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Fluid Model of Crystal Plasticity: Numerical Simulations of 2-turn Equal
Channel Angular Extrusion

P. Minakowski

Considering severe plastic deformation experiments as a motivation, the plastic behaviour of crystalline solids is
treated as a flow of a highly viscous, compressible material. Starting from classical single crystal hypothesis we
present a purely Eulerian set of equations describing flow of a plastic material. Moreover, we provide a thermody-
namic justification of the evolution of the Cauchy stress based on the Gibbs potential. Numerical simulations for
a 2-turn equal channel angular extrusion are reported.

Introduction

Recent experimental studies show that severe plastic deformations of certain materials can achieve exceptionally
high strength accompanied by relatively good ductility. It is shown that simple shear is a good deformation method
for structure and texture formation in metal-working. Several metal forming processes achieving severe plastic
deformations are now available. We chose the equal channel angular extrusion (ECAE) because it has proven
highly suitable for experimental and theoretical studies since in was first developed by Segal (Segal et al., 1981;
Segal, 1995, 1999). A work piece is extruded several times through a die in the shape of curved channel with
a 90◦−angle turn. Each pass introduces additional strain. The main advantages of using ECAE in comparison to
alternative experiments (e.g. rolling, forging) are minor changes in the cross-section of the billet and that one can
look at various amounts of strain in a specimen.

In the presented approach the plastic behaviour of crystalline solids is treated as a highly viscous material flow
through an adjustable crystal lattice (Kratochvı́l et al., 2009). Looking at severe plastic deformation experiments,
it seems that crystalline materials at yield behave as a special kind of anisotropic, compressible, highly viscous
fluid.

In early references, such as Hill and Rice (1972); Peirce et al. (1982, 1983); Asaro and Needleman (1985), the au-
thors postulate that the Jaumann rate of the Kirchhoff stress is related to the elastic rate of stretching by the usual
elastic moduli tensor. In this approach, the constitutive equation is stated phenomenologically. Moreover, it can
not be derived from a Helmholtz potential. To the author’s knowledge the only description of this phenomena,
which is thermodynamically admissible, uses the Helmholtz potential and does not lead to a rate type model, see
Srinivasa and Srinivasan (2009).

Following the paper by Rajagopal and Srinivasa (2011), we employ the Gibbs potential to derive an equation,
which describes the evolution of the Cauchy stress. For detailed discussion on models of a rate type,

f(Ṫ , T , L) = 0, (1)

where the constitutive relation contains the Cauchy stressT , the rate of stresṡT , and the velocity gradientL, we
refer to Rajagopal and Srinivasa (2000, 2011).

The paper is structured as follows. In Section 1 we introduce all necessary assumptions and derive the Eulerian
model of crystal plasticity, including compressible elastic stretches. Section 2 consists of the formulation of an
initial boundary value problem, the description of the finite element approach, and the results of numerical simu-
lations.
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1 Crystal Plasticity Model

1.1 Kinematics

Let Ω denote the reference configuration of the body and letΩt denote the current configuration at timet. The
point, which was at the positionX ∈ Ω in the reference configuration, is in the current configuration at timet in
the position

x = χ(X, t) for X ∈ Ω, x ∈ Ωt. (2)

The mappingχ(X, t) is continuously differentiable with respect to the position. The deformation gradientF is
defined through∂χ(X,t)

∂X and we assume its multiplicative decomposition, see Kröner (1961),

F =
∂χ(X, t)

∂X
= FeFp, (3)

whereFe stands for the elastic distortion (stretches and rotations of the lattice) andFp for the plastic distortion
(the distortion of the lattice due to the motion of dislocations). Moreover, the deformation gradient is non-singular
and all the volumetric changes are assumed to result from the elastic stretches in the lattice,

det F > 0, det Fp = 1, det F = det Fe. (4)

Since the velocity field is defined asv(X, t) = ∂χ(X,t)
∂t , equation (3) leads to the additive decomposition of the

velocity gradient

∇v = Ḟ F−1 = Ḟe(Fe)
−1 + Fe(Ḟp(Fp)

−1)(Fe)
−1 = Le + FeLp(Fe)

−1, (5)

where the superposed dot denotes the material time derivative (ȧ = ∂a
∂t + v∇a).

The evolution of the state of the body is subject to the balance of mass, momentum, angular momentum, and total
energy per unit mass, which in the Eulerian coordinates take the form

%̇ + %div v = 0, (6)

%v̇ − div T = f , T = T T , (7)

%ε̇ = %r − div q + T : D, (8)

where%(x, t) stands for the density,T (x, t) is the Cauchy stress tensor,D is the symmetric part of the velocity
gradient,f is the external force,r is the heat source per unit mass,ε is the specific internal energy andq is the heat
flux vector.

1.2 Evolution of the Cauchy Stress

We aim to give thermodynamic justification for the constitutive equation for the rate of stress (1). The starting point
of any thermodynamical analysis is the introduction of convenient state variables. We introduce the thermodynamic
variables, which depend on the temperatureθ and the Kirchhoff stressS

ε(S, θ) - specific internal energy,

Ψ(S, θ) - specific Helmholtz potential,

η(S, θ) - specific entropy.

The Kirchhoff stressS is related to the Cauchy stressT by S = T /% or S = T det F /%0. Remembering that
the determinant of the deformation gradient is the Jacobian of the mappingχ (%(x, 0)dX = %(x, t) det F dx),
it represents the ratio of the current volume to the reference volume.

Usually the stress is defined as the derivative of a Helmholtz potential with respect to a proper strain measure.
In our case we would like to avoid any dependency on the strain. To this aim we transform the Helmholtz potential
into the Gibbs potentialG(S, θ). The relation is given by the Legendre transformation

Ψ(S, θ) = G(S, θ) −
∂G(S, θ)

∂S
: S. (9)
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Knowing that the entropy is given byη(S, θ) = −∂G(S,θ)
∂θ and that the thermodynamic variables are related by

ε = Ψ + θη we substitute (9) into (8),

%

(
˙

G −
∂G

∂S
: S −

∂G

∂θ
θ

)

= %r − div q + T : D

−%θ
˙∂G

∂θ
+ %

(
∂G

∂S
: Ṡ −

∂G

∂S
: Ṡ −

˙∂G

∂S
: S

)

= %r − div q + T : D

%θη̇ − %
∂2G

∂S2 Ṡ : S = %r − div q + T : D

%θη̇ = %r − div q + %

(

S :

(

D +
∂2G

∂S2 Ṡ

))

.

The second law of thermodynamics involving the specific entropy (Clausius–Duhem inequality), takes the form

%η̇ + div
(q

θ

)
−

%r

θ
≥ 0. (10)

We identify the rate of dissipation (the rate of entropy production per unit mass) as

ξ = S :

(

D +
∂2G

∂S2 Ṡ

)

= S :
(
D − AṠ

)
, (11)

whereA = −∂2G
∂S2 stands for the fourth order symmetric elastic compliance tensor.

In order to obtain an objective stress-strain constitutive relation (1) we follow Rajagopal and Srinivasa (2011).
The right hand side of (11) consists ofD andA, both objective tensors, anḋS, which itself is not objective
(howeverS : AS is objective). To overcome this difficulty we notice that, due to the fact that functionAS is
linear we can observe that(AS)S = S(AS). Now let us consider an arbitrary tensorW and the expression
S : A(WS − SW ). From the symmetry ofA andS (S = ST ) together with the above observation we obtain

S : A(WS − SW ) = AS : (WS − SW ) = W : ((AS)S − S(AS)) = 0. (12)

By adding (12) to (11) we get

ξ = S :
(
D − A(Ṡ + WS − SW )

)
. (13)

Let us denote the dissipative part ofD by Dp and the inversion ofA by C,

Dp = D − A(Ṡ + WS − SW ), Ṡ + WS − SW = C(D − Dp). (14)

To reformulate (14) in terms of the Cauchy stress we substituteS = T /% and deduce

Ṫ + Tdiv v + WT − TW = %C(D − Dp). (15)

Finally we obtain the material rate of Cauchy stress. By choosing an arbitrary tensorW as the skew-symmetric
part of the velocity gradientW = 1

2

(
∇v − (∇v)T

)
, we conclude that the evolution of the Cauchy stress is

described by the Jaumann rate (15).

In what follows we confine ourselves to an isotropic elastic response, by specifying the fourth order elastic tensorC
asC(D−Dp) = λ(tr (D−Dp))I +2μ(D−Dp), whereλ andμ are the Lame coefficients,C = λI ⊗ I + 2μI,
CIJKL = λδIJδKL + μ(δIKδJL + δJKδIL).

1.3 Single Crystal Hypothesis

Plastic effects are modelled as the deformations of a material due to the flow of material dislocations through
the lattice. The single-crystal hypothesis is based on the assumption that the motion of dislocations in crystalline
materials take place in preferred slip directions on preferred slip planes. The slip directions are described by the
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constant, orthonormal, unit vectorss
(i)
0 andm

(i)
0 , wheres

(i)
0 is in the direction of the slip andm(i)

0 is normal to
the slip plane. These two vectors indicate slip systems (i = 1, 2, . . . , N ) and are given by the crystallographic
structure. The plastic part of the velocity gradientLp is assumed to be given by (Rice, 1971)

Lp =
N∑

i=1

ν(i)s
(i)
0 ⊗ m

(i)
0 , Dp =

N∑

i=1

ν(i)sym
(
s
(i)
0 ⊗ m

(i)
0

)
, (16)

with the slip ratesν(i)(x, t) given by a flow rule (18). Moreover, we introduce the current slip directions and
those normal to the current slip directions, which depend on the deformation gradient through the relations(i) =
Fes

(i)
0 , m(i) = Fe

−T m
(i)
0 . Finally we obtain the flow rule

L = Le +
N∑

i=1

ν(i)Fes
(i)
0 ⊗ m

(i)
0 (Fe)

−1 = Le +
N∑

i=1

ν(i)s(i) ⊗ m(i). (17)

To complete the system of equations, the slip ratesν(i) have to be specified. Following Peirce et al. (1983), we
employ the common assumption that the rate-sensitivity function is a power-law function

ν(i) = ν0sgn (τ (i))

(
|τ (i)|

τ
(i)
c

)1/m

, (18)

where the resolved shear stressesτ (i) represent the Cauchy stress resolved on each slip systemτ (i) = s(i) ∙ Tm(i),
1/m is a rate sensitivity parameter,ν0 a reference slip rate, andτc is a critical resolved shear stress. The critical
stressesτ (i)

c representing dissipative internal forces that oppose the slip are assumed to be governed by the evolution
equation

τ̇c
(i) =

∑

j

Hij |ν
(j)|, (19)

where the hardening coefficientsHij are functions of accumulated slip rate andτc|t=0 = τ0.

Let us notice that under the above assumptions the second law of thermodynamics is satisfied

ξ = T : Dp =
N∑

i=1

ν(i)T :
(
s(i) ⊗ m(i)

)
=

N∑

i=1

ν(i)τ (i) =
N∑

i=1

ν0|τ
(i)|

(
|τ (i)|

τ
(i)
c

) 1
m

≥ 0. (20)

1.4 Evolution of the Slip Systems

Our goal is to formulate a system of equations in the current configuration independently of the deformation
gradient. To this aim we employ ideas from Cazacu and Ionescu (2010b,a). By taking the time derivative of the
relations(i) = Fes

(i)
0 and substitutingḞe from (5), we obtain the equation that describes the evolution of the slip

directions

˙s(i) =

(

∇v −
∑

i

ν(i)s(i) ⊗ m(i)

)

s(i). (21)

In Section 2 we will restrict ourselves to the plane strain case. We consider projections of three dimensional
slip systems onto the plane. Due to the geometrical restrictions of the in-plane model of FCC crystal, we will
consider only three slip systems (for detailed discussion see Cazacu and Ionescu (2010b)). Two dimensional
vectors corresponding to thei−th slip system can be described by their angle of lattice rotationϕi and the scalars
si, mi responsible for elastic stretching. Since all three slip systems are rotating together, we can characterise the
rotation by specifying the anglesϕi for i ∈ {1, 2, 3} asϕ1 = ϕ + φ, ϕ2 = ϕ, andϕ3 = ϕ − φ, whereφ = 54.7◦,

s(i) = si(cos ϕi, sin ϕi), m(i) = mi(− sin ϕi, cos ϕi). (22)
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We reformulate the vectorial equations (21) in terms of the scalar unknowns (ϕ, s1, m1, s2, m2, s3, m3),

ϕ̇ = (− sin ϕ, cos ϕ) ∙

(

∇v −
3∑

i=1

ν(i)s(i) ⊗ m(i)

)

s2(cos ϕ, sin ϕ), (23)

ṡi = (cos ϕi, sin ϕi) ∙

(

∇v −
3∑

i=1

ν(i)s(i) ⊗ m(i)

)

si(cos ϕi, sin ϕi); i ∈ {1, 2, 3}, (24)

ṁi = (− sin ϕi, cos ϕi) ∙

(

∇v −
3∑

i=1

ν(i)s(i) ⊗ m(i)

)

mi(− sin ϕi, cos ϕi); i ∈ {1, 2, 3}. (25)

2 2-turn Equal Channel Angular Extrusion

ECAE is based on forcing a specimen through an L-shape channel of a constant cross-section. Simple shear takes
place in the thin layer at the channel turn. The process is repeated a couple of times (typically up to 10) in order
to obtain a very large (severe) plastic deformation and a fine grain structure. The first report on the use of a 2-turn
channel is due to Liu et al. (1998). Later the idea was extended to multi-pass ECAE by Nakashima et al. (2000).

The Eulerian system of equations derived in Section 1 allows us to consider more than one turn in a single domain.
We chose a 2-turn channel to show the main features of the presented approach. For experimental and numerical
studies of a 2-turn ECAE we refer to Rosochowski and Olejnik (2002, 2008).

shear plane

undeformed
 element

deformed element

unpenetrable, 
frictionless boundary

Γ1

Γ3

Γ2

Figure 1: Scheme of 2-turn ECAE experiment

s(1)m(1)

m(2)

s(2)

m(3)

s(3)

Figure 2: Scheme of slip systems

2.1 Initial-boundary Value Problem

Our domainΩ is the 2-turn channel (see Figure 1). In the Eulerian description of plane-strain crystal plasticity
the unknowns are: the velocityv(x, t), the Cauchy stressT (x, t), the density%(x, t), and the orientation of the
latticeϕ(x, t). The boundary of the domain is divided into three parts: the inflow boundaryΓ1, the impenetrable
boundaryΓ2 and the outflow boundaryΓ3. The boundary conditions are set to be: the Dirichlet inflow condition
on the velocity and the lattice orientation,v|Γ1 = vin = (0,−1), ϕ|Γ1 = ϕin = 0, the perfect-slip onΓ2, and
the stress free condition onΓ3. The material parameters and characteristic values are taken to be: the density
%0 = 3000 kg

m3 , the velocityV = 10−5 m
s = 10μm

s , the lengthL = 10−2m, the reference slip rateν0 = 10−3 1
s ,

the reference stressτ0 = 70MPa, the Young’s modulusE = 1000τ0, the Poisson’s ratioνpois = 0.35, and
the rate sensitivity parameterm = 0.05 (1/m = 20). The material parameters correspond to aluminium and the
characteristic values reflect ECAE experiments. As initial values we putv(x, 0) = 0, T (x, 0) = 0, τc(x, 0) = τ0,
%(x, 0) = 1, ϕ(x, 0) = 0 andmi(x, 0) = si(x, 0) = 1, ∀i ∈ {1, 2, 3}.
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After rescaling of the system we get the following set of equations

%,t +div (%v) = 0

R1%v̇ − div T = 0

Ṫ + Tdiv v + WT − TW = %C(D − Dp)

ϕ̇ = (− sin ϕ, cos ϕ) ∙

(

∇v − R2

3∑

i=1

ν(i)s(i) ⊗ m(i)

)

s2(cos ϕ, sin ϕ)

(26)

whereDp, ν(i), mi, si andτ̇c
(i) are given by (16), (18), (24), (25) and (19), respectively.

Two characteristic numbers appear in the system,R1 = %0V 2

Lτ0
≈ 10−12 andR2 = Lν0

V = 1. The very small value
of R1 justifies the restriction to the quasi-static case, which is common in plasticity. However we keep the time
derivative in the balance equation (7).

Moreover, we specify the hardening matrixHij = H = H0sech
2
(

H0νacc

τs−τ0

)
, where the initial hardening rate

H0 = 8.9τ0, the saturation strengthτs = 1.8τ0 and the accumulated slipνacc(t) =
∑

i

∫ t

0
|ν(i)|dt, see Peirce et al.

(1983).

2.2 Finite Element Formulation

Inspired by the numerical methods of fluid dynamics, a finite element Eulerian representation is formulated and
applied to a solution of the flow adjustment initial-boundary value problem for the 2-turn equal channel angular
extrusion, see Section 2.1.

The domainΩ is approximated by a simplical triangulationTh. Time is discretized by a one step finite difference.
The discretization in space consists ofP2 elements for the velocity,P1 for the density and the lattice rotations (all
continuous) andP1-discontinuous for the Cauchy stress and the slip rates. We define the finite-dimensional spaces

Vh = {vh ∈ W 1,2(Ω;R2); v|Γ1 = (0,−1), v|K ∈ P2(K)2 ∀K ∈ Th},

Rh = {%h ∈ W 1,2(Ω;R); %h|Γ1 = 1, %h|K ∈ P1(K) ∀K ∈ Th},

Th = {T h ∈ W 1,2(Ω;R2×2
sym); T h|K ∈ P1(K)2×2 ∀K ∈ Th},

Nh = {νh ∈ L2(R); νh|1 ∈ P1(K) ∀K ∈ Th},

Ah = {ϕh ∈ W 1,2(Ω;R); ϕh|Γ1 = 0, ϕh|K ∈ P1(K) ∀K ∈ Th}.

The slip rates are added to the system (26) as variables. We discretize the system (26) in a mixed finite element
space and solve the following problem. Find(vh, %h, T h, ν1h, ν2h, ν3h, ϕh) ∈ Vh×Rh×Th×Nh×Nh×Nh×Ah,
such that

(%h,t , z%) + (vh∇%h, z%) + (%hdiv (vh), z%) = 0 ∀z% ∈ Rh0,

R1 (%hv̇h, zv) + (T h,∇(zv)) + (T hn ∙ n, zv ∙ n)Γ2
+

β

h
(vh ∙ n, zv ∙ n)Γ2

= 0 ∀zv ∈ Vh0,
(
Ṫ h + T hdiv vh + W hT h − T hW h, ZT

)
−
(
%C(Dh − Dph), ZT

)
+ (ZTn ∙ n, vh ∙ n)Γ2

= 0 ∀ZT ∈ Th,


ν
(i)
h − sgn (T h : s

(i)
h ⊗ m

(i)
h )

(
|T h : s

(i)
h ⊗ m

(i)
h |

τ
(i)
c

)20

, zνi



 = 0 ∀zνi ∈ Nh andi ∈ {1, 2, 3},

(

ϕ̇h − (− sin ϕh, cos ϕh)T

(

∇vh − R2

3∑

i=1

ν
(i)
h s

(i)
h ⊗ m

(i)
h

)

s2h(cos ϕh, sin ϕh), zϕ

)

= 0 zϕ ∈ Ah,

(27)

where(∙, ∙) is the standardL2 inner product. The boundary conditions on the impenetrable, frictionless boundary
Γ2 are imposed by the Nitsche’s method:(ZTn ∙ n, v ∙ n)Γ2 + (Tn ∙ n, zv ∙ n)Γ2 + β

h (v ∙ n, zv ∙ n)Γ2 with
β = 10, see Freund and Stenberg (1995).
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To solve the system (27) we employ a non-linear Newton-Ralphson solver with an analytic Jacobian. Implemen-
tation is done in the software package FEniCS (Logg et al., 2012). A linear system is solved by a direct solver.

Moreover, the critical resolved shear stresses and the stretch of slip directions are updated after each time step
according to (19), (24), and (25).

2.3 Results

We present the results of computations at the moment when a steady state is reached (see Figure 3). We treat the
plastic material as a fluid so it fills the entire domain, as opposed to models where empty zones (close to outer turn)
are reported (Rosochowski and Olejnik, 2008). The velocity profile is typical of flow problems.

We can observe that plastic slip occurs only in the vicinity of shear planes where the channel turns. The accu-
mulated slip has its highest values close to the inner turns. Its density is almost constant, although it changes in
the neighbourhood of the curved part of the boundary and it is higher before the first turn than in the rest of the
domain. The lattice rotation also changes nearby the shear planes in the direction of turn.

In Figure 4 we observe the behaviour of individual slip systems. The arrangement of slip directions is presented
in Figure 1. We notice that the activation of a particular slip system depends on its position relative to the shear
plane. The second slip system is almost inactive but we need to take it into account due to compressibility.

Simulations were conducted for two different meshes: 5278 vertices (10252 cells) and 21289 vertices (41974
cells). We conclude that the problem is mesh independent. The resented results were computed with the finer
mesh.

Figure 3: Computed variables: velocity magnitude (top-left), accumulated slip (top-right), density (bottom-left),
lattice rotation (bottom-right).
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Figure 4: Behaviour of slip rates on individual slip systems in the 2-turn channel.

3 Conclusions

In this paper we derived a model of crystal plasticity that includes compressible linear elasticity, namely stretches
and rotations of the slip systems have been taken into account. Moreover, the evolution of the Cauchy stress has
been justified by thermodynamical discussion.

We formulated a finite element discretization scheme, which has been used to solve the fully coupled problem.
Performed numerical simulations show the capabilities of the method applied. Important elements of the model
are the elastic stretches, because they allow us to reduce high values of stress in the vicinity of inner turns.

The presented approach is purely Eulerian and its main advantage is the ability to capture high strains, due to
ECAE with multiple turns. In the future we plan to abandon the plane strain assumption and compute 3D models
including the full set of the slip systems, even though this will require the use of parallel computing.
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