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Stability of Shell-Stiffened and Axisymmetrically Loaded Annular Plates

Daniel Burmeister

The present paper is concerned with the stability problems of a solid circular plate and some annular plates each
stiffened by a cylindrical shell on the external boundary. Assuming an axisymmetric dead load and axisymmetric
deformations we determine the critical load in order to clarify what effect the stiffening shell has on the critical
load.

1 Introduction

In engineering practice we often meet structural elemeatsdd in their own plane like rods or plates. Because of
their importance, stability problems of plates loaded ®ittbwn planes are an especially significant issue.

As regards the stability problems of circular plates, we tioanthat the first paper devoted to this question was
published in 1890 (Bryan, 1890). It is also worth citing aticée by Nadai (1915), who investigated some fun-
damental stability issues. Since then a number of papeis been devoted to the stability problems of circular
plates but here we lay an emphasis only on those which dealkétinfluence of structural stiffening.

A structure can be stiffened in various ways. A solid circyliate (or an annular one) can be made more resistant
to buckling by the use of a corrugation or by applying a stiffy along the diameter of the plate or by attaching a
ring to the outer boundary of the plate or by making them mimjiel with a cylindrical shell attached to the outer
boundary of the plate.

Seeking in the scientific literature for papers devoted odtability problem of stiffened annular plates we have
come to the conclusion that there are only a few works dealiitiy this issue. A ring stiffened circular plate is
investigated in a paper by Turvey and Der Avanessien (1988% paper cited is concerned among others with
experimental results. However, the stability issues diteol@ of consideration. A further paper by Turvey and
Salehi (2008) deals with an annular plate stiffened by dsidigmeter stiffener. The stability problem is, however,
again left out of consideration.

The influence of a stiffening ring attached between the twanblaries of the middle surface of circular plates on
the stability is investigated by Frostig and Simitses ()9&8urns out from the references that the authors did not
take into account the corresponding results of SzilassyX19976).

Szilassy investigated some stability problems of circplates stiffened by a cylindrical shell on the outer bougdar
in (Szilassy, 1971, 1976). The main objective of his redeeuas to clarify what effect the stiffening shell has on the
critical load. If the stiffening significantly increasestbuckling load than thin plates can be made more resistant
against buckling by the application of a stiffening shelelproblems considered there include a boundary value
problem for a solid circular plate and a few boundary valugbfams for annular plates. The author assumes that
(i) the load is an in-plane axisymmetric dead one, and (&)dbaformations of the annular plate and the cylindrical
shell are also axisymmetric. For the circular plates thé@utises the solution of a differential equation set up
for the rotation field — this choice excludes those boundatyes problems from the set of solvable ones where
a boundary condition is imposed on the deflection. As regarelsylindrical shell the solution is based on the
theory of thin shells. After the investigations of Szilasisg following questions can be raised: (a) is it worth using
a differential equation set up for the deflection in ordertpand the range of solvable boundary value problems
(the number of solvable problems can be increased in thig;Waywhat is the influence of the shell height on the
critical load; (c) is it worth investigating the case whee thad is axisymmetric but the deformations due to the
load are not; (d) what happens if the load is not axisymmetric



The main objective of the present paper is to solve those damynvalue problems which require the use of the
differential equation set up for the deflection of the plage, where there is a boundary condition imposed on the
deflection. The paper is organized in seven sections. $e2tahortly outlines the physical problem to be solved.
Section 3 presents the governing equations both for thelairplate and for the cylindrical shell. The stability
problem of a solid circular plate is solved in Section 4. Ehese present both the non-linear equation which
provides the critical load and the critical load for variaill heights. Section 5 is devoted to annular plates. First
we shortly review the numerical method we use. Then we saolvedifferent boundary value problems. Section 6
is a summary of the results. Appendix A includes some lormgersformations.

As regards the possible applications we want to make thewiollg remark. Assume that the inner space of a

pressure vessel (a cylindrical shell) is separated inttsggrannular plates. If the distance of the plates is above
a certain limit and the buckling problem of the plates artbesn the problem to be solved may coincide with the

stability problem of a shell-stiffened annular plate po®d that the shell height tends to infinity.

2 Problem Formulation

The cross section of the shell-stiffened structure we ane@med with is shown in Fig. 1. The structure consists of
either a solid circular plate or an annular one — the lattehvn in Fig. 1 —and a cylindrical shell, which stiffens
the plate on its external boundary. The inner radius of theeps denoted by;, the radius of the intersection line
of the middle surfaces of the plate and the shelRy We shall assume th&,. coincides with the external radius
of the plate. The thicknesses of the plate and shell are dérmtb, andb,, respectively. The shell is symmetric
with respect to the middle plane of the plate. Its heigi#fis The structure is loaded by radial distributed forces
with a constant intensity,, acting in the middle plane of the plate. The load is a dead one.
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Figure 1: The structure and its load

We assume that the plate and the shell are thin, consequantian use the Kirchhoff theory of plates and shells.
It is also assumed that the problem is linear with regard édthematic equations and material law. Heat effects
are not taken into account. The plate and the shell are matie shme homogeneous isotropic material for which
E =E, = E; andv = v, = v, are Young’'s modulus and Poisson’s ratio.
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Figure 2: Free body diagram for plate and shell



Under the assumption of small, axisymmetric and lineargstit deformations we determine (a) the critical load
of the structure and (b) the effect of the stiffening shelttoa critical load.

In order to solve the problem raised we separate the shelpkate from each other mentally. In accordance to
this Figs. 2 a and b show the annular plate and the cylindsivall one by one. The cylindrical coordinate system
(R, v, z) is used for the equations of the plate — the plane 0 coincides with the middle surface of the plate.
Fig. 3 a shows the corresponding coordinate curves on tbke eitith radiusR.. The displacements on the middle
surface in the direction® andz are denoted by andw, respectively. The inner forcgsand the bending moment
M, exerted by the cylindrical shell on the annular plate are slown in Fig. 2.a.

For the cylindrical shell the coordinate systéMm, £) is applied. The coordinate surfage= z, ¢ = 0 coincides
with the middle surface of the shell with radilis. The polar angle is the same in the two coordinate systems
(due to the axisymmetry it plays, however, no role in the @tigations). The coordinate curves on the middle
surface of the shell are shown in Fig. 3 b.

Figure 3: Coordinate curves in the coordinate systems

Assume that the deformations are axisymmetric and ther@itoad in the directior¢ on the shell. Then
uc = uc(€) is the only displacement component on the middle surfacetwisidifferent from zero.

It is also obvious that: = u(R), w = w(R) andu, = u¢(§).

Fig. 2 b shows the inner forcesand the bending moment, exerted by the plate on the cylindrical shell.

3 Governing Equations
3.1 Governing Equationsfor the Cylindrical Shell

It is known that under the condition of axisymmetric defotimias, the radial displacement should satisfy the
following differential equation (Timoshenko and Woinowskieger, 1987, Chapter 15, p. 468)

d4uC 4 1 N§
d€4 +4ﬂ UC B IlsEls (_p_ VI%e) (1)

wherep is the constant radial load exerted on the middle surfackeo$hell (its value is zero in the present case),
N¢ is the inner force in directiof (its value is zero as welly;; and E; are Young’s modulus and Poisson’s ratio,
respectively. In addition the following notations are aduced

vo=+/3(1 —1v2), B8 =uv, %Rie’ (2a)
Ly =b3/12, By = E/(1-1). (2b)

The shell shown in Fig. 2 b is subjected to the line lofidand f (as it has already been mentioned: 0). There
is also no load in the directiofion the shell. Consequently, = 0. The solution of equation (1) in the interval
¢ € [0, h] takes the form

4
uc(€) =D aiVi(BE) +ucp; ucp=—p/BNsEr1s =0, 3)
=1
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whereV;(8¢) (i = 1,...,4) denote the Krylov-functions — their definitions and derived are presented in the
Appendix — see equations (53a) and (53b) for details.

The shear force and bending moment in the shell can be givienrirs ofu

du d*u
Qc = IlsEls?; and M = —IlsEM?; . (4)

The solution foru, is a superposition of the solutions we determine for theo¥aihg two partial loads

Load 1. The shellis subjected to the line loafisand f shown in Fig. 4 a The corresponding boundary conditions
are as follows

o f duc|  _
QC|EZO - 2 ) dg o =0 ) (53.)
Qcle=n =0, Mele=n = 0. (5b)

Sinceu,(€) = uc(—¢) due to the load, the rotation about the axiss zero — cf. equation (5a) The other
boundary conditions are obvious.

Load 2. The shell is subjected to the couple systéfm shown in Fig. 4 b Now we have the following boundary

conditions
M,
U(C>|€:0 =0 ) Mf‘ﬁzo = _7 ) (SC)
Qcle=n =0, Melg=n = 0. (5d)
Observe that(¢) = —uc(—¢) for this partial load. Consequently the displacement indhection ¢

should be zero a = 0. The other boundary conditions are again obvious.
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Figure 4: Partial loads of the shell

It follows from the symmetry of the problem that it is suffiot¢o determine the solution for the shell in the interval
£€0,h].

The solutions for the partial loads include the distribuigde f and the bending momett/, as unknown para-
meters. Theoretically, these quantities can be calcufabea the continuity conditions. We prescribe the continu-
ity conditions on the intersection line of the middle sugaof the plate and the shell. SinBe= R, and¢ = 0

on the intersection line, the kinematic quantities shoalik$y the following continuity conditions

U|R:Re = Uo = U¢o = UC|5:0 (6a)
and
dw du
Py = —— = . 6b
dR|p_p, A€ g (6b)




After some hand made calculations — see Sections 1.2. amd th& Appendix for details —, in which use has been
made of the definitions of the Krylov-functions, we obtain

1
du v3 (R.\? cos2hf3 + cosh2hf+2 1
LY. o E (b) Sinh 2hB —sin2hf b2 0T e (72)
and
3
B Vo (Re\? cos2hf + cosh2hf + 2 B
o = uele=0 = —5 (b) smahp + smhahg e~ =l 1) (7b)

83

wherea andk are defined by the above relations.

It follows from the continuity conditions (6) and relatio(i that the equations

dw
@ZHMO and uo:_a(fo_f) (8)

are satisfied. We shall see later that equation f8yvides the value of as non-linear equation and equation,(8)
is to be used for calculating,.

3.2 Deformation of the Annular Plate, Governing Equations for the In-Plane L oad

Under the assumption of axisymmetric deformations, therifiorces in the plate — we use the cylindrical coordi-
nate systeniR, o, z) — due to the in-plane load exerted on the outer boundary ddlass

B B
NR:—A+?7 NKP:_A_ﬁ and NR¢:N¢R:0 (9)

where the constantd and B depend on the boundary conditions. It follows from the axisyetry thatNg,,
vanishes.

Let p = R/R. be a dimensionless coordinate. Furtherplet R;/R.. Itis clear thatp; = 0 for a solid circular
plate.

If the inner boundary is free anflis the line load on the outer boundary — see Fig. 2 a — then thetaots are as
follows

1 R?
A=f—— _ B = . 1
fi—7 and T (10)
If the radial displacement vanishes on the inner bounday th
_ L+v _ R2(1—v)
A_f1+u+p§(1—u) and B__f1+u+p3(1—u)' (11)
If the plate is a solid one then
A=f and B=0. (12)
The radial displacement on the inner boundary can be cabollgsing the relations
R f
=K== 1
U b, B (13)
where the constamit” depends on the boundary condition
ORI . _
- 1_'_”_1_/)?(1_1/) if NR|P:,07Z *07 (14)
(1—v)+pi(1l+v) .
K = 1+ p? if Uolp=p, =0, (15)
K=1-v if pi=0. (16)



3.3 Deformation of the Annular Plate, Equationsfor the Displacement Field after Stability L oss

Let us introduce the notations
A B
A== B=—, 17
7 7 (17)
Ly =0b3/12 and By, = E, /(1 - 1) . (18)

Further letw be the displacement of the middle plane of the plate in thectonz — see Figure 3. Making use of
the notations introduced one can show thatatisfies the differential equation

B . d*w B . 1dw
AgAgw = - =)=+ (-A-=)=— 19
nlnw = 7op (CA ) gpr A ) pag | (192)
@ 1d
An= g T Rar
if the plate is an annular one. With regard to equations (12)
f dPw 1 dw
AgAgw = — — = 19b
HEHU = "7 B, |drR2 " RdR (19b)

is the differential equation faw if the plate is solid. The rotation, the shear force and thedbey moment can all
be given in terms of the solution far as follows

dw

)=—-—— 20a
5 (20a)
d2w 1 dw
Mpr = —5L,En, (dRQ + VRdR) ) (20D)
d /d®w 1dw dw

QR_IlpElpﬁ (W+R(ﬂ%> _NR@ . (20C)
4 Stability of the Shell-Stiffened Solid Circular Plate
4.1 Nonlinear Equation for the Critical L oad
Introducing the notations

, f 1« 1 /d 1d
= and —A=Ag=—=|—+-— 21a

-S: Re IlpElp R(% & Rg (dp2 * P dp ( )
in equation (19b) yields the differential equation

AAw +FAw =0. (21b)
Its solution takes the form

w(p) =121+ oo+ 323+ cuZy (22a)

Zy=1, Zo=Inp, Zs=Jo(VIp), Zi=Y.(\/3p) (22b)
wherec;, (i = 1,...,4) are undetermined constants of integration wifledenote the linearly independent

particular solutions in whichy,, (v/Fp) andY,, (v/Fp), n = 0,1,2, 3, ... are the Bessel functions of integer order.

For small values of/3p the following asymptotic relation holds?, (v/Tp) ~ 2 In(v/Fp). In additionZ3(0) =
J,(0) = 1. Consequently the solution far is limited if

co = —2c4/T . (23)



Accordingly we get

w(p) = e1 1 | YolV/B) = (/39| + ado(V/5p). (24
By making use of the relations
%Jl(x) = Ja(x) + Jo(x) and %Yl(:c) =Ys(x) + Y, (x) , (25)

the derivatives oZ; from equations (70) and relation (20b) — the latter provideshe shear force — we obtain
after some manipulations that

R} d

QRhEl ~ @

[A + s] w = —04%$% . (26)
Since the shear fora@p is zero on the circle with radiuR = pR, if p — 0, the previous equation yields
2rRQRr = —deaf = 0. (27)
Consequently, = 0. Therefore the solution fap is of the form
w(p) = e1 + e3Jo(V/5p) - (28)
The remaining integration constants can be calculated thenboundary conditions prescribedpat= 1.

In what follows we assume that the thicknesses and the rabtdrihe cylindrical shell and the circular plate are
the same. Thug'; = E1; = Eip, vs = vy, by = b, = bandly = 11, = Iyp.

According to equation (6)
Yo = —kM, . (29)
The rotation af? = R, is of the form

dw

190:—@

= e VE(VF) (302)

R=R,

where we have utilized relations (20a) and (30¢}onsidering equation (19b), the properties of the sahugind
utilizing relations (70), which provides the derivativéstoe Bessel functions, we obtain for the bending moment

= o2 [0 )VER(VE) - §L0VF)] - (30b)
R=R.

2w 1 dw
M,=-LE |S$2 4+,
1 [dRQ —H/RdR} 2

Comparing equations (29) and (30) we get a non-linear eguédr the critical load

VER(VE) - [(1 = VER(/E) - 50(/5)] = 0. (31

€

This equation can be further transformed if we make use afiogls (2a) and (2b) (the structural elements are of
the same material and thickness) together with the defindfe: in equation (7a)

1 v b cos2hf + cosh 2h8 + 2 J1(V3) B
VEA(VE) - 121 -2V R, sinh2hfB — sin 213 [(1 —v) N §Jo(v/3)| =0 (32)

If we now take into account thais = v,4/ %Ri we can conclude that the dimensionless critical I§ad— the
corresponding value of is denoted byf., — depends only on the dimensionless variatl¢®. andb/R, for a
fixed value ofv. In the sequel we assume that we have solved the above aguatiove know the values .,
andf.,.



4.2 Resaultsfor a Solid Plate

In accordance with the notations introducedjlgt,. be the critical value of,,. A comparison of equations (7) and
(13) yields
R,
(177/)?% O‘(focrffcr)-
Consequently
foer  Toer 1—v |R.cos2hf + cosh2hf + 2 5 foer
=——=1+2 \[ = oer =R 33
for Ser + v, b sinh2hB —sin2hB § LyEry, (33)
Clearly the quotlem“—” ? depends also on the dimensionless variabl&’. andb/ R, for a fixed value of
v. This function is presented in Fig. 5.
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Figure 5: Quotien§, .. /F.. againsth/ R, for some values df/R. andv
We introduce the following notations for the critical loaabthe dimensionless critical load if there is no stiffening
shell
foer (h=10) = forer and Focr (h=0)=Fofer - (34)
It is again obvious that the quotient of the critical loadsdich is the same that of the dimensionless critical
loads) for a giverv
foer _ Boer

fofcr gofcr

(35)
depends only on/ R, andb/R., which, in the sequel, are referred to as dimensionlesshhaigl thickness



A code has been written in Fortran 90 to solve the non-lingaaton (32) forg., and computef, ¢,, fof ¢, and
Soer Sof er- The computational results are presented in Fig. 6/fer 0.15, 0.3 and0.45. It is clear from the
graphs that the height of the plate does not affect the atibad if the height is larger than a certain value.
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Figure 6: f, .-/ fon o @gainsth/ R, for someb/R.; v = 0.15, 0.3, 0.45

It follows from equations (7) that the stiffening shell caareplaced by a tension spring and a torsion spring on its
outer diameter. The corresponding arrangement is showigirvF

D,
Jo @ ; @ Jo ‘

‘DOK i

Figure 7: Spring model

Hooke’s law for these springs (tension and torsion) takegdim
fo— f=—Dauco , M, = —-D.9, (36)
whereD,, = 1 andD,, = 1 are the spring constants.

T K

If the heighth of the shell tends to infinity the termsandx are limited. Consequently the critical load is limited



as well. The limits of the critical loads belong to the values
lm o — Tim Vo & H cos 2hf3 + cosh2h3 +2 Vo & 3 37)
h—oo  h—oo 2E \ by sin2hB +sinh2hB  2E \ b, '

, V3 [R.\? cos2hB+cosh2hB+2 1 v} (R.\? 1
lim k= lim -2 . — = = . (38)

sinh2hB —sin2h3 b2 F

bs b2

h—o0 h—oo F S

These limits are presented with horizontal lines in the upaph in Fig. 6.

5 Stability of the Shell-Stiffened Annular Plates
5.1 A Numerical Procedureto Determinethe Critical L oad

Equation (19a) has no closed form solution. For this reasenlevelop a numerical algorithm for the solution of
the eigenvalue problem defined by equation (19a) and thesmonding boundary conditions. First we rewrite
equation (19a) in the form

d*w

du (P Eu do
dpt dp3 7 dp?2’ dp’
2dw 1 d*w 1 dw

- mar e e (4

w,&p) =

2 2 2
) (4215 o
p* ) dp p* ) pdp
and then we replace this ordinary differential equationraio four by a system of differential equations of order

one. To this end we introduce appropriately defined newnmeeliate variableg, ¢ ands by the use of which we
obtain

dw dp dg ds

- b = Z=F )
AR A T (8,9,p,w, 5, p) (40a)
where
2 BR? BR?
F_—5+[12—1°3+3<(—A+ ;)q+<—A— ;)p> . (40b)
p PP p pe ) p
Variablesw, p, ¢ ands constitute a column matrix
u'(p)=[w p q s] (41)
where the superscrifit stands for the transpose of a matrix. It is clear théatlfills the matrix equation
du T
dpr[p\q\q\F(S,q,p,w,F,p)] : (42)

We seek solutions in the intervale [p;, 1]. Itis easy to see that the particular solutions
w, = [ uik | ugk | usk | uar |7 (k=1,2,3,4)
are linearly independent if they satisfy the following iaitconditions

1 0 0 0
u,, = 8 » U2, = (1) ; usl, = (1) ; W, = 8 (43)
0 0 0 1
Consequently the solution of equation (42) assumes the form
u =Ciu; + Coug + Czuz + Cyuy, (44)

whereC1, ..., Cs are constants of integration.
Differential equations (42) are associated with homogermundary conditions on the inner boundarye p;

and also on outer boundapy= p. = 1. We shall detail the boundary conditions when we presersohgion for
the various support arrangements. At this point we remaakitte differential equation (42) and the homogenous
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boundary conditions together define the eigenvalue proklbioh provides the dimensionless eigenvaiuior a
given support arrangement of the structure consisting beHl and an annular plate.

Every physical quantity can be given in terms of the paréicsblutionau, . .., uy. On the basis of relations (40)
and (20) we obtain the displacement field
w(p) = Crurr + Couz + Czuyz + Cauy , (45a)
the rotation field
—id—w—i((] +C +C +C ) (45b)
- Re dp - Re 1U21 2U22 3U23 4U24)

the bending moment

LE
Mg =— ; 2*1 Kufﬂ + uu21) Cr+ <U32 + VU22> Cot+
Ry p p

+ (U33 + Zu23> Cs + <u34 + ZU24) C4} , (45c¢)

and the shear force

LE 1 1 1 1
Qr = % { [U41 + —uzr + (3 2> U21:| Cy+ {Mz + —usz2 + <3 - 2> Uzz} Cy +
e p p p p
1 1 1 1
+ Juas + = (p) + (F— = Jues| O3 + |uaa + —uza(p) + (§ — — | u2a| Cap . (45d)
u33 p p p
Finally we remark that the solutions, . . . , us are computed using an adaptive fourth-order Runge-Kutthaode

5.2 Comparison with the Solution Valid for the Solid Plate

We have tested the numerical algorithm described above leingahe problem of the solid circular plate again.
The corresponding boundary conditions are in principlestoae as before

lim w=finte, 29| —o, (46)
p—0 do{,—o
dw 1 w3 [b cos2hB+ cosh2hf 42 @.,.Bdﬂ 47)
do |,y 121 -v2V R, sinh2hj3 —sin2hp dp?2  pdp )
o=
d[d®> 1d
d[d—l-d—i-g]w =0. (48)
p LGp  pUp p=0-+¢

The displacement of the plate at= 0 is u1; = C;. It does not violate generality if we set this value to zerd — i
is actually the rigid body motion of the structure in the i@t direction. IfC; = 0 the three boundary conditions
left yield the following homogenous linear system of eqoiasi

Cauz2(0) + C3u23(0) + Cyuz4(0) =0 (49a)
ILEl ILEI
C2 |:—I<L Rk (Ugg(l) + Z/UQQ(].)) - U22(1)1| + Cg |:—I€ Re (Ugg(].) + VUQB(].)) — U23(1):| +

e {EIRE (usa(1) + vuza (1)) — u24<1)} — 0 (49b)

{02 {m(p) + %ugz(p) + (S - pﬂ) u22(0)} +

+ Cs {u43(p) + %ugg(p) + (S - p12> ugg(p)] +

+ Cfunt)+ Tunto)+ (5- 5 Juno) }| =0, w99

p=0+¢
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with C5, C3 and C4 as unknowns. This equation system has a non-trivial saiufishe determinant of the
coefficient matrix vanishes

u22(0)
— 2 (usa(1) + vusa (1)
—ug2(1))

{U42(p) + Suga(p) +

R L) .

u23(0) U24(0)
—RBEL (ugs(1) 4 vugs(1)) —RBEL (u34(1) 4 vuga(1))
—UQg(l) —u24(1) -0 (50)
{1was(0) + Lusalp) + {waa(p) + Susa(p) +
(S - *) ms(ﬂ)}‘p:%& (3 - *) U24(/))Hp:0+5

Fig. 8. shows the critical load obtained by using the two rod#h (a) solution of equation (32) (b) solution by the
use of the Runge-Kutta procedure.

30 cr

15 + e

10 | i

----------- closed form solution
- - numerical method

t t t t t t t t t . h
01 02 03 04 05 06 07 08 09 1R,
Figure 8: analytic-numeric comparison

We have carried out the computations under the assumptairbt®, = 0.05, E = 2.1 x 10° N/mm* and

v = 0.3. Itis clear from Fig. 8 that the two curves coincide basicalith each other. It is worth noting again that
the dimensionless loagl as well as the quotienf=<— depend only orkh/R. andb/R,. both for the sold circular
plate and for the annular platesifandp; have fixed values.

5.3 Reaultsfor Annular Plates

In the present section we determine the critical loads far thfferent support arrangements. The solutions are
presented in the subsections 5.3.1., 5.3.2., 5.3.3. andl 5.3

5.3.1 Simple Supported Plate

First we shall investigate a shell-stiffened annular plsid a simple support on its inner boundary. Since the
radial displacement is not prescribed on the inner bouniddoylows that the boundary cond|t|0WR| =0
must be satisfied there. The whole structure is presentedjin® We remark that the values of andB in
equation (39), which provides the critical value®f are computed from relations (10) and (17). Furthermore we
also remark thak{ can be obtained from relation (14) when we calcutateising equation (13).
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Figure 9: Simple support on the inner boundary
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Figure 10 a-c: Quotient of the dimensionless critical loasls function of the dimensionless
height and thickness for the structure shown in Fig. 4 0.25, p = 0.5, p = 0.75
d: Dimensionless critical load as a functiongfand the dimensionless shell height

The solutionw of the plate equation (19a) (or the solutions of the difftiedrequations (42)) should fulfill the
following boundary conditions

dw  vdw
wl,—,, =0, o T 0 (51a)
dw 1 wi [b cos2hfB +cosh2hf +2 d*w N v dw (51b)
do |,y 121 —-v2\ R, sinh2hfB — sin2h3 dp2  pdp )
p:
o1
d[d+d+$]w —0. (51c)
dp [dp  pdp o1

The computational results are shown in Fig. 10 a-c for thr#ferdnt values ofp;. Fig. 10 d shows the critical
load of a specific structurd = 2.1 x 10° N/mm?, v = 0.3) againstp; andh/R, in a three-dimensional graph
for the fixed valueéh/ R. = 0.01. The axis§, . is a logarithmic one in this part of the figure.

5.3.2 Annular Platewith Clamped Inner Boundary

If (a) the radial displacement is not prescribed on the imeemdary but (b) the rotation is zero (in contrast to the
previous problem) — see Fig. 11 for further details —

13
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Figure 12 a-c: Quotient of the dimensionless critical loasis function of the dimensionless
height and thickness for the structure shown in Fig. 1d4f 0.25, p = 0.5, p = 0.75

d: Dimensionless critical load as a functiongfand the dimensionless shell height

then the equation

dw
& -0, (52)

P=pi

together with equations (51g)(51b) and (51c) are the boundary conditions. The effechefstiffening to the
structure shown in Fig. 11 can be seen in Fig. 12 a-c.

We remark that Fig. 12 d shows again the critical load againsind /R, in a three-dimensional graph for a
specific structure (the parameters are the same as those sifticture in Fig. 9). The vertical axis is logarithmic
as well.

5.3.3 Axially and Radially Supported Annular Plate

If (a) the radial displacement on the inner boundary of tleeepis zero, i.eu,|,~,, = 0 then the values ofl and

B in equation (39), which provides the critical value ®f should be computed from relations (11) and (17). We
also remark thaf can be obtained from relation (15) when we calcutateising equation (13). Furthermore if
the plate is simply supported on its inner boundary then treesponding boundary conditions are the same as
those given by equation (51).

14
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Figure 13: Simple supported plate with no radial displac@me the inner boundary

Fig. 15 a shows again the critical load agaipsandh /R, in a three-dimensional graph for a specific structure
(the parameters are the same as those of the previous twWems)b The vertical axis is logarithmic as well.

5.3.4 Annular Plate Fixed on the Inner Boundary

If the displacements and the rotation are zero on the innendery — the structure is shown in Fig. 14 — then
the only difference between this problem and the previowsisithat boundary condition (52) should be applied
instead of boundary condition (5%a)

T
I

Figure 14: Plate fixed on the inner boundary

In accordance with the Figures that have been already pezbbefore Fig. 15 b shows the critical load against
p; andh/R. in a three-dimensional graph for a specific structure — thmamaters of which are also the same as
earlier. The vertical axis is again a logarithmic one.

a.b/R. = 0.01 b. b/R. = 0.01

Figure 15 a-b: Dimensionless critical load as a functiop,aind the dimensionless shell height for the structures
shown in Fig. 13 and Fig. 14

6 Concluding Remarks

In accordance with the objectives in the introduction westeymmed up the differential equations for the stability
problem of solid circular plates and annular plates undeaisumption of axisymmetric deformations. In addition
we have clarified what the continuity conditions are betwisenplate and the cylindrical shell which stiffens the
plate. We have established the nonlinear equations whiotige the critical load. We have also developed a
procedure for computing numerical solutions. One of thesele used for the solid circular plate the other for
annular plates. We have coded the procedure in Fortran 9fadd computations in order to determine the critical
load.

Solutions are provided for a solid circular plate and forfeupport types concerning the annular plates. According
to the results obtained the stiffening shell increasesaheof critical load significantly if the quotie/ R. does
not exceed a limit the value of which dependshg®. andp;.
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Recalling the introduction we finally remark that (i) it is sweresting question what happens if the load is axisym-
metric but the deformations due to it are not, and (ii) whaig®ms if the load is also non-axisymmetric. Partial
results for problem (i) are presented in a conference pdingé€Burmeister, 2011).
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A Solution of Partial Problems
1.1 Krylov-Functions
For completeness we present the Krylov-functions togeiliter their derivatives with respect to the coordingte

below:

Vi =coshflcosBE, Vo= 1 (cosh B¢ sin BE + sinh Bz cos €)

. % (53a)
V3 = §sinhﬂ§ sinpg, V= 1 (cosh B¢ sin B¢ — sinh 8z cos BE) .
V1/:_4ﬂV47 ‘/é/:ﬁvla ngﬂ‘/Q, V4/:ﬂV3,
w, = _452‘/3 ) VZH = _4/82‘/4a V” = 52‘/1 ) ‘/4// = 52‘/2 ) (53b)

Vlm — _453‘/2, V2/// _ _463‘/3’ Vj/// _ _463‘/47 V4/// — 63‘/1 .

1.2 Solution for the First Partial Load

On the basis of equations (3) and (53b) we take into accountiircalculations that the following relations are
valid for the solutions of differential equation (1) anddisrivatives

ue = a1Vi +aVo +as3Vs + a4V
up = —4fa1Vy + BasVi + PazVa + BasVs
ul = —48%a1Vs — 4B%a;Vy + B2azVi + fPasVa
ug' = —4B%a1Va — 4B%asVs — 4B%asVy + BPas Vi .
For the sake of our later considerations it is worth intradgc¢he notations
Vin = Vi(€ = h) = cosh Sh cos Sh

(54)

Vo =Va(§ =h) = % (cosh Shsin Sh + sinh Bh cos Bh)
1. . (55)
Vap =V3(6 =h) = ismhﬁhsmﬁh

1
Vap =Va(E=h) = I (cosh Shsin Bh — sinh Shcos Bh) .
Boundary condition (5a)yields
Ugle=o = fag =0 therefore  ax, =0. (56)

Similarly we obtain from a comparison of the boundary candi{5a), and relation (4)

fo - f _ fo - f 1 i
5 therefore a4 = > EL (57)

On the basis of boundary conditions (pb)and (4) we obtain the linear system of equations
fo—f 1 1 _
2 IlsEls 63 Vlh =0 ’

fo _f 1 i
2 IlsEls 53

L Brud'|e—o = s BroPas = —

w!'le—p = —4B%a1 Vay, — 48%asVap — 5°
(58)

ulle—n = 4B%a1Vap — B2asVap + B



to calculate the two integration constants left. Substiguthe solution

(V12h + 4V2hv4h)
M _ Jo S L LAV Va, 16V Vi (59)
as 2 IlsEls ﬁ3 Vth3h - Vgh

VinVap + 4Vap Vay,

and the other two integration constants into (54§ have

fo - f 1 1 < V12h + 4‘/2hv4h ‘/22}1 - Vlh‘/Bh )
= — | - i Va—Vi |, 60
e 2 LBy, B3\ 4VipVop + 16Vay Vi | * VinVon — 4Vap Vi, © 1 (60)
from where
fo—f 1 1 cos2hf + cosh2h( + 2
= = — — l
(€ =0) 2 TisE1, 3° 4sin2hf + 4sinh 2hj3 (61)
if the definitions of the notations (55) and the values of thglév functions are also inserted.
This equation can be transformed further if we substitutegether withZ; on the basis of (2a)and (2b)
(€= 0) = uey = — 1 1 Jo— fcos2hf3 + cosh2h3 +2
ST W T e ™ T R o1 \° 8  sin2hB+sinh2n8
(vo/ %)
3
Rz R.\ 2 cos2hf + cosh2hf + 2
T 2E, (b) sin 2h3 + sinh 2h3 (fo= 1) (62)
1.3 Solution for the Second Partial L oad
Comparing boundary condition (5cind relation (54) we get
u¢(€)lg=0 =a1=0. (63)
Using boundary condition (5¢and formula (4) for the shear force in a similar manner we can write
M, . M, 1 1
_IlsElsulC/|E:0 = —IlsE1552a3 = - 5 1.e. az = 9 T..Er @ . (64)
The other two boundary conditions (§d)yield the following system of linear equations
M, 1 1
ul'le=n = —4B%agVs), — 45° —Van + BPasVin =0,
2 IlsEls B (65)

M, 1 1
2115E1362

wlle=h = —4B%axVap + 5° Vin + B%agVay, = 0.

The solution are
1 V12h + 4Vor Van
M _ U1 My |4V, Vi — Vau Vi (66)
ayq LisEqs B2 2 4V + VinVan
VinVan — VanVap

Making use of the solutions obtained for the integrationstants (63), (64) and (65) we have from (bt)at

1 1 M, V12h + 4Vor Vap 4V42h + VinVap )
Uy = ——— — Vo + V3 + V, 67
¢ LB 7 2 (4V1hv4h —4Vo Va2 ViV — VanVap, (67)
Its derivative with respect to is
du( 1 1 Mo ( ‘/12h + 4‘/2h‘/4h 4V42h + Vlh‘/Bh )
— = — = Vi+ BVa + Vi) . 68
&~ BB 2 \Ca V=4 T O v (68)

Substituting the definitions of the notations (55) and thaisthe Krylov functions together with the constarits
and E; on the basis of (2a) (2b), we obtain the final form of the derivative

duc| 1 1M, V3 +4VeyVan 1 lcos2hf4cosh2hf+2
A€ |eg  DisErs B 2 4VipVap —4VapVap,  20LE1s 8 sinh2hf —sin2hf °

B _Vi’ & H cos2hfB + cosh 2hf3 + 2 M,
by sinh2hB3 —sin2hB b2

S

(69)
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1.4 Solution and Derivativesfor Equation (21)

Here we present the linearly independent solutigns . ., Z, of the differential equation (21) together with their
derivatives with respect to

Z%O):lel7 Zl/zoa Zl//:0> ZI/NZO; (70a)
o / 1" " 2 3/2
2 = Zy =m(\/§p), Z; = gp 3 = fg%» 2" = gf/*gpg; (70b)
2 = 7y = 1,(v/3p) Zi = —\/31(V/30), (70c)
3/2
70 = g [1(V5o) ~ D(V30)] A —ST [J3(V/3p) — 31(V/30)] 5 (70d)
2 = 7y = Y,(\/3p), Zi = —VEN(V30), (70€)
3/2
2 =S [(V30) ~¥o(v/30)] 2= - [M(Eo - mVa) . o
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