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Stability of Shell-Stiffened and Axisymmetrically Loaded Annular Plates

Dániel Burmeister

The present paper is concerned with the stability problems of a solid circular plate and some annular plates each
stiffened by a cylindrical shell on the external boundary. Assuming an axisymmetric dead load and axisymmetric
deformations we determine the critical load in order to clarify what effect the stiffening shell has on the critical
load.

1 Introduction

In engineering practice we often meet structural elements loaded in their own plane like rods or plates. Because of
their importance, stability problems of plates loaded in their own planes are an especially significant issue.

As regards the stability problems of circular plates, we mention that the first paper devoted to this question was
published in 1890 (Bryan, 1890). It is also worth citing an article by Nádai (1915), who investigated some fun-
damental stability issues. Since then a number of papers have been devoted to the stability problems of circular
plates but here we lay an emphasis only on those which deal with the influence of structural stiffening.

A structure can be stiffened in various ways. A solid circular plate (or an annular one) can be made more resistant
to buckling by the use of a corrugation or by applying a stiffening along the diameter of the plate or by attaching a
ring to the outer boundary of the plate or by making them more rigid with a cylindrical shell attached to the outer
boundary of the plate.

Seeking in the scientific literature for papers devoted to the stability problem of stiffened annular plates we have
come to the conclusion that there are only a few works dealingwith this issue. A ring stiffened circular plate is
investigated in a paper by Turvey and Der Avanessien (1989).The paper cited is concerned among others with
experimental results. However, the stability issues are left out of consideration. A further paper by Turvey and
Salehi (2008) deals with an annular plate stiffened by a single diameter stiffener. The stability problem is, however,
again left out of consideration.

The influence of a stiffening ring attached between the two boundaries of the middle surface of circular plates on
the stability is investigated by Frostig and Simitses (1988). It turns out from the references that the authors did not
take into account the corresponding results of Szilassy (1971, 1976).

Szilassy investigated some stability problems of circularplates stiffened by a cylindrical shell on the outer boundary
in (Szilassy, 1971, 1976). The main objective of his research was to clarify what effect the stiffening shell has on the
critical load. If the stiffening significantly increases the buckling load than thin plates can be made more resistant
against buckling by the application of a stiffening shell. The problems considered there include a boundary value
problem for a solid circular plate and a few boundary value problems for annular plates. The author assumes that
(i) the load is an in-plane axisymmetric dead one, and (ii) the deformations of the annular plate and the cylindrical
shell are also axisymmetric. For the circular plates the author uses the solution of a differential equation set up
for the rotation field – this choice excludes those boundary value problems from the set of solvable ones where
a boundary condition is imposed on the deflection. As regardsthe cylindrical shell the solution is based on the
theory of thin shells. After the investigations of Szilassythe following questions can be raised: (a) is it worth using
a differential equation set up for the deflection in order to expand the range of solvable boundary value problems
(the number of solvable problems can be increased in this way); (b) what is the influence of the shell height on the
critical load; (c) is it worth investigating the case when the load is axisymmetric but the deformations due to the
load are not; (d) what happens if the load is not axisymmetric.
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The main objective of the present paper is to solve those boundary value problems which require the use of the
differential equation set up for the deflection of the plate,i.e., where there is a boundary condition imposed on the
deflection. The paper is organized in seven sections. Section 2 shortly outlines the physical problem to be solved.
Section 3 presents the governing equations both for the circular plate and for the cylindrical shell. The stability
problem of a solid circular plate is solved in Section 4. There we present both the non-linear equation which
provides the critical load and the critical load for variousshell heights. Section 5 is devoted to annular plates. First
we shortly review the numerical method we use. Then we solve four different boundary value problems. Section 6
is a summary of the results. Appendix A includes some longer transformations.

As regards the possible applications we want to make the following remark. Assume that the inner space of a
pressure vessel (a cylindrical shell) is separated into parts by annular plates. If the distance of the plates is above
a certain limit and the buckling problem of the plates arisesthen the problem to be solved may coincide with the
stability problem of a shell-stiffened annular plate provided that the shell height tends to infinity.

2 Problem Formulation

The cross section of the shell-stiffened structure we are concerned with is shown in Fig. 1. The structure consists of
either a solid circular plate or an annular one – the latter isshown in Fig. 1 – and a cylindrical shell, which stiffens
the plate on its external boundary. The inner radius of the plate is denoted byRi, the radius of the intersection line
of the middle surfaces of the plate and the shell byRe. We shall assume thatRe coincides with the external radius
of the plate. The thicknesses of the plate and shell are denoted bybp andbs, respectively. The shell is symmetric
with respect to the middle plane of the plate. Its height is2h. The structure is loaded by radial distributed forces
with a constant intensityfo acting in the middle plane of the plate. The load is a dead one.

2Ri

2Re

bp
h

bs

fo R

z ξ

ζ

h

Figure 1: The structure and its load

We assume that the plate and the shell are thin, consequentlywe can use the Kirchhoff theory of plates and shells.
It is also assumed that the problem is linear with regard to the kinematic equations and material law. Heat effects
are not taken into account. The plate and the shell are made ofthe same homogeneous isotropic material for which
E = Ep = Es andν = νp = νs are Young’s modulus and Poisson’s ratio.
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Figure 2: Free body diagram for plate and shell
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Under the assumption of small, axisymmetric and linearly elastic deformations we determine (a) the critical load
of the structure and (b) the effect of the stiffening shell onthe critical load.

In order to solve the problem raised we separate the shell andplate from each other mentally. In accordance to
this Figs. 2 a and b show the annular plate and the cylindricalshell one by one. The cylindrical coordinate system
(R,ϕ, z) is used for the equations of the plate – the planez = 0 coincides with the middle surface of the plate.
Fig. 3 a shows the corresponding coordinate curves on the circle with radiusRe. The displacements on the middle
surface in the directionsR andz are denoted byu andw, respectively. The inner forcesf and the bending moment
Mo exerted by the cylindrical shell on the annular plate are also shown in Fig. 2.a.

For the cylindrical shell the coordinate system(ζ, ϕ, ξ) is applied. The coordinate surfaceξ = z, ζ = 0 coincides
with the middle surface of the shell with radiusRe. The polar angleϕ is the same in the two coordinate systems
(due to the axisymmetry it plays, however, no role in the investigations). The coordinate curves on the middle
surface of the shell are shown in Fig. 3 b.

ϕ z

ρ =
R
Re

uϕ uξ

uζ

ζ

ϕ

ξ

u

wv

a. b.

Figure 3: Coordinate curves in the coordinate systems

Assume that the deformations are axisymmetric and there is no load in the directionξ on the shell. Then
uζ = uζ(ξ) is the only displacement component on the middle surface which is different from zero.

It is also obvious thatu = u(R), w = w(R) anduζ = uζ(ξ).

Fig. 2 b shows the inner forcesf and the bending momentMo exerted by the plate on the cylindrical shell.

3 Governing Equations

3.1 Governing Equations for the Cylindrical Shell

It is known that under the condition of axisymmetric deformations, the radial displacementuζ should satisfy the
following differential equation (Timoshenko and Woinowski-Krieger, 1987, Chapter 15, p. 468)

d4uζ

dξ4
+ 4β4uζ =

1

I1sE1s

(

−p− ν
Nξ

Re

)

(1)

wherep is the constant radial load exerted on the middle surface of the shell (its value is zero in the present case),
Nξ is the inner force in directionξ (its value is zero as well),νs andEs are Young’s modulus and Poisson’s ratio,
respectively. In addition the following notations are introduced

νo = 4

√

3(1− ν2s ) , β = νo

√

Re

bs

1

Re
, (2a)

I1s = b3s/12 , E1s = Es/(1− ν2s ) . (2b)

The shell shown in Fig. 2 b is subjected to the line loadsfo andf (as it has already been mentionedp = 0). There
is also no load in the directionξ on the shell. ConsequentlyNξ = 0. The solution of equation (1) in the interval
ξ ∈ [0, h] takes the form

uζ(ξ) =
4∑

i=1

aiVi(βξ) + uζ p ; uζ p = −p/β4I1sE1s = 0 , (3)
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whereVi(βξ) (i = 1, . . . , 4) denote the Krylov-functions – their definitions and derivatives are presented in the
Appendix – see equations (53a) and (53b) for details.

The shear force and bending moment in the shell can be given interms ofuζ

Qζ = I1sE1s
d3uζ

dξ3
and Mξ = −I1sE1s

d2uζ

dξ2
. (4)

The solution foruζ is a superposition of the solutions we determine for the following two partial loads

Load 1. The shell is subjected to the line loadsfo andf shown in Fig. 4 a The corresponding boundary conditions
are as follows

Qζ |ξ=0 = −fo − f

2
,

duζ

dξ

∣
∣
∣
∣
ξ=0

= 0 , (5a)

Qζ |ξ=h = 0 , Mξ|ξ=h = 0 . (5b)

Sinceuζ(ξ) = uζ(−ξ) due to the load, the rotation about the axisϕ is zero – cf. equation (5a)2. The other
boundary conditions are obvious.

Load 2. The shell is subjected to the couple systemMo shown in Fig. 4 b Now we have the following boundary
conditions

u(ζ)|ξ=0 = 0 , Mξ|ξ=0 = −Mo

2
, (5c)

Qζ |ξ=h = 0 , Mξ|ξ=h = 0 . (5d)

Observe thatuζ(ξ) = −uζ(−ξ) for this partial load. Consequently the displacement in thedirection ζ
should be zero atξ = 0. The other boundary conditions are again obvious.

h

fof

ξ

ζ

Qζ (ξ + 0)

Qζ (ξ − 0)

h

ξ

ζ

Mξ (ξ + 0)

Mξ (ξ − 0)

Mo

a. b.

Figure 4: Partial loads of the shell

It follows from the symmetry of the problem that it is sufficient to determine the solution for the shell in the interval
ξ ∈ [0, h].

The solutions for the partial loads include the distributedforcef and the bending momentMo as unknown para-
meters. Theoretically, these quantities can be calculatedfrom the continuity conditions. We prescribe the continu-
ity conditions on the intersection line of the middle surfaces of the plate and the shell. SinceR = Re andξ = 0
on the intersection line, the kinematic quantities should satisfy the following continuity conditions

u
∣
∣
R=Re

= uo = uζo = uζ

∣
∣
ξ=0

(6a)

and

ϑo = −dw
dR

∣
∣
∣
∣
R=Re

=
duζ

dξ

∣
∣
∣
∣
ξ=0

. (6b)
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After some hand made calculations – see Sections 1.2. and 1.3of the Appendix for details –, in which use has been
made of the definitions of the Krylov-functions, we obtain

ϑo =
duζ

dξ

∣
∣
∣
∣
ξ=0

= −ν3o
E

(
Re

bs

) 1

2 cos 2hβ + cosh 2hβ + 2

sinh 2hβ − sin 2hβ

1

b2s
︸ ︷︷ ︸

κ

Mo = −κMo . (7a)

and

uζo = uζ |ξ=0 = − νo
2E

(
Re

bs

) 3

2 cos 2hβ + cosh 2hβ + 2

sin 2hβ + sinh 2hβ
︸ ︷︷ ︸

α

(fo − f) = −α (fo − f) , (7b)

whereα andκ are defined by the above relations.

It follows from the continuity conditions (6) and relations(7) that the equations

dw

dR
= κMo and uo = −α (fo − f) (8)

are satisfied. We shall see later that equation (8)1 provides the value off as non-linear equation and equation (8)2

is to be used for calculatingfo.

3.2 Deformation of the Annular Plate, Governing Equations for the In-Plane Load

Under the assumption of axisymmetric deformations, the inner forces in the plate – we use the cylindrical coordi-
nate system(R,ϕ, z) – due to the in-plane load exerted on the outer boundary are asfollows

NR = −A+
B

R2
, Nϕ = −A− B

R2
and NRϕ = NϕR = 0 (9)

where the constantsA andB depend on the boundary conditions. It follows from the axisymmetry thatNRϕ

vanishes.

Let ρ = R/Re be a dimensionless coordinate. Further letρi = Ri/Re. It is clear thatρi = 0 for a solid circular
plate.

If the inner boundary is free andf is the line load on the outer boundary – see Fig. 2 a – then the constants are as
follows

A = f
1

1− ρ2i
and B = f

R2
i

1− ρ2i
. (10)

If the radial displacement vanishes on the inner boundary then

A = f
1 + ν

1 + ν + ρ2i (1− ν)
and B = −f

R2
i (1− ν)

1 + ν + ρ2i (1− ν)
. (11)

If the plate is a solid one then

A = f and B = 0 . (12)

The radial displacement on the inner boundary can be calculated using the relations

uo = −K
Re

bp

f

E
, (13)

where the constantK depends on the boundary condition

K =
(1− ν)2(1− ρ2i )

1 + ν + ρ2i (1− ν)
if NR|ρ=ρi

= 0 , (14)

K =
(1− ν) + ρ2i (1 + ν)

1 + ρ2i
if uo|ρ=ρi

= 0 , (15)

K = 1− ν if ρi = 0 . (16)
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3.3 Deformation of the Annular Plate, Equations for the Displacement Field after Stability Loss

Let us introduce the notations

A =
A

f
; B =

B

f
, (17)

I1p = b3p/12 and E1p = Ep/(1− ν2p) . (18)

Further letw be the displacement of the middle plane of the plate in the directionz – see Figure 3. Making use of
the notations introduced one can show thatw satisfies the differential equation

∆H∆Hw =
f

I1pE1p

[

(
−A+

B
R2

) d2w
dR2

+
(
−A− B

R2

) 1

R

dw
dR

]

, (19a)

∆H =
d2

dR2
+

1

R

d
dR

if the plate is an annular one. With regard to equations (12)

∆H∆Hw = − f

I1pE1p

[

d2w
dR2

+
1

R

dw
dR

]

(19b)

is the differential equation forw if the plate is solid. The rotation, the shear force and the bending moment can all
be given in terms of the solution forw as follows

ϑ = −dw

dR
, (20a)

MR = −I1pE1p

(
d2w

dR2
+ ν

1

R

dw

dR

)

, (20b)

QR = I1pE1p
d

dR

(
d2w

dR2
+

1

R

dw

dR

)

−NR
dw

dR
. (20c)

4 Stability of the Shell-Stiffened Solid Circular Plate

4.1 Nonlinear Equation for the Critical Load

Introducing the notations

F = R2
e

f

I1pE1p
and

1

R2
e

∆̃ = ∆H =
1

R2
e

(
d2

dρ2
+

1

ρ

d
dρ

)

(21a)

in equation (19b) yields the differential equation

∆̃∆̃w + F∆̃w = 0 . (21b)

Its solution takes the form

w(ρ) = c1Z1 + c2Z2 + c3Z3 + c4Z4 , (22a)

Z1 = 1 , Z2 = ln ρ , Z3 = Jo(
√

Fρ) , Z4 = Yo(
√

Fρ) (22b)

whereci, (i = 1, . . . , 4) are undetermined constants of integration whileZi denote the linearly independent
particular solutions in whichJn(

√
Fρ) andYn(

√
Fρ), n = 0, 1, 2, 3, . . . are the Bessel functions of integer order.

For small values of
√
Fρ the following asymptotic relation holds:Yo(

√
Fρ) ≃ 2

π ln(
√
Fρ). In additionZ3(0) =

Jo(0) = 1. Consequently the solution forw is limited if

c2 = −2c4/π . (23)
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Accordingly we get

w(ρ) = c1 + c4

[

Yo(
√

Fρ)− 2

π
ln(

√

Fρ)

]

+ c3Jo(
√

Fρ) . (24)

By making use of the relations

2

x
J1(x) = J2(x) + Jo(x) and

2

x
Y1(x) = Y2(x) + Yo(x) , (25)

the derivatives ofZi from equations (70) and relation (20b) – the latter providesus the shear force – we obtain
after some manipulations that

QR
R3

k

I1E1
=

d
dρ

[

∆̃ + F

]

w = −c4
2

π
F
1

ρ
. (26)

Since the shear forceQR is zero on the circle with radiusR = ρRe if ρ → 0, the previous equation yields

2πRQR = −4c4f = 0 . (27)

Consequentlyc4 = 0. Therefore the solution forw is of the form

w(ρ) = c1 + c3Jo(
√

Fρ) . (28)

The remaining integration constants can be calculated fromthe boundary conditions prescribed atρi = 1.

In what follows we assume that the thicknesses and the material of the cylindrical shell and the circular plate are
the same. ThusE1 = E1s = E1p, νs = νp, bs = bp = b andI1 = I1s = I1p.

According to equation (6)

ϑo = −κMo . (29)

The rotation atR = Re is of the form

ϑo = − dw
dR

∣
∣
∣
∣
R=Re

= c3
1

Re

√

FJ1(
√

F) , (30a)

where we have utilized relations (20a) and (70c)2. Considering equation (19b), the properties of the solution and
utilizing relations (70), which provides the derivatives of the Bessel functions, we obtain for the bending moment

Mo = −I1E1

[
d2w

dR2
+ ν

1

R

dw

dR

]∣
∣
∣
∣
R=Re

= −c3
I1E1

R2
e

[

(1− ν)
√

FJ1(
√

F)− FJo(
√

F)
]

. (30b)

Comparing equations (29) and (30) we get a non-linear equation for the critical load

√

FJ1(
√

F)− κ
I1E1

Re

[

(1− ν)
√

FJ1(
√

F)− FJo(
√

F)
]

= 0 . (31)

This equation can be further transformed if we make use of relations (2a) and (2b) (the structural elements are of
the same material and thickness) together with the definition of κ in equation (7a)

√

FJ1(
√

F)− 1

12

ν3o
1− ν2

√

b

Re

cos 2hβ + cosh 2hβ + 2

sinh 2hβ − sin 2hβ

[

(1− ν)
J1(

√
F)√

F
− FJo(

√

F)

]

= 0 (32)

If we now take into account thathβ = νo

√
Re

b
h
Re

we can conclude that the dimensionless critical loadFcr – the

corresponding value off is denoted byfcr – depends only on the dimensionless variablesh/Re andb/Re for a
fixed value ofν. In the sequel we assume that we have solved the above equation, i.e. we know the values ofFcr

andfcr.
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4.2 Results for a Solid Plate

In accordance with the notations introduced letfo cr be the critical value offo. A comparison of equations (7) and
(13) yields

(1− ν)
Re

b

fcr
E

= α(fo cr − fcr) .

Consequently

fo cr

fcr
=

Fo cr

Fcr
= 1 + 2

1− ν

νo

√

Re

b

cos 2hβ + cosh 2hβ + 2

sinh 2hβ − sin 2hβ
, Fo cr = R2

e

fo cr

I1pE1p
. (33)

Clearly the quotientfo cr

fcr
= Fo cr

Fcr

depends also on the dimensionless variablesh/Re andb/Re for a fixed value of
ν. This function is presented in Fig. 5.

0.2 0.4 0.6 0.8 1

1

1.2

1.4

Fo cr

Fcr
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h
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Fo cr

Fcr

b. ν = 0.3

h

Re
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c. ν = 0.45

h

Re

b

Re

= 0.1 ;
b

Re

= 0.075 ;
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Re

= 0.05 ;
b

Re

= 0.025

Figure 5: QuotientFo cr/Fcr againsth/Re for some values ofb/Re andν

We introduce the following notations for the critical load and the dimensionless critical load if there is no stiffening
shell

fo cr (h = 0) = fof cr and Fo cr (h = 0) = Fof cr . (34)

It is again obvious that the quotient of the critical loads (or which is the same that of the dimensionless critical
loads) for a givenν

fo cr

fof cr
=

Fo cr

Fof cr
(35)

depends only onh/Re andb/Re, which, in the sequel, are referred to as dimensionless height and thickness.
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A code has been written in Fortran 90 to solve the non-linear equation (32) forFcr and computefo cr, fof cr, and
Fo cr, Fof cr. The computational results are presented in Fig. 6 forν = 0.15, 0.3 and0.45. It is clear from the
graphs that the height of the plate does not affect the critical load if the height is larger than a certain value.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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4

5
Fo cr

Fof cr

a. ν = 0.3

h

Re

0.2 0.4 0.6 0.8 1

1
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4

5

Fo cr

Fof cr b. ν = 0.15

h

Re 0.2 0.4 0.6 0.8 1

1

2

3

4

5

Fo cr

Fof cr c. ν = 0.45

h

Re

b

Re

= 0.1 ;
b

Re

= 0.075 ;
b

Re

= 0.05 ;
b

Re

= 0.025

Figure 6:fo cr/foh cr againsth/Re for someb/Re; ν = 0.15, 0.3, 0.45

It follows from equations (7) that the stiffening shell can be replaced by a tension spring and a torsion spring on its
outer diameter. The corresponding arrangement is shown in Fig. 7.

fo fo

Dα

Dκ

Figure 7: Spring model

Hooke’s law for these springs (tension and torsion) takes the form

fo − f = −Dαuζo , Mo = −Dκϑo (36)

whereDα = 1
α andDκ = 1

κ are the spring constants.

If the heighth of the shell tends to infinity the termsα andκ are limited. Consequently the critical load is limited

9



as well. The limits of the critical loads belong to the values

lim
h→∞

α = lim
h→∞

νo
2E

(
Re

bs

) 3

2 cos 2hβ + cosh 2hβ + 2

sin 2hβ + sinh 2hβ
=

νo
2E

(
Re

bs

) 3

2

, (37)

lim
h→∞

κ = lim
h→∞

ν3o
E

(
Re

bs

) 1

2 cos 2hβ + cosh 2hβ + 2

sinh 2hβ − sin 2hβ

1

b2s
=

ν3o
E

(
Re

bs

) 1

2 1

b2s
. (38)

These limits are presented with horizontal lines in the upper graph in Fig. 6.

5 Stability of the Shell-Stiffened Annular Plates

5.1 A Numerical Procedure to Determine the Critical Load

Equation (19a) has no closed form solution. For this reason we develop a numerical algorithm for the solution of
the eigenvalue problem defined by equation (19a) and the corresponding boundary conditions. First we rewrite
equation (19a) in the form

d4w
dρ4

= F

(
d3w
dρ3

,
d2w
dρ2

,
dw
dρ

,w,F, ρ

)

=

= −2

ρ

d3w
dρ3

+
1

ρ2
d2w
dρ2

− 1

ρ3
dw
dρ

+ F

[(

−A+
BR2

e

ρ2

)
d2w
dρ2

+

(

−A− BR2
e

ρ2

)
1

ρ

dw
dρ

]

(39)

and then we replace this ordinary differential equation of order four by a system of differential equations of order
one. To this end we introduce appropriately defined new intermediate variablesp, q ands by the use of which we
obtain

dw
dρ

= p ,
dp
dρ

= q ,
dq
dρ

= s ,
ds
dρ

= F (s, q, p, w,F, ρ) . (40a)

where

F = −2s

ρ
+

q

ρ2
− p

ρ3
+ F

((

−A+
BR2

e

ρ2

)

q +

(

−A− BR2
e

ρ2

)
p

ρ

)

. (40b)

Variablesw, p, q ands constitute a column matrix

u
T (ρ) =

[
w p q s

]
(41)

where the superscriptT stands for the transpose of a matrix. It is clear thatu fulfills the matrix equation

du
dρ

=
[
p q q F (s, q, p, w, F, ρ)

]T
. (42)

We seek solutions in the intervalρ ∈ [ρi, 1]. It is easy to see that the particular solutions
uk = [ u1k u2k u3k u4k ]T (k = 1, 2, 3, 4)

are linearly independent if they satisfy the following initial conditions

u1|ρi
=







1
0
0
0






, u2|ρi

=







0
1
0
0






, u3|ρi

=







0
0
1
0






, u4|ρi

=







0
0
0
1







(43)

Consequently the solution of equation (42) assumes the form

u =C1u1 + C2u2 + C3u3 + C4u4 , (44)

whereC1, . . . , C2 are constants of integration.

Differential equations (42) are associated with homogenous boundary conditions on the inner boundaryρ = ρi
and also on outer boundaryρ = ρe = 1. We shall detail the boundary conditions when we present thesolution for
the various support arrangements. At this point we remark that the differential equation (42) and the homogenous

10



boundary conditions together define the eigenvalue problemwhich provides the dimensionless eigenvalueF for a
given support arrangement of the structure consisting of a shell and an annular plate.

Every physical quantity can be given in terms of the particular solutionsu1, . . . ,u4. On the basis of relations (40)
and (20) we obtain the displacement field

w(ρ) = C1u11 + C2u12 + C3u13 + C4u14 , (45a)

the rotation field

ϑ =
1

Re

dw
dρ

=
1

Re
(C1u21 + C2u22 + C3u23 + C4u24) , (45b)

the bending moment

MR = −I1E1

R2
k

[(

u31 +
ν

ρ
u21

)

C1 +

(

u32 +
ν

ρ
u22

)

C2+

+

(

u33 +
ν

ρ
u23

)

C3 +

(

u34 +
ν

ρ
u24

)

C4

]

, (45c)

and the shear force

QR =
I1E1

R3
e

{[

u41 +
1

ρ
u31 +

(

F− 1

ρ2

)

u21

]

C1 +

[

u42 +
1

ρ
u32 +

(

F− 1

ρ2

)

u22

]

C2 +

+

[

u43 +
1

u 33
(ρ) +

(

F− 1

ρ2

)

u23

]

C3 +

[

u44 +
1

ρ
u34(ρ) +

(

F− 1

ρ2

)

u24

]

C4

}

. (45d)

Finally we remark that the solutionsu1, . . . ,u4 are computed using an adaptive fourth-order Runge-Kutta method.

5.2 Comparison with the Solution Valid for the Solid Plate

We have tested the numerical algorithm described above by solving the problem of the solid circular plate again.
The corresponding boundary conditions are in principle thesame as before

lim
ρ−→0

w = finite ,
dw
dρ

∣
∣
∣
∣
ρ=0

= 0 , (46)

dw
dρ

∣
∣
∣
∣
ρ=1

= − 1

12

ν3o
1− ν2

√

b

Re

cos 2hβ + cosh 2hβ + 2

sinh 2hβ − sin 2hβ

(
d2w
dρ2

+
υ

ρ

dw
dρ

)
∣
∣
∣
∣
∣
ρ=1

(47)

d
dρ

[
d2

dρ
+

1

ρ

d
dρ

+ F

]

w

∣
∣
∣
∣
ρ=0+ε

= 0 . (48)

The displacement of the plate atρ = 0 is u11 = C1. It does not violate generality if we set this value to zero – it
is actually the rigid body motion of the structure in the vertical direction. IfC1 = 0 the three boundary conditions
left yield the following homogenous linear system of equations

C2u22(0) + C3u23(0) + C4u24(0) = 0 (49a)

C2

[

−κ
I1E1

Rk
(u32(1) + νu22(1))− u22(1)

]

+ C3

[

−κ
I1E1

Re
(u33(1) + νu23(1))− u23(1)

]

+

+ C4

[

−κ
I1E1

Re
(u34(1) + νu24(1))− u24(1)

]

= 0 (49b)

{

C2

[

u42(ρ) +
1

ρ
u32(ρ) +

(

F− 1

ρ2

)

u22(ρ)

]

+

+ C3

[

u43(ρ) +
1

ρ
u33(ρ) +

(

F− 1

ρ2

)

u23(ρ)

]

+

+ C4

[

u44(ρ) +
1

ρ
u34(ρ) +

(

F− 1

ρ2

)

u24(ρ)

]}∣
∣
∣
∣
ρ=0+ε

= 0 , (49c)
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with C2, C3 andC4 as unknowns. This equation system has a non-trivial solution if the determinant of the
coefficient matrix vanishes

D(F) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u22(0)
−κ I1E1

Rk

(u32(1) + νu22(1)

−u22(1)){

u42(ρ) +
1
ρu32(ρ) +

+
(

F− 1
ρ2

)

u22(ρ)
}∣
∣
∣
ρ=0+ε

u23(0) u24(0)
−κ I1E1

Rk

(u33(1) + νu23(1))

−u23(1)

−κ I1E1

Rk

(u34(1) + νu24(1))

−u24(1){

u43(ρ) +
1
ρu33(ρ) +

+
(

F− 1
ρ2

)

u23(ρ)
}∣
∣
∣
ρ=0+ε

{

u44(ρ) +
1
ρu34(ρ) +

+
(

F− 1
ρ2

)

u24(ρ)
}∣
∣
∣
ρ=0+ε

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 (50)

Fig. 8. shows the critical load obtained by using the two methods: (a) solution of equation (32) (b) solution by the
use of the Runge-Kutta procedure.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

Fo cr

ρi = 0

closed form solution

numerical method

h

Re

Figure 8: analytic-numeric comparison

We have carried out the computations under the assumption that b/Re = 0.05, E = 2.1 × 105 N/mm2 and
ν = 0.3. It is clear from Fig. 8 that the two curves coincide basically with each other. It is worth noting again that
the dimensionless loadF as well as the quotientfo cr

foh cr

depend only onh/Re andb/Re both for the sold circular
plate and for the annular plates ifν andρi have fixed values.

5.3 Results for Annular Plates

In the present section we determine the critical loads for four different support arrangements. The solutions are
presented in the subsections 5.3.1., 5.3.2., 5.3.3. and 5.3.4.

5.3.1 Simple Supported Plate

First we shall investigate a shell-stiffened annular platewith a simple support on its inner boundary. Since the
radial displacement is not prescribed on the inner boundaryit follows that the boundary conditionNR|ρ=ρi

= 0
must be satisfied there. The whole structure is presented in Fig. 9. We remark that the values ofA andB in
equation (39), which provides the critical value ofF , are computed from relations (10) and (17). Furthermore we
also remark thatK can be obtained from relation (14) when we calculateuo using equation (13).

12



Figure 9: Simple support on the inner boundary
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Figure 10 a-c: Quotient of the dimensionless critical loadsas a function of the dimensionless
height and thickness for the structure shown in Fig. 9 ifρ = 0.25, ρ = 0.5, ρ = 0.75
d: Dimensionless critical load as a function ofρi and the dimensionless shell height

The solutionw of the plate equation (19a) (or the solutions of the differential equations (42)) should fulfill the
following boundary conditions

w|ρ=ρi
= 0 ,

d2w
dρ2

+
ν

ρ

dw
dρ

∣
∣
∣
∣
ρ=ρi

= 0 (51a)

dw
dρ

∣
∣
∣
∣
ρ=1

= − 1

12

ν3o
1− ν2

√

b

Re

cos 2hβ + cosh 2hβ + 2

sinh 2hβ − sin 2hβ

(
d2w
dρ2

+
υ

ρ

dw
dρ

)
∣
∣
∣
∣
∣
ρ=1

(51b)

d
dρ

[
d2

dρ
+

1

ρ

d
dρ

+ F

]

w

∣
∣
∣
∣
ρ=1

= 0 . (51c)

The computational results are shown in Fig. 10 a-c for three different values ofρi. Fig. 10 d shows the critical
load of a specific structure (E = 2.1 × 105 N/mm2, ν = 0.3) againstρi andh/Re in a three-dimensional graph
for the fixed valueb/Re = 0.01. The axisFo cr is a logarithmic one in this part of the figure.

5.3.2 Annular Plate with Clamped Inner Boundary

If (a) the radial displacement is not prescribed on the innerboundary but (b) the rotation is zero (in contrast to the
previous problem) – see Fig. 11 for further details –

13



Figure 11: Shell and plate clamped on the inner boundary
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Figure 12 a-c: Quotient of the dimensionless critical loadsas a function of the dimensionless
height and thickness for the structure shown in Fig. 11 ifρ = 0.25, ρ = 0.5, ρ = 0.75
d: Dimensionless critical load as a function ofρi and the dimensionless shell height

then the equation

dw
dρ

∣
∣
∣
∣
ρ=ρi

= 0 , (52)

together with equations (51a)1, (51b) and (51c) are the boundary conditions. The effect of the stiffening to the
structure shown in Fig. 11 can be seen in Fig. 12 a-c.

We remark that Fig. 12 d shows again the critical load againstρi andh/Re in a three-dimensional graph for a
specific structure (the parameters are the same as those of the structure in Fig. 9). The vertical axis is logarithmic
as well.

5.3.3 Axially and Radially Supported Annular Plate

If (a) the radial displacement on the inner boundary of the plate is zero, i.e.uo|ρ=ρi
= 0 then the values ofA and

B in equation (39), which provides the critical value ofF , should be computed from relations (11) and (17). We
also remark thatK can be obtained from relation (15) when we calculateuo using equation (13). Furthermore if
the plate is simply supported on its inner boundary then the corresponding boundary conditions are the same as
those given by equation (51).
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Figure 13: Simple supported plate with no radial displacement on the inner boundary

Fig. 15 a shows again the critical load againstρi andh/Re in a three-dimensional graph for a specific structure
(the parameters are the same as those of the previous two problems). The vertical axis is logarithmic as well.

5.3.4 Annular Plate Fixed on the Inner Boundary

If the displacements and the rotation are zero on the inner boundary – the structure is shown in Fig. 14 – then
the only difference between this problem and the previous one is that boundary condition (52) should be applied
instead of boundary condition (51a)2.

Figure 14: Plate fixed on the inner boundary

In accordance with the Figures that have been already presented before Fig. 15 b shows the critical load against
ρi andh/Re in a three-dimensional graph for a specific structure – the parameters of which are also the same as
earlier. The vertical axis is again a logarithmic one.
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Figure 15 a-b: Dimensionless critical load as a function ofρi and the dimensionless shell height for the structures
shown in Fig. 13 and Fig. 14

6 Concluding Remarks

In accordance with the objectives in the introduction we have summed up the differential equations for the stability
problem of solid circular plates and annular plates under the assumption of axisymmetric deformations. In addition
we have clarified what the continuity conditions are betweenthe plate and the cylindrical shell which stiffens the
plate. We have established the nonlinear equations which provide the critical load. We have also developed a
procedure for computing numerical solutions. One of these can be used for the solid circular plate the other for
annular plates. We have coded the procedure in Fortran 90 andmade computations in order to determine the critical
load.

Solutions are provided for a solid circular plate and for four support types concerning the annular plates. According
to the results obtained the stiffening shell increases the value of critical load significantly if the quotienth/Re does
not exceed a limit the value of which depends onb/Re andρi.
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Recalling the introduction we finally remark that (i) it is aninteresting question what happens if the load is axisym-
metric but the deformations due to it are not, and (ii) what happens if the load is also non-axisymmetric. Partial
results for problem (i) are presented in a conference proceeding (Burmeister, 2011).
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A Solution of Partial Problems

1.1 Krylov-Functions

For completeness we present the Krylov-functions togetherwith their derivatives with respect to the coordinateξ
below:

V1 = coshβξ cosβξ , V2 =
1

2
(coshβξ sinβξ + sinhβz cosβξ) ,

V3 =
1

2
sinhβξ sinβξ , V4 =

1

4
(coshβξ sinβξ − sinhβz cosβξ) .

(53a)

V ′

1 = −4βV4 , V ′

2 = βV1 , V ′

3 = βV2, V ′

4 = βV3 ,

V ′′

1 = −4β2V3 , V ′′

2 = −4β2V4 , V ′′

3 = β2V1 , V ′′

4 = β2V2 ,

V ′′′

1 = −4β3V2 , V ′′′

2 = −4β3V3 , V ′′′

3 = −4β3V4, V ′′′

4 = β3V1 .

(53b)

1.2 Solution for the First Partial Load

On the basis of equations (3) and (53b) we take into account inour calculations that the following relations are
valid for the solutions of differential equation (1) and itsderivatives

uζ = a1V1 + a2V2 + a3V3 + a4V4

u′

ζ = −4βa1V4 + βa2V1 + βa3V2 + βa4V3

u′′

ζ = −4β2a1V3 − 4β2a2V4 + β2a3V1 + β2a4V2

u′′′

ζ = −4β3a1V2 − 4β3a2V3 − 4β3a3V4 + β3a4V1 .

(54)

For the sake of our later considerations it is worth introducing the notations

V1h = V1(ξ = h) = coshβh cosβh

V2h = V2(ξ = h) =
1

2
(coshβh sinβh+ sinhβh cosβh)

V3h = V3(ξ = h) =
1

2
sinhβh sinβh

V4h = V4(ξ = h) =
1

4
(coshβh sinβh− sinhβh cosβh) .

(55)

Boundary condition (5a)2 yields

u′

ζ |ξ=0 = βa2 = 0 therefore a2 = 0 . (56)

Similarly we obtain from a comparison of the boundary condition (5a)1 and relation (4)1

I1sE1su
′′′

ζ |ξ=0 = I1sE1sβ
3a4 = −fo − f

2
, therefore a4 = −fo − f

2

1

I1sE1s

1

β3
. (57)

On the basis of boundary conditions (5b)1,2 and (4) we obtain the linear system of equations

u′′′

ζ |ξ=h = −4β3a1V2h − 4β3a3V4h − β3 fo − f

2

1

I1sE1s

1

β3
V1h = 0 ,

u′′

ζ |ξ=h = 4β2a1V3h − β2a3V1h + β2 fo − f

2

1

I1sE1s

1

β3
V2h = 0

(58)
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to calculate the two integration constants left. Substituting the solution

[
a1
a3

]

= −fo − f

2

1

I1sE1s

1

β3







(
V 2
1h + 4V2hV4h

)

4V1hV2h + 16V3hV4h
V1hV3h − V 2

2h

V1hV2h + 4V3hV4h







(59)

and the other two integration constants into (54)1 we have

uζ =
fo − f

2

1

I1sE1s

1

β3

(

− V 2
1h + 4V2hV4h

4V1hV2h + 16V3hV4h
V1 +

V 2
2h − V1hV3h

V1hV2h − 4V3hV4h
V3 − V4

)

, (60)

from where

uζ(ξ = 0) = −fo − f

2

1

I1sE1s

1

β3

cos 2hβ + cosh 2hβ + 2

4 sin 2hβ + 4 sinh 2hβ
(61)

if the definitions of the notations (55) and the values of the Krylov functions are also inserted.

This equation can be transformed further if we substituteβ together withE1 on the basis of (2a)2 and (2b)2

uζ(ξ = 0) = uζ o = − 1

I1sE1s

1
(

νo

√
Re

bs
1
Re

)3

fo − f

8

cos 2hβ + cosh 2hβ + 2

sin 2hβ + sinh 2hβ
=

= − νo
2Es

(
Re

bs

) 3

2 cos 2hβ + cosh 2hβ + 2

sin 2hβ + sinh 2hβ
(fo − f) . (62)

1.3 Solution for the Second Partial Load

Comparing boundary condition (5c)1 and relation (54)1 we get

uζ(ξ)|ξ=0 = a1 = 0 . (63)

Using boundary condition (5c)1 and formula (4)2 for the shear force in a similar manner we can write

−I1sE1su
′′

ζ |ξ=0 = −I1sE1sβ
2a3 = −Mo

2
, i.e. a3 =

Mo

2

1

I1sE1s

1

β2
. (64)

The other two boundary conditions (5d)1,2 yield the following system of linear equations

u′′′

ζ |ξ=h = −4β3a2V3h − 4β3Mo

2

1

I1sE1s

1

β2
V4h + β3a4V1h = 0 ,

u′′

ζ |ξ=h = −4β2a2V4h + β2Mo

2

1

I1sE1s

1

β2
V1h + β2a4V2h = 0 .

(65)

The solution are

[
a2
a4

]

=
1

I1sE1s

1

β2

Mo

2






1

4

V 2
1h + 4V2hV4h

V1hV4h − V2hV3h
4V 2

4h + V1hV3h

V1hV4h − V2hV3h
.




 (66)

Making use of the solutions obtained for the integration constants (63), (64) and (65) we have from (54)1 that

uζ =
1

I1sE1s

1

β2

Mo

2

(
V 2
1h + 4V2hV4h

4V1hV4h − 4V2hV3h
V2 + V3 +

4V 2
4h + V1hV3h

V1hV4h − V2hV3h
V4

)

. (67)

Its derivative with respect toξ is

duζ

dξ
=

1

I1sE1s

1

β2

Mo

2

(

β
V 2
1h + 4V2hV4h

4V1hV4h − 4V2hV3h
V1 + βV2 + β

4V 2
4h + V1hV3h

V1hV4h − V2hV3h
V3

)

. (68)

Substituting the definitions of the notations (55) and thoseof the Krylov functions together with the constantsβ
andE1 on the basis of (2a)2, (2b)2 we obtain the final form of the derivative

duζ

dξ

∣
∣
∣
∣
ξ=0

=
1

I1sE1s

1

β

Mo

2

V 2
1h + 4V2hV4h

4V1hV4h − 4V2hV3h
= − 1

2I1sE1s

1

β

cos 2hβ + cosh 2hβ + 2

sinh 2hβ − sin 2hβ
Mo =

= −ν3o
E

(
Re

bs

) 1

2 cos 2hβ + cosh 2hβ + 2

sinh 2hβ − sin 2hβ

Mo

b2s
. (69)
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1.4 Solution and Derivatives for Equation (21)

Here we present the linearly independent solutionsZ1, . . . , Z4 of the differential equation (21) together with their
derivatives with respect toρ

Z
(o)
1 = Z1 = 1 , Z ′

1 = 0 , Z ′′

1 = 0 , Z ′′′

1 = 0 ; (70a)

Z
(o)
2 = Z2 = ln(

√

Fρ) , Z ′

2 =

√
F√
Fρ

Z ′′

2 = − F

Fρ2
, Z ′′′

2 =
2F3/2

F3/2ρ3
; (70b)

Z
(o)
3 = Z3 = Jo(

√

Fρ) , Z ′

3 = −
√

FJ1(
√

Fρ) , (70c)

Z ′′

3 =
F

2

[

J2(
√

Fρ)− J0(
√

Fρ)
]

, Z ′′′

3 = −F3/2

4

[

J3(
√

Fρ)− 3J1(
√

Fρ)
]

; (70d)

Z
(o)
4 = Z4 = Yo(

√

Fρ) , Z ′

4 = −
√

FY1(
√

Fρ) , (70e)

Z ′′

4 =
F

2

[

Y2(
√

Fρ)− Y0(
√

Fρ)
]

, Z ′′′

4 = −F3/2

4

[

Y3(
√

Fρ)− 3Y1(
√

Fρ)
]

. (70f)
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