the monotonic
testing protocol: displacement controlled (DC) (left), load controlled (LC) (right)

4.2 Numerical Modeling

4.2.1 Viscoelastic Model at Finite Deformation

The finite viscoelasticity is characterized explicitly by means of an internal variable model following the concept
of Simo (Simo, 1987) and Holzapfel (Holzapfel and Simo, 1996). The internal variables are defined as the stresses
Qj of the Maxwell elements.
The change of the free energyΨ within an isothermal viscoelastic process from the reference to the current con-
figuration is given as

Ψ(C,Γ1...Γn) = Ψ∞
vol(J) + Ψ∞

iso(C̄) +
n∑

j=1

Υj(C̄,Γj). (17)

The scalar-valued functionsΥj , j = 1, ..., n represent the configurational free energy stalled in the springs of the
parallel Maxwell elements and define the non-equilibrium state. The free energiesΥj are functions of the isochoric
part of the right Cauchy Green strain tensorC and of a set of strain-like internal variablesΓj , j = 1, ..., n. The
physical expression for the second Piola-Kirchhoff stressS is in the form

S = 2
∂Ψ(C,Γ1...Γn)

∂C
= S∞

vol + S∞
iso +

n∑

j=1

Qj . (18)

Considering the efficient time integration algorithms that are suitable for the finite element procedure, the internal
stress tensor variablesQj , j = 1, ..., n evolve with a linear equation (for details, please see (Simo, 1987; Holzapfel
and Simo, 1996) and (Holzapfel, 2001, Chp. 6))

Q̇j +
Qj

rj
= Ṡiso j , j = 1, ..., n, (19)

herein, the tensorsSiso j characterize the isochoric second Piola-Kirchhoff stresses corresponding to the strain
energyΨiso j(C̄) which is responsible for thej-relaxation process with the relaxation timerj , j = 1, ..., n.
According to (Govindjee and Simo, 1992): if a viscoelastic medium such as a thermoplastic elastomer, is composed
of identical polymer chains, e. g. silicone rubber, we can assume thatΨiso j is replaceable byΨ∞

iso

Ψiso j(C̄) = β∞
j Ψ∞

iso(C̄), j = 1, ..., n, (20)

whereβ∞
j ∈ [0,∞) are given as non-dimensional strain-energy factors associated with the relaxation timerj ,

j = 1, ..., n. Finally, the stressesSiso j can be replaced byS∞
iso as

Siso j = β∞
j S∞

iso(C̄), j = 1, ..., n. (21)
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The free energy of the neo-Hooke form, which provides a mathematically simple and reliable constitutive model
for the non-linear deformation behavior, is chosen to describe the finite elastic response of silicone rubber

Ψ(C) = Ψ∞
vol(J) + Ψ∞

iso(C̄) =
1

D1
(J − 1)2 + C10(Ī1 − 3). (22)

The evolution equations in the linear differential form eq. (19) can be solved by an implicit Euler-backward inte-
gration scheme. Considering the time interval[tn, tn+1] we define the time stepΔt := tn+1 − tn. By using the
basic approach for a time-dependent variable one obtains the equations for each Maxwell element

Qj(tn+1) = β∞
j ξjS

∞
iso(tn+1) + Hj(tn), j = 1, ..., n, (23)

with the definition

ξj =
rj

rj + Δt
, Hj(tn) = ξj

{
Qj(tn) − β∞

j S∞
iso(tn)

}
, j = 1, ..., n. (24)

4.2.2 FEM Model with Adhesive Contact

In this study, because the silicone rubber is assumed to be isotropic and the Berkovich indentation tip can be
represented by an effective conical indenter with a half angle of70.3◦, an axisymmetric 2D FE model is applied
in ABAQUS R©. The real geometry of the indenter tip is taken into account. Firstly, the shape of the Berkovich
tip is scanned in 3D by the In-Situ SPM imaging mode stalled in the TriboIndenterR©, as shown in Fig. 19 (left).
The effective conical edge is combined with the tip curvature by the smooth transition technique as illustrated in
Fig. 19 (right). Hence, the Berkovich indenter is simulated by an effective conical indenter with the real shape tip,
which is a spherical curve with a radius of 15.63μm as shown in Fig. 19 (right). For the FE model, the tip can be
assumed to be a rigid body compared to the soft polymer. The geometrical size of the polymer sample is200 μm
× 200 μm. Similar to the model in Section 3, considering the silicone rubber in the study as an incompressible
material, the linear axisymmetric 4-node hybrid element type CAX4H in ABAQUS/Standard is chosen. For each
studied configuration, the mesh convergence is checked by more than 100000 degrees of freedom. It shows that a
coarser mesh, consisting of at least 10000 degrees of freedom, can give converged results.
Concerning the numerical treatment of the contact problem, a contact pair is formed with the tip as the master

Figure 19: 3D scanning image of the tip shape geometry (left) and the 2D effective conical indenter with a spherical
tip that originated from the 3D scanning data (right)

surface and the layer as the slave surface. In this study, because the ratio of the indentation depth to the layer
thickness is smaller than 1%, friction is negligible according to numerical results of our previous work (Chen
et al., 2011). Hence, here we only focus on the normal contact. The default contact pressure-clearance relationship
used in ABAQUSR©/Standard is referred as the ”hard” contact model. In this case, the formulation of the normal
contact is used as a constraint for non-penetration, which treats the normal contact as an unilateral constraint
problem. It only transmits pressure once the surfaces are in contact within a contact zonec, as shown in Fig. 20
(left). However, this interaction model is not sufficient to simulate the real experimental behavior as adhesion is
not taken into account. As a result, an adhesion zone is added to the contact zone forming an interaction area of
radiusc + a. The adhesive behavior is implemented as an interaction of the contact pair. It is defined as a surface-
based cohesive behavior in ABAQUSR© with a traction-separation relationship as shown in Fig. 20 (right), which
assumes initially linear elastic behavior followed by the initiation and the evolution of damage. The elastic behavior
is written in terms of an adhesive stiffnessK = [Knn, Kss, Ktt]T that relates the stresses to the separation at the
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Figure 20: Adhesive contact Geometry (left), Traction-separation relationship with a linear or exponential damage
evolution law in adhesive contacts (right)

damage initiationδ0 = [δ0
nn, δ0

ss, δ
0
tt]

T across the interface. The process of degradation begins when the contact
separation satisfies a certain damage initiation criteria related toδ0. A linear or exponential damage evolution
law describes the rate at which the adhesive stiffnessK is degraded once the corresponding initiation criterion is
reached. The evolution laws are defined with a separation at the complete failureδt

nn and the non-dimensional
exponential parameterαE .

4.3 Identification Results

The experimental results of silicone rubber only show slight viscoelastic behavior in both the relaxation and the
creep tests. Therefore, two Maxwell-elements are expected to sufficiently represent the relaxation spectrum. It is
assumed that the separation is the same for all three directions at the initial damage, in order to simplify the iden-
tification of the adhesive model. Not only the linear, but also the exponential evolution laws of damage are taken
into account in the model. The force-displacement data of the relaxation in displacement controlled mode are used
as the reference data in the identification. Several identification procedures with different initial parameter sets

Table 5: The identified model parameters with a linear and exponential evolution law

Linear Evolution Law for Adhesive Damage

C10(MPa) D1 β∞
1 r1(s) β∞

2 r2(s)

0.16714 0.00486 0.11465 0.10176 0.05098 8.06892

Knn( μN
μm3 ) Kss( μN

μm3 ) Ktt( μN
μm3 ) δ0

nn(μm) δt
nn(μm)

0.01021 0.17722 0.03147 0.31996 10.44223

Exponential Evolution Law for Adhesive Damage

C10(MPa) D1 β∞
1 r1(s) β∞

2 r2(s)

0.16770 0.00533 0.10286 0.11330 0.04822 6.21961

Knn( μN
μm3 ) Kss( μN

μm3 ) Ktt( μN
μm3 ) δ0

nn(μm) δt
nn(μm) αE

0.010531 0.17054 0.08865 0.41149 9.65793 7.25348

lead to almost the same final optimized values. Therefore, a valid minimum is obtained according to the objective
function. The reproducibility of the nanoindentation experimental data in this study are good and the maximum
deviation between the three repeated experiments is less than 4.5%. It is recognized that if the noise is less than
5% of the data, the identified results are not sensitive to the data noise (Chen and Diebels, 2012).
As shown in Table 5,C10 is responsible for the equilibrium isochoric hyperelastic behavior and results in approxi-
mately the same value, regardless if the linear or the exponential evolution law is considered. The compressibility
parameterD1 is found to be about 0.005, which demonstrates that the silicone rubber is nearly incompressible. The
small relaxation timesr1 andr2 for the two Maxwell elements represent the slight rate-dependent behavior of the
silicone rubber in nanoindentation experiments. The identified adhesive stiffnessK as illustrated in Fig. 20 (right)
is the same for the linear evolution law and the exponential law. At the point of damage initiation, the separation
is around 300 nm or 400 nm for the linear or the exponential evolution law, respectively, while the distance at
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complete failure is in the range of 10μm in both adhesive models. As expected, the identification of the material
parameters are independent on the used evolution law in the adhesive contact model.
Fig. 21 and Fig. 22 present the comparisons between the experimental data and numerical prediction using the
parameters that are identified by the indentation response. The numerical simulations on the left side and the right
side of Fig. 21 and Fig. 22 are performed using the linear evolution law and exponential law of the adhesive contact
model with the identified parameters in Table 5, respectively. All comparisons indicate that there is a good agree-
ment between the experimental measurements and the numerical simulation. The relaxation and creep processes in
the cyclic or monotonic holding stages are accurately predicted by the numerical simulations for nanoindentation
experiments. As a conclusion, it can be argumented that the viscoelastic behavior of the silicone rubber can be
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Figure 21: Relaxation tests: Linear evolution law (left), Exponential evolution law (right)
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Figure 22: Monotonic relaxation tests: Linear evolution law (left), Exponential evolution law (right)

characterized by the chosen constitutive model together with the identified parameters from nanoindentation ex-
periments. Adhesion effects, namely a negative force at zero displacement as well as a residual displacement after
withdrawing the indenter, are also accurately calculated by the numerical simulation. Hence, the adhesive contact
model illustrated in Fig. 20 can be used to quantify these adhesion effects in nanoindentation experiments. The
simulation results using either a linear or exponential evolution law for the adhesive contact show no significant
difference.

5 Conclusion and Outlook

In the present work, an analysis procedure to characterize polymers from nanoindentation has been developed
using the FEM based inverse method. The developed inverse procedure has been sufficiently applied to identify
the hyperelastic as well as viscoelastic properties of polymers with the concept of parameters re-identification, in
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which the identified results are able to be quantified. The surface roughness effects have been investigated numer-
ically by explicitly taking into account the roughness profile in the model. The influence of the surface roughness
is quantified as a function of the sine parameters as well as of the indentation parameters. Finally, this inverse
procedure is extended to use in the real nanoindentation. The viscoelastic behavior of silicone rubber in nanoin-
dentation is described with a viscoelastic model at finite deformation taking into account the adhesion effects. The
parameters of the viscoelastic constitutive model as well as the adhesive contact model are able to be identified
simultaneously from nanoindentation using the FEM based inverse procedure.
As for the future work, firstly, it is meaningful to quantify the influence of surface roughness on the force-
displacement data in a more explicit way, which is practical to apply into the experiment or numerical computation
as a calibration source. Secondly, comparing work has to be done in order to verify the ability to characterize
polymers from nanoindentation. One comparison will be made between the characterization of polymers from in-
dentation performed on different scales, i. e. macro- and nanoindentation, leading to a quantification of the effects
related to adhesion and surface roughness, which are sensitive in nanoscale but unimportant in macro-scale. This
part of work will be included in the upcoming paper. Thirdly, nanoindentation experiments are typically carried out
on multiple spatial scales, i. e. atomic-scale, nanoscale, microscale and continuum scale. In this case, multiscale
simulations combining the greatest advantage of both atomistic and FEM simulations have to be developed in the
field of nanoindentation of polymers. Therefore, multiscale simulation from atomistic simulation to finite element
computation is our next key task in the research field on nanoindentation of polymers.
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