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Elastic State Induced Energy Gap Variation in ZnTe/ZnMgTe Core/Shell
Nanowires

R. Wojnar, P. Wojnar, S. Kret

The zinc telluride (ZnTe) nanowires grown recently are covered with the ZnMgTe shell. As a result of addition of
magnesium the ZnMgTe lattice is expanded with respect to pure ZnTe lattice. From the lattice mismatch between
the ZnMgTe shell and ZnTe nanowire core the internal strain and stress are created. Depending on the shell
thickness and the Mg content in the shell the optical emission exhibits a considerable energy shift. To estimate this
effect, at least qualitatively, the elastic state of the nanowire is calculated.

An analysis of the state of strain and stress in the core-shell nanowire within linear elasticity, using an analogy
with thermal stresses is presented, in the similar way as it is applied, e.g. in hygro-mechanics. The suitable system
of the differential Lamé-Navier’s type equations is derived, and its solution for the axially symmetric problem is
given. The jump of stress at the core-shell boundary is determined.

1 Introduction

In solid-state physics, an energy gap (band gap) means an energy interval in the energy spectrum of the solid, in
which no electron states can exist. Substances with large energy gap are insulators, those with the smaller one
are semiconductors, and when the gap is very small or none we are dealing with conductors. The energy gap
of a material can be changed by controlling the composition of certain semiconductor alloys. For example, it is
possible to build, as we do, the layered materials with alternating compositions by techniques of molecular–beam
epitaxy. In general, the energy gap of semiconductors is decreasing with increase of the temperature. Energy gaps
is depending also on the mechanical stress, and here is the motivation of this paper, cf. Kittel (2005).

Optical properties of semiconductor nanowires attract a great interest because of emerging applications of these
structures in the field of nano-photonics and photovoltaics (Sköld et al., 1983; Waag et al., 1993; Ghosh et al., 2009;
Soykan et al., 2010). Te-based nanowires are especially promising in this respect because II-VI semiconductors
are characterized by direct energy gaps with values covering the entire visible light spectral range, from 1.6 eV
(CdTe) to 3.5 eV (MnTe). Recently ZnTe nanowires embedded in ZnMgTe coating shells are fabricated using gold
catalyst assisted molecular beam epitaxy (Ghosh et al., 2009). An intense emission from the nanowire cores at
energies corresponding to the energy gap of ZnTe is observed.

Zinc telluride typically has a regular (cubic) crystal structure of the zincblende type, (Soykan et al., 2010). ZnTe can
be easily doped, and for this reason it is one of the more common semiconducting materials used in optoelectronics,
(Ghosh et al., 2009). When doped with the magnesium atoms it creates the ZnMgTe alloy. An enhancement of
the Zeeman splitting as a result of the incorporation of paramagnetic Mn ions in ZnMnTe/ZnMgTe core/shell
nanowires is observed, (Wojnar et al., 2012). One can compare the atomic radii of the atoms of the alloy: 52

127.6Te
- 140 pm 30

65.4Zn - 134 pm 12
24.3Mg - 160 pm and observe that the radius of magnesium is the greatest despite of

the lowest atomic magnesium number.

The lattice constant of ZnMgTe crystal is estimated from the experimental relation

aZnMgTe =
1

5
aMgTe +

4

5
aZnTe. (1)

Both synthesised materials, ZnTe (core) and ZnMgTe (shell), have the same zinc blende cubic crystal structure, the
same spacial orientation of crystal axes, but differ by the lattice constant. This is 6.1034Å in ZnTe, 6.42Å in MgTe
(Landolt and Börnstein, 1982), and 6.17Å in ZnMgTe. The last value is obtained from Eq.(1). The difference
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between the lattice constants of ZnTe and ZnMgTe leads to the mismatch between the lattices at the core and shell
at the contact surface (the interface). The influence of introduction of the Mn-atom on the shell material constant
can be regarded as a similar to the action of temperature, and this analogy will be exploited further.

1.1 The Core-Shell Nanowire

Depending on the thickness and the Mg content in the shell this emission exhibits a considerable energy shift. This
effect can be at least qualitatively explained in terms of strain induced energy gap variation of the zinc telluride
(ZnTe), whereas the strain originates from the lattice mismatch between the ZnMgTe nanowire shells and ZnTe
nanowire cores. This interpretation is consistent with the experimental fact that the increase of the Mg content in
the shell, as well as the increase of the thickness of the shell, which correspond both with the increase of the tensile
strain in the nanowire cores, result in the red shift of the energy gap.

Hence, an analysis of the elastic state in the core-shell nanowire is needed. Calculations are made within the scope
of linear elasticity, using an analogy with thermal stresses, in a similar way as it is applied, e.g., in hygro-elasticity
(Ignaczak, 1978; Szekeres, 2012). A suitable system of the differential Lamé–Navier’s type equations is derived,
and its approximate solution is given.

Figure 1. Nanowire with and without ZnMgTe shell. Average diameter of nanowires with shell: 81±7nm,
average diameter of nanowires without shell: 33± 9nm.

1.2 Bir-Pikus’ Hamiltonian

Since the physics of a semiconductor is largely governed by the carriers in the extreme points of energy bands, Bir
and Pikus (1974) observed that only the neighbourhoods of the band extrema are important and that the qualitative
properties of these materials are governed by the shape of these energy surfaces. For the regular crystal the
Hamiltonian, in which the strain components are included is as follows

HBP =

(
5

4
b − a

) ∑
i

εii − b
∑
i

εii J
2
i −

d√
3

[εxy (JxJy + JyJx) + c.p.]

where εij , i = 1, 2, 3 ≡ x, y, z are the strain tensor components, Ji are the components of the angular momentum,
and a, b and d are the constants (Landolt and Börnstein, 1982)

a = 5.47eV b = 1.26eV d = 4.2eV.
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As the spin-orbit coupling is an interaction of a particle’s spin with its motion described by the angular momentum,
the Hamiltonian has the matrix form

HBP =



P −Q R 0 0

R∗ P +Q 0 0

0 0 P +Q R

0 0 R∗ P −Q


with

P = −
∑
i

εii ≡ − (εxx + εyy + εzz) Q = b

(
εzz −

εxx + εyy
2

)
R = i d εxy − b

√
3

2
(εxx − εyy)

and i ≡
√
− 1.

1.3 Regular (Cubic) Crystals and Matrix of Elasticity Tensor

The nanowire atomic structure has been observed by the high-resolution transmission electron microscopy (HR-
TEM) which allows for direct imaging of the atomic structure of the sample.

High-resolution transmission electron microscopy (HR-TEM) is used for direct imaging of the atomic structure of
the sample. The crystallographic features of a diametrical longitudinal cross-section of a nanowire are seen in Fig.
2, where the atomic lattice of a regular structure is visible.

Figure 2. HR-TEM crystallographic structure: the diametrical longitudinal cross-section of a nanowire.
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The elasticity coefficients for the regular crystal in the tensorial and Voigt’s notation are given by the matrices

c1111 c1122 c1122 0 0 0

c1122 c1111 c1122 0 0 0

c1122 c1122 c1111 0 0 0

0 0 0 c2323 0 0

0 0 0 0 c2323 0

0 0 0 0 0 c2323



≡



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


and the matrix of coefficients of thermal expansion is

α 0 0

0 α 0

0 0 α


The regular crystal is characterised by 3 elasticity constants and one coefficient of thermal expansion.

1.4 The Aim of the Paper

The aim of this work is to confirm quantitatively, whether the observed energy gap variation as large as 80 meV
can be attributed to strain effects only, or some additional effects such as, e.g., intrinsic electric fields.

To find the state of deformation of this system a continuous medium approximation is applied, and to determine the
strain and stress fields a thermoelastic analogy is proposed. Namely, to account the difference of lattice constants,
the structure is considered as a homogeneous one, but subject to a hypothetical non-homogeneous thermal field.
First, the realistic cubic anisotropy of the medium is accounted for and the generalized displacement, Navier’s type
equation is derived. Further, since the material constants of both materials, of core and shell, are similar within
3% error, both materials are treated as isotropic, and a problem of an elastic cylinder in non-homogeneous thermal
field with axial symmetry is considered. The continuity of suitable displacement and stress fields at the interface
is assumed. In this approach the deformation field in the cross-section of the core is found uniform in agreement
with the experiment.

2 Material Properties of the Nanowire Components

The measured material data of the nanowire components (Landolt and Börnstein, 1982) are given in the following
table:

Table 1

material function a c1111 ≡ C11 c1122 ≡ C12 c2323 ≡ C44

Å GPa GPa GPa
Zn Te CORE (A) 6.103 71.1 40.7 31.3
Mg Te 6.42 62.0 32.9 32.0
Zn Mg Te SHELL (B) 6.17 69.3 39.1 31.4
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2.1 Lamé’s Parameters and Engineering Coefficients ([GPa])

The relations between Voigt’s coefficients C11, C12 and C44 and Lamé’s parameters are given in the first line.
The second and the third lines relate Lamé’s parameters with the engineering coefficients: the bulk modulus K,
Young’s modulus E and Poisson’s ratio ν,

c11 = λ + 2µ c12 = λ c44 = 2 µ̃

K = λ +
2

3
µ E =

3λ+ 2µ

λ+ µ
µ ν =

1

2

λ

λ+ µ
E = (1 + ν)2µ

E = 3 · 3Kµ

3K + µ
ν =

1

2

3K − 2µ

3K + µ
.

The measured values of Lamé’s parameters and engineering coefficients are given below

Table 2

material function λ+ 2µ λ 2µ 2µ̃ K E ν
GPa GPa GPa GPa GPa GPa

ZnTe CORE (A) 71.1 40.7 30.4 31.3 50.8 41.5 0.364
ZnMgTe SHELL (B) 69.3 39.1 30.2 31.4 49.2 41.1 0.361

We observe that the elastic properties of the core and shell differ only slightly. In particular, the coefficients µ and
µ̃ are similar within 3% margin.

2.2 The Regular (Cubic) Crystal Elasticity

In the frame of linear elasticity the strain components uij are associated with the displacement components ui ,
i = 1, 2, 3 by the relation, cf. Landau and Lifshitz (1986),

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2)

The elastic law for the regular crystal in the presence of a temperature difference Θ is

σ11 = 2µ ε11 + λ εkk − βΘ

σ22 = 2µ ε22 + λ εkk − βΘ

σ33 = 2µ ε33 + λ εkk − βΘ

σ32 = 2µ̃ ε32 σ31 = 2µ̃ ε31 σ12 = 2µ̃ ε12

where
β = K α and K = λ +

1

3
2µ.

2.3 Equilibrium Equations for the Regular Crystal

The equilibrium equation σij,j = 0 after substitution of the elastic law and the strain - displacement relation leads
to Navier-Cauchy’s type equations

µ̃∆u1 + (λ+ µ̃)
∂

∂x1

∂uk
∂xk

− β
∂Θ

∂x1
+ 2(µ− µ̃)

∂2u1
∂x21

= 0

µ̃∆u2 + (λ+ µ̃)
∂

∂x2

∂uk
∂xk

− β
∂Θ

∂x2
+ 2(µ− µ̃)

∂2u2
∂x22

= 0

µ̃∆u3 + (λ+ µ̃)
∂

∂x3

∂uk
∂xk

− β
∂Θ

∂x3
+ 2(µ− µ̃)

∂2u3
∂x23

= 0

(3)
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where

∆ =

(
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23

)
.

Equations (3) are equations of thermoelasticity for the regular crystal. The temperature difference Θ is regarded as
a given function.

Further we shall deal with an isotropic thermoelastic approximation. For the isotropic body µ̃ = µ, the constants
λ and µ are the Lamé parameters.

3 Non-homogeneous Isotropic Cylinder

The core-shell nanowire is approximated by a composite of two concentric cylinders, A and B, the inner with
radius R1 and the exterior with the radius R2, see Figure 3. The lattice constants of the core A differs slightly from
the lattice constant of the shell B, and this difference will be modelled by the thermal expansion. The question
arises what the distribution of strains and stresses is, especially at the A-B interface.

In our case the non-homogeneity of the cylinder is modelled by introduction of the constant thermal field to
the shell part. For this reason our problem is different from the problem solved by Muskhelishvili (1977), who
considered the case in which the temperature was not constant in the exterior region, but smoothly changed from
the temperature T1 at R1 do T2 at R2, (section 62 of his monograph).

3.1 Plane Strain

We exploit the axial symmetry of our problem.

The cylindrical coordinates, r, ϕ, z for our case of the axial symmetry are introduced and the strain-displacement
relations are

εrr =
∂ur
∂r

εϕϕ =
ur
r

εzz =
∂uz
∂z

= 0.

The last relation means that along the nanowire, the state of strain does not vary, and in particular, the displacement
uz does not depend on variable z. All other strain components vanish also.
The normal stress components are

σrr = (λ+ 2µ)εrr + λεϕϕ −KαΘ

σϕϕ = (λ+ 2µ)εϕϕ + λεrr −KαΘ

σzz = λ (εrr + εϕϕ)−KαΘ.

(4)

Figure 3. Schematic cross-section of the core-shell nanowire.
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3.2 The Equilibrium Equation for the Isotropic Body

The equilibrium equation ∂σij/∂xj = 0 expressed by the displacement ui and the temperature Θ is

µ
∂2ui
∂xj∂xj

+ (λ+ µ)
∂2uj
∂xi∂xj

−Kα∂Θ

∂xi
= 0 (5)

or

(λ+ 2µ)
∂2uj
∂xi∂xj

− λ (curl curlu)i −Kα
∂Θ

∂xi
= 0. (6)

Because of the axial symmetry of our problem, the rotational term vanishes

∂

∂xi

{
(λ+ 2µ)

∂uj
∂xj
−KαΘ

}
= 0. (7)

This equation will be analysed further.

4 Stress State

Let the temperature difference Θ in every part of the system, A and B, be constant, but not the same, taking the
values ΘA and ΘB , respectively.
For the constant temperature Θ the equilibrium equation is

∇divu = 0 (8)

and in the cylindrical system with axial symmetry

d

dr
divu = 0.

Hence the radial displacement

ur =
1

2
C1r + C2

1

r

the strains

urr =
dur
dr

=
1

2
C1 − C2

1

r2

uϕϕ =
u

r
=

1

2
C1 + C2

1

r2

and, according to Eqs.(4), the stresses are

σrr = (λ+ µ)C1 − 2µC2
1

r2
−KαΘ

σϕϕ = (λ+ µ)C1 + 2µC2
1

r2
−KαΘ

σzz = λC1 −KαΘ.

We introduce the notation

in part A

uAr =
1

2
CA1 r + CA2

1

r

and in part B

uBr =
1

2
CB1 r + CB2

1

r
.

In the core (part A), where the value of radius r = 0 is possible, to avoid a singularity we should put CA2 = 0.
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Thus we obtain in the part A:
the strains

uArr =
1

2
CA1

uAϕϕ =
1

2
CA1

and the stresses

σArr = (λA + µA)CA1 −KAαAΘA

σAϕϕ = (λA + µA)CA1 −KAαAΘA

σAzz = λCA1 −KAαAΘA.

In similar manner, for the Part B

uBrr =
1

2
CB1 − CB2

1

r2

uBϕϕ =
1

2
CB1 + CB2

1

r2

and

σBrr = (λB + µB)CB1 − 2µBCB2
1

r2
−KBαBΘB

σBϕϕ = (λB + µB)CB1 + 2µCB2
1

r2
−KBαBΘB

σBzz = λCB1 −KBαBΘB .

The integration constants are still unknown.

5 Evaluation of the Constants

Let ΘA = 0, αB = α and ΘB = Θ.
At the external radius R2 the normal component of stress σBrr = 0. Hence

CB2 =
1

2

R2
2

µB
{

(λB + µB)CB1 −KBαBΘB
}
.

At the interface r = R1 the following fields are continuous:
the normal stress components, hence

CA1 =

(
R2

2

R2
1

− 1

) {
−λ

B + µB

λA + µA
CB1 +

KB

λA + µA
αΘ

}
and the displacement components, hence

1

2
CA1 R1 =

1

2
CB1 R1 + CB2

1

R1

We eliminate the constants CB2 and CA1 and obtain

CB1 =

(
R2

2

R2
1
− 1
)

KB

λA+µA +
R2

2

R2
1

KB

µB

1 +
(
R2

2

R2
1
− 1
)
λB+µB

λA+µA +
R2

2

R2
1

λB+µB

µB

αΘ.
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6 Our Model of the Cylinder

Assume that all elasticity constants in both components of the cylinder are the same, and the strain-stress state
appears as a result of the difference of temperatures, Θ, only. Then we have

λA = λB = λ µA = µB = µ and KA = KB = K.

As
K

µ
=

2

3
+
λ

µ

we have

CB1 =

{
1 +

(
1− R2

1

R2
2

)
µ

λ+ µ

}
λ+ 2

3µ

λ+ 2µ
αΘ.

Moreover

CB2 =
1

2
R2

2

{(
1 +

λ

µ

)
CB1 −

(
2

3
+
λ

µ

)
αΘ

}
CA1 =

(
R2

2

R2
1

− 1

) {
−CB1 +

λ+ 2
3µ

λ+ µ
αΘ

}
.

These relations can be written equivalently

D ≡ KBαΘ

CB1 =

{
1 +

(
1 − R2

1

R2
2

µ

λ+ µ

)}
D

λ+ 2µ

CA1 =

(
R2

2

R2
1

− 1

) (
−CB1 +

D

λ+ µ

)
CB2 =

1

2
R2

2

{(
1 +

λ

µ

)
CB1 −

D

µ

}
.

6.1 Elastic State in the Cylinder

Now we can write the expression for the stresses

σArr = (λ+ µ)CA1

σAϕϕ = (λ+ µ)CA1

σAzz = λCA1

(9)

and

σBrr = (λ+ µ)CB1 − 2µCB2
1

r2
−KαB Θ

σBϕϕ = (λ+ µ)CB1 + 2µCB2
1

r2
−KαB Θ

σBzz = λCB1 −KαB Θ.

(10)
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7 Numerical Example

For numerical calculations we introduce the engineering coefficients, and first, express the material constants in
Eqs. (9) and (10) by Poisson’s ratio ν

µ

λ+ µ
= 1− 2ν 1 +

λ

µ
=

1

1− 2ν

λ

µ
=

2ν

1− 2ν

λ+ 2
3µ

λ+ 2µ
=

1

3

1 + ν

1− ν

2

3
+
λ

µ
=

2

3

1 + ν

1− 2ν

λ+ 2
3µ

λ+ µ
=

2

3
(1 + ν).

For the value of Poisson’s ratio ν = 1/3 we have

µ

λ+ µ
=

1

3
1 +

λ

µ
= 3

λ

µ
= 2

λ+ 2
3µ

λ+ 2µ
=

2

3

2

3
+
λ

µ
=

8

3

λ+ 2
3µ

λ+ µ
=

8

9
.

The bulk modulus K for this value of ν equals Young’s modulus

K =
1

3

E

1− 2ν
= E (11)

and
2µ =

3

4
E. (12)

Moreover, for ν = 1/3 and K = 50 GPa, cf. Table 2,

λ = 2µ =
3

4
K = 37.5GPa. and λ+ µ =

9

8
K =

9

8
· 50 GPa = 56.25 GPa.

According to the experimental results, cf. Fig.1, the average diameter of the core is 33 ± 9nm, and the average
external diameter of the shell is 81 ± 7nm. For the sake of simplicity we assume that the diameter of the core is
2R1 = 40 nm and the external diameter of the shell 2R2 = 80 nm. Hence

R2

R1
= 2. (13)

We get, in the part A

CB1 =
5

6
αΘ CB2 = −1

3
R2

1 αΘ CA1 =
1

6
αΘ,

the strains

εArr =
1

2
CA1 =

1

12
αΘ εAϕϕ =

1

2
CA1 =

1

12
αΘ

and the stresses

σArr = (λ+ µ)CA1 = (λ+ µ)
1

6
αΘ =

9

8
E · 1

6
αΘ =

3

16
EαΘ

σAϕϕ = (λ+ µ)CA1 = (λ+ µ)
1

6
αΘ =

9

8
E · 1

6
αΘ =

3

16
EαΘ

σAzz = λCA1 = λ
1

6
αΘ =

3

4
E · 1

6
αΘ =

1

8
EαΘ,
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while in the part B, the strains

εBrr =
1

2
CB1 − CB2

1

r2
=

(
5

12
+

1

3

R2
1

r2

)
αΘ εBϕϕ =

(
5

12
− 1

3

R2
1

r2

)
αΘ

and the stresses

σBrr = (λ+ µ)CB1 − 2µCB2
1

r2
−KαΘ =

{
5

16
+

1

4

R2
1

r2
− 1

}
EαΘ

σBϕϕ = (λ+ µ)CB1 + 2µCB2
1

r2
−KαΘ =

{
5

16
− 1

4

R2
1

r2
− 1

}
EαΘ

σBzz = λCB1 −KαΘ =

(
5

8
− 1

)
EαΘ = −3

8
· EαΘ.

We observe that at the interface r = R1 the displacements are continuous, uAr = uBr ,

uAr =
1

12
R1αΘ and uBr =

(
5

12
− 1

3

R2
1

R2
1

)
R1αΘ =

1

12
αΘR1 (14)

as well as the strains
εAϕϕ = εBϕϕ =

1

12
αΘ. (15)

This means the continuity of the radial displacements and the circumferential strains at the interface. Also, at
r = R1

σArr = σBrr =
3

16
EαΘ (16)

what means the continuity of the normal stress.

According to the Table 1 the mismatch of the core and shell lattices equals

aZnMgTe − aZnTe
aZnTe

=
0.06Å

6.1Å
= 1% (17)

Hence, for the estimation we take

αΘ =
1

100
. (18)

For the ratio ν = 1/3, according to Eq.(11) and the Table 2, the value of the bulk modulus K = E = 50 GPa

KαΘ ≡ EαΘ =
1

100
· 50GPa =

1

2
GPa. (19)

Hence, cf. Eq.(16), at r = R1,

σArr = σBrr =
3

16
EαΘ =

3

32
GPa = 0.09375 GPa = 93.75 MPa. (20)

Such stresses are arisen at the interface of the core and the shell.

8 Discussion of the State of Stress at the CORE / SHELL Interface

One can ask for the influence of the surface tension γ, if it exists in the solid state, on the state of the stress.
Again we return to Eq.(8) and easily find that then in the whole cross-section of the body the uniform pressure p is
prevailing

p = γ
1

R2
. (21)

By an analogy, for the silicon at 1400oC, cf. Fujii et al. (1997), we get 800 mN/m, what for R2 = 80 nm gives
p = 10 Mpa, i.e., more than 9 times smaller than the result given by Eq.(20). By the superposition of the linear
elasticity this stress does not change the termal stresses calculated above.

On the atomic level, because of the difference between the lattice constants in core A and shell B, at the boundary
between A and B, the dislocations can arise, cf. Gleiter and Lissowski (1971).
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Figure 4. The mismatch of the crystallographic structures of ZnTe core and ZnMgTe shell, and appearance
of the dislocations.

In Figure 4 the cross-section (a quarter only) of the cylinder is presented, for the case R1 = 17 ×6.103Å =
103.75Å, when the lattice constant is 10% greater than the lattice constant of the core. In such exaggerated scale,
we observe two dislocation triangle-pentagon pairs only on the fourth part of the core-shell boundary. One pair is
created by the triangle given by the atoms (60, 61, 62) and the pentagon given by the atoms (3, 4, 59, 60, 62) and
the second (symmetrical) pair created by (34, 35, 36) and (28, 29, 34, 36, 37). From the interior part we have at
the boundary 4 times 33 atoms and from the exterior part only 4 times 31 atoms.

Actually, in our case the number of atoms is greater, of order of 50, but the difference of both lattice constants is
smaller, about 1%, cf. Section 2. So we cannot expect appearance of the dislocations, and the structure core-shell
is safe from this side.

The other source of incertitude of the results lies in the estimation of the equivalent thermal expansion αΘ, corre-
sponding to the substitution of the Zn atoms by the Mg atoms. Also the negligibility of the anisotropy may be the
source of error. Thus, the results are provisional only. In next step the anisotropy of crystals should be accounted
for, and the coefficient αΘ ameliorated.
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