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On the Elastic Modeling of Highly Extensible Polyurea

T. Reppel, T. Dally, K. Weinberg

Polyurea is a soft and highly flexible material commonly used as protective coating on concrete or steel
structures. Often subjected to abrasion and impact loading, numerical simulations of such structures re-
quire material models accounting for both stiffness and high extensibility of the coating. Hence, comparing
several classical approaches with emphasis on efficiency and material stability, for impact simulations a
Mooney-Rivlin model with µ1 = 6 MPa and µ2 = 1.5 MPa is suggested. Therefor material parameters
from different sources are collected and, additionally, data from our uniaxial tension experiments are
provided. The modeling is verified by comparison with a Taylor anvil impact experiment.

1 Introduction

Engineering materials generally need a certain strength and stiffness in order to carry loads and to provide
structural properties. Soft and extensible polymers, however, are typically used as protective coatings and
liners. Such a high performance elastomer of growing importance is polyurea, a flexible aminoplast with
structural formula [−NH − (C=O) − NH−R

∗−]n; different residual groups R∗ are possible. Polyurea
coatings combine strength with extensibility; the material is highly resistant and known to mitigate
abrasive wear and destruction.

From their typical application as a protective coating of concrete and steel structures follows that elas-
tomeric coatings have to withstand not only abrasion but also rapid loadings like impacts, collisions or
explosions. Therefore we aim to model the material behavior of polyurea in the static as well as in the
dynamic loading regime. Even under such extreme conditions polyurea often deforms in a reversible
way and may thus be considered an elastic material. This, in turn, raises the question of how to model
the elastic response. Here we do not aim at developing new hyperelastic material models - this would
be redundant regarding the bulk of literature on this topic - but discuss the existing models and their
suitability for modeling soft, highly extensible polymers in a mathematical stable and numerical efficient
way. Exemplarily we study a Taylor anvil impact test where a cylindrical specimen hits a rigid surface
with defined velocity, see Fig. 1 for an illustration of the experiment. A comparison of the specimen’s
deformation with numerical simulations provides useful information to validate the material constitutive
constants.

The paper is organized as follows: In Section 2 we collect material data for polyurea including our own

v

Figure 1: Schematic of an Taylor anvil impact experiment before and at impact (left and middle) and a
polyurea specimen recovered after impact with v = 254 m/s (right); Reina (2010)
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Figure 2: Cauchy stress σ versus true strain ǫ = log λ for polyurea at different true strain rates ǫ̇; data
collected from (Roland et al., 2007; Sarva et al., 2007; Yi et al., 2006; Zhao et al., 2007; Amirkhizi et al.,
2006) with parameters from data sheets of commercial polyurea suppliers and our uniaxial tension test
data added

uniaxial tension test measurements in order to summarize the basic properties of polyurea in quasistatic
and dynamic straining. In Section 3 the classical elastic material models are presented and employed to
simple stress states of an incompressible solid. Their suitability for describing materials undergoing large
elongations will then be discussed with particular emphasis on stability. In Section 4 numerical results
on the Taylor anvil impact test are presented and compared to experimental data.

2 Material Data

Polyurea, a one-step reaction product of an isocyanate and a resin blend component, is a rubbery material
with high tensile strength and elongation up to 500-700%. Several tension and compression experiments
of polyurea are reported in the literature, however, only few of them are comprehensive. Fig. 2 collects
the corresponding stress-strain curves for the quasistatic and the dynamic regime in the range of interest.
The quasistatic data are obtained in classical uniaxial tension setups whereas most of the dynamic data
are deduced from uniaxial compression using Split-Hopkinson Bar tests, cf. Amirkhizi et al. (2006);
Chakkarapani et al. (2006); Roland et al. (2007); Tekalur et al. (2008); Yi et al. (2006); Sarva et al.
(2007); Zhao et al. (2007). The rate of straining influences the material’s response appreciably. Knauss
and Zhao (2007); Zhao et al. (2007) investigated the rate dependence of polyurea at small deformations
in order to deduce viscoelastic material data. Sarva et al. (2007) reported large deformation stress-strain
curves in compression for strain rates ranging from 0.001 s−1 to 9000 s−1. The data of Roland et al. (2007)
are obtained over a wide range of strain rates in uniaxial tension and converted into true (logarithmic)
strain here. Additionally the authors contribute data from our quasistatic uniaxial tension tests (red
diamonds in Fig. 2). Here, flat strips with initial length of L0 = 32 mm and width of B0 = 10 mm were
pulled until 650% of straining, cf. Figure 3.

Clearly, the experimental data from different setups are not always in good agreement but they all show
the same tendency. After a relatively stiff onset of straining all stress-strain curves show a decaying
slope up to elongations of 4-5, only then followed by some strain stiffening. This is most obvious in the
quasistatic measurements but it can be observed at high strain rates as well. For example, Amirkhizi
et al. (2006) report the instantaneous stiffness of the material to significantly reduce at around 8% strain
even at strain rates of about 2000/s. In other words, at the beginning the material appears to be stiff
with a quasistatic elastic modulus of about 70 MPa (Knauss and Zhao (2007)) and even higher values
for high strain rates. In the course of deformation, however, the material shows less resistance to further
straining. This indicates certain damaging effects and/or plastic flow. The recovered parts, however, show
a mostly elastic behavior of polyurea, cf. Fig. 1. Even strongly deformed specimen completely regained
their shape. Thence, we will focus here on elastic models in order to capture the high extensibility of
polyurea in numerical computations.

20



Figure 3: Uniaxial tension test of polyurea with feed of 2mm/s

3 Elastic Material Models

3.1 Preliminaries

Let C = F
T

F and B = F F
T be the right and left Cauchy-Green tensor, respectively, with F being the

deformation gradient. The material response derives from an elastic strain-energy density W e. Moreover,
elastomers are usually assumed to be elastically incompressible and so any admissible deformation is
considered to be isochoric, i.e.:

det (F ) = J = 1 (1)

Accounting for this constraint we obtain W e = W (F ) − p (J − 1), where W (F ) is the strain-energy
density of the constitutive model and p is the hydrostatic pressure, here acting as a Lagrange multiplier.
Taking the derivative with respect to the deformation gradient yields the first Piola-Kirchhoff stress
tensor:

P =
∂W e

∂F
= −pJF

−T +
∂W (F )

∂F

(1)
= −pF

−T + 2F
∂W (C)

∂C
(2)

The Cauchy stress tensor σ follows by multiplication of (2) with F
T from the right.

σ = −pI + 2F
∂W (C)

∂C
F

T (3)

The mathematical treatment of the elastic problem typically seeks for a deformation minimizing the
body’s free energy subjected to specific boundary conditions. From calculus of variations it is well known
that the existence of a minimizing (scalar) function can be guaranteed if the corresponding functional
is convex. In higher dimensions it is necessary to weaken the condition of convexity to generalizations,
namely quasiconvexity and polyconvexity, cf. Morrey (1966); Ball (1976). Whereas the first is an integral
notion difficult to check or contradict, polyconvexity is a local property given if a tensorial function W (A)
can be written as a convex function of all subdeterminants of tensor A. Specifically, an elastic strain
energy density W (F ) is polyconvex if there exists a convex function g : R3×3 × R

3×3 × R → R such that

W (F ) = g(F , adjF , det F ) . (4)

In consequence, a way to guarantee the existence of a unique solution is to show polyconvexity of the
corresponding elastic strain-energy density. Polyconvexity implies rank-one convexity of the elastic energy,
which is equivalent to the Legendre-Hadamard condition of ellipticity. However, polyconvexity is not a
necessary condition for ellipticity. In fact, simple empirical restrictions have been discussed in Bilgili
(2004) for models of isotropic elasticity. In most cases such weaker conditions are sufficient for a well-
posed elastic problem. Here we study different elastic material models in simple states of deformation,
such as uni- and biaxial tension, simple and pure shearing. Simple deformation states can directly be
compared to experimentally obtained data. From this the material model may be extrapolated to general
deformations to be employed in statical and dynamical computations.
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In order to ensure objectivity the elastic strain-energy density is to be formulated as a function of tensor
C. For isotropic material W (C) can be expressed by the principle invariants Ia, a = 1, 2, 3 of the tensor,

I1(C) = trC I2(C) =
1

2

(

(trC)2 − tr(C2)
)

I3(C) = det C (5)

with Ia (C) = Ia (B). Please note, that the invariants directly correspond to the subdeterminant terms
in condition (4). In particular, since trC = trF 2 we have I1 = |F |2, i.e., I1 relates to the deformation
of a differential line element. From Cayley-Hamilton’s theorem we also know I2(C) = tr(adjC) and it
follows I2 = |adjF |2, relating it to the deformation of a surface element. The relation of I3 = | det F |2 to
the differential volume element is obvious.

Because constraint (1) corresponds to I3 = 1 the response of an isotropic incompressible elastic material
will be determined by an strain-energy density being a function of the independent deformation variables
I1 and I2. Using p/2 as a Lagrange multiplier we obtain:

W e = W (I1, I2) − p

2
(I3 − 1) (6)

Differentiating with respect to C, where ∂I1/∂C = I, ∂I2/∂C = I1I − C, ∂I3/∂C = I3C
−1 gives

2
∂W e

∂C
= 2

(
∂W e

∂I1
+ I1

∂W e

∂I2

)

I − 2
∂W e

∂I2
C − p I3

︸︷︷︸

=1

C
−1

and by left multiplication with F we obtain the first Piola-Kirchhoff stress tensor for an incompressible
material.

P = −p F
−T + 2

(
∂W

∂I1
+ I1

∂W

∂I2

)

F − 2
∂W

∂I2
BF (7)

Pushing forward, σ = J−1P F
T , and applying Cayley-Hamilton’s theorem gives the Cauchy stress in the

commonly known form

σ = −p I + 2

(
∂W

∂I1
+ I1

∂W

∂I2

)

B − 2
∂W

∂I2
B

2 = −p̃ I + 2
∂W

∂I1
B − 2

∂W

∂I2
B

−1 (8)

with pressure p̃ = p − 2I2
∂W
∂I2

to be determined from equilibrium.

3.2 Hyperelastic Models

The simplest constitutive model for isotropic elastic material, first mentioned in Treloar (1944), is given
by the Neo-Hookean strain-energy density

W =
µ

2
(I1 − 3) (9)

where µ denotes the initial shear modulus originally derived from a Gaussian statistical mechanics model.
The stresses follow from (7) and (8), respectively.

P = −p F
−T + µF (10)

σ = −p I + µB (11)

Accounting additionally for the second invariant gives in its simplest form the Mooney-Rivlin strain-energy
density (cf. Rivlin and Saunders (1951)),

W =
µ1

2
(I1 − 3) +

µ2

2
(I2 − 3) (12)

with µ1 + µ2 = µ being the initial shear modulus, and stresses:

P = −p F
−T + µ1F + µ2

(
I1I − B

)
F (13)

σ = −p I + µ1B − µ2B
−1 (14)
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While both classical models are useful in describing rubbery materials at moderate stretches, their pre-
dictions do not adequately map experimental data for other elastomers or for biological tissue. This
motivated the derivation of numerous additional elastic models. Without discussing their physical back-
ground we will here enlist some of them.

The model of Gent (1996) presumes an elastic strain-energy density of the form

W = −µ

2
cG ln

(

1 − I1 − 3

cG

)

(15)

and is basically a two-parameter generalized Neo-Hookean model; for cG → ∞ it corresponds to (9).
Parameter cG is introduced to account for the limited extensibility of rubbery materials and induces
rapid strain stiffening for large stretches. Values of cG = 30 . . . 100 are common for rubber, whereas in
other materials smaller values may be appropriate. The Cauchy stress tensor for the Gent model follows
as:

σ = −pI +
µcG

cG + 3 − I1
B (16)

Clearly, it must hold I1 < cG + 3 and thus, strain-energy density (15) is not polyconvex for arbitrary
deformation gradients. However, this does not necessarily mean that the model should be ruled out. The
corresponding lack of ellipticity at large deformations is physically correct, indicating the onset of rupture
and failure by ‘failing’ to compute elastic solutions.

Whereas the Gent model is purely phenomenological, a similar model motivated by van der Waals ideal
gas theory has earlier been derived by Kilian (1980, 1981):

W = −µce ln

(

1 −
√

I1 − 3

ce

)

− µce

√

I1 − 3

ce
(17)

Here shear modulus µ and parameter ce (chain extensibility) summarize material constants derived from
ideal gas theory and its similarity to the molecular networks of rubber plus considerations on limited
extensibility of polymer chains. The stresses are:

σ = −pI +
µ

1 −
√

I1−3
ce

B = −pI +
µ

√
ce√

ce −
√

I1 − 3
B (18)

Comparing (16) with (18) gives c2
G = ce(I1 − 3) and, again, for I1 → ce + 3 the stresses have a singularity

causing a rapid strain stiffening before failure.

An appropriate model for materials with strong strain stiffening is the Fung model (Fung (1967)) of
biomechanics,

W =
µ

2cF

(

exp
(
cF (I1 − 3)

)
− 1
)

(19)

with a constant cF > 0. Taking the limit cF → 0 the Neo-Hookean (9) may be recovered. Here the
stresses follow as:

σ = −pI + µ exp
(
cF (I1 − 3)

)
B (20)

Both, the Gent/van der Waals model as well as the Fung model can be extended by a weighted term of
(I2 − 3) which gives in the corresponding limits the Mooney-Rivlin model (12).

A generalized elastic strain-energy density may be written in form:

W =

N∑

i=1

M∑

j=1

cij

(
I1 − 3

)i(
I2 − 3

)j
. (21)

Introduced in Rivlin and Saunders (1951) as general Rivlin model, formulation (21) allows for any com-
bination of polynomial terms, though polyconvexity requires cij = 0 for i = j, cf. Hartmann and Neff
(2003). The special case of N = 3, M = 0 is known as Yeoh model, cf. (Yeoh, 1996),

W =
µ

2

(
I1 − 3

)
+

µc1

4

(
I1 − 3

)2
+

µc2

6

(
I1 − 3

)3
(22)
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Figure 4: True stresses versus logarithmic strain ǫ = log λ for different elastic materials compressed and
elongated uniaxially. Left: all models are independent of the second invariant; material parameters used
are cG = 25, ce = 5, cF = 0.5, c1 = d1 = 0.889, c2 = d2 = 0.0124. Right: models with terms of the second
invariant, (1 − α)µ1 + αµ2 = µ, and Ogden model with N = 2, α1 = 6, α2 = −3, µ1 = 0.6µ, µ2 = 0.56µ

with stresses:

σ = −pI + µ
(

1 + c1

(
I1 − 3

)
+ c2

(
I1 − 3

)2
)

B (23)

Many other combinations of polynomials are common. However, because most of these combinations do
not result in polyconvex energy functions, a generalization like (21) is more of theoretical character.

Another class of energy functions in terms of only the first invariant has been introduced by Arruda and
Boyce (1993), W =

∑N
i=1 di(I

i
1 − 3i). The factors di are in part defined by a linearization of Langevin

functions resulting from statistical treatments. For N = 3 we may write

W =
µ

2

(
I1 − 3

)
+

µd1

4

(
I2

1 − 9
)

+
µd2

6

(
I3

1 − 27
)

(24)

with stresses:

σ = −pI + µ
(

1 + d1I1 + d2I2
1

)

B (25)

Here d1 = 1/5λc, d2 = 11/175λ2

c, where material parameter λc describes a critical chain length. In Hartmann
and Neff (2003) it was shown that function (24) is always polyconvex for λc > 0.

The left plot in Fig. 4 displays the stress-strain curves for different material models of the first invariant
as a function of strain in uniaxial tension and compression. Models using the second invariant are mostly
restricted to its first power, see Eq. (12). An alternative approach has been suggested by Hartmann and
Neff (2003) using an exponent of 3/2.

W =
µ1

2

(
I1 − 3

)
+

µ2

3

(
I2 − 3

) 3

2 (26)

The Cauchy stresses here follow as:

σ = −pI + µ1B − µ2

(
I2 − 3

) 1

2 B
−1 (27)

Finally we state the general Ogden material model (Ogden, 1972) where the strain energy density is
expressed in terms of the principal stretches λa, a = 1, 2, 3.

W =
N∑

p=1

µp

αp

(
λ

αp

1 + λ
αp

2 + λ
αp

3 − 3
)

with
N∑

p=1

µpαp = 2µ (28)

Here µ is the initial shear modulus and µp, αp are material constants. Polyconvexity requires

µpαp > 0 , |αp| > 1 for all p = 1, . . . , N . (29)
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uniaxial tension

x1 = λX1

x2 = λ−1/2X2

x3 = λ−1/2X3

Xi 7→ xi

pure shear

x1 = λX1

x2 = X2

x3 = λ−1X3

Xi 7→ xi

simple shear

x1 = X1 + γX2

x2 = X2

x3 = X3

Xi 7→ xi

equibiaxial tension

x1 = λX1

x2 = λX2

x3 = λ−2X3

Xi 7→ xi

Table 1: Illustration of one- and two-dimensional states of deformation; capital letters denote the initial
coordinates, lower case letters the current configuration.

The Neo-Hookean material and the Mooney-Rivlin material can be recovered from (28) by N = 1, α1 = 2
and N = 2, α1 = 2, α2 = −2, µ2 < 0, respectively. The stresses derive directly as principle stress
components. This is convenient for simple states of deformation. For numerical computation however,
constitutive models formulated in principal stretches require to solve eigenvalue problems in every step
of solution at every material point. This renders the Ogden model an expensive alternative to models
formulated in invariants.

For polyurea a two-parametric Ogden model with α1 = 6, α2 = −3 has been adapted to experimental
data in Reina (2010), with the result µ1 = 0.6µ, µ2 = 0.56µ, see right plot in Fig. 4. With the material
constants suggested, however, the model is unstable and not polyconvex and therefore we exclude it from
further considerations.

A more comprehensive list of hyperelastic models can be found in Hoss and Marczak (2010). They also
suggest a new set of elastic energy densities which are not restricted to be polyconvex. Unfortunately, no
conditions are derived for a meaningful choice of the several introduced material constants, what makes
it difficult to consider them for practical use.

3.3 Simple states of deformation

Material data are usually obtained using experimental settings with simple stress states described by the
principle stretches, λa, a = 1, 2, 3. Then, the invariants of deformation (5) may as well be expressed by:

I1 = λ2
1 + λ2

2 + λ2
3 , I2 = λ2

1λ2
2 + λ2

2λ2
3 + λ2

3λ2
1 , I3 = λ2

1λ2
2λ2

3 (30)

and the elastic-strain energy is of the form W e = W (λ1, λ2, λ3) − p (J − 1) with I3 = J = 1. The
principle stress components of an incompressible material follow immediately from (7) and (8) as:

Pa = − p

λa
+

∂W

∂λa
= − p

λa
+

∂W

∂I1

∂I1

∂λa
+

∂W

∂I2

∂I2

∂λa
, a = 1, 2, 3 (31)

σa = −p + λa
∂W

∂λa
= Paλa (32)
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Neo-Hookean material σ = µ
(
λ2 − 1

λ

)

Mooney-Rivlin material σ = µ1

(
λ2 − 1

λ

)
+ µ2

(
λ − 1

λ2

)

Gent material σ = µ
(
λ2 − 1

λ

)
cG

cG+3−I1

van der Waals material σ = µ
(
λ2 − 1

λ

) √
ce

√
ce−

√
I1−3

Fung material σ = µ
(
λ2 − 1

λ

)
exp

(

cF

(
I1 − 3

))

Yeoh material σ = µ
(
λ2 − 1

λ

)(

1 + c1

(
I1 − 3

)
+ c2

(
I1 − 3

)2
)

Arruda-Boyce material σ = µ
(
λ2 − 1

λ

)(

1 + d1I1 + d2I2
1

)

Hartmann and Neff material σ = µ1

(
λ2 − 1

λ

)
+ µ2

(
λ − 1

λ2

)√
I1 − 3

general Ogden material σ =
N∑

p=1
µp

(
λαp − λ−αp/2

)

Table 2: Cauchy stress in uniaxial tension, I1 = λ2 + 2/λ, I2 = 2λ + 1/λ2

Table 1 illustrates simple one- and two-dimensional states of deformation. From the constraint σ3 = 0
the pressure evolves directly:

p = 2λ2
3

∂W

∂I1
+ 2λ2

3(λ2
1 + λ2

2)
∂W

∂I2

J=1
=

2

λ2
1λ2

2

∂W

∂I1
+

2(λ2
1 + λ2

2)

λ2
1λ2

2

∂W

∂I2
(33)

The classical uniaxial tension test presumes a state deformation with

λ1 = λ and λ2 = λ3 =
1√
λ

(34)

and, with σ2 = σ3 = 0 and (33), we may write for the uniaxial Cauchy stress σ ≡ σ1

σ = 2

(

λ2 − 1

λ

)
∂W

∂I1
+ 2

(

λ − 1

λ2

)
∂W

∂I2
. (35)

Table 2 and Fig. 4 enlist the results for the different material models.

In an analogous manner we evaluate two-dimensional stress states with the principle Cauchy stress com-
ponents

σ1 = 2

(

λ2
1 − 1

λ2
1λ2

2

)
∂W

∂I1
+ 2

(

λ2
1λ2

2 − 1

λ2
1

)
∂W

∂I2
(36)

σ2 = 2

(

λ2
2 − 1

λ2
1λ2

2

)
∂W

∂I1
+ 2

(

λ2
1λ2

2 − 1

λ2
2

)
∂W

∂I2
(37)

In the special case of

λ1 = λ , λ2 = 1 and λ3 =
1

λ
(38)
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Figure 5: Absolut shear stress in pure shear (left) and simple shear (right) for different material models,
parameters are cG = 25, cF = 0.5, c1 = d1 = 0.889, c2 = d2 = 0.0124.
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pure shear simple shear

Neo-Hookean τ = µ
(
1 − λ2

)
τ = µγ

(
γ2 + 4

)1/2

Mooney-Rivlin τ = µ1

(
1 − λ2

)
+ µ2

(
1

λ2 − 1
)

τ = γ(µ1 + µ2)
(
γ2 + 4

)1/2

Gent τ = µ
(
1 − λ2

)
cG

cG+3−I1

τ = µγ
(
γ2 + 4

)1/2 cG

cG+3−I1

van der Waals τ = µ
(
1 − λ2

) √
ce

√
ce−

√
I1−3

τ = µ
(
γ2 + 4

)1/2
√

ce
√

ce−
√

I1−3

Fung τ = µ
(
1 − λ2

)
exp

(
cF (I1 − 3)

)
τ = µγ

(
γ2 + 4

)1/2
exp
(

cF

(
I1 − 3

))

Yeoh τ = µ
(
1 − λ2

)(
1 + c1(I1 − 3) + c2(I1 − 3)2

)
τ = µγ

(
γ2 + 4

)1/2
(

1 + c1(I1 − 3) + c2(I1 − 3)2
)

Arruda-Boyce τ = µ
(
1 − λ2

)(

1 + d1I1 + d2I2
1

)

τ = µγ
(
γ2 + 4

)1/2
(

1 + d1I1 + d2I2
1

)

Hartmann-Neff τ = µ1

(
1 − λ2

)
+ µ2

(
1

λ2 − 1
)√

I1 − 3 τ = γ(µ1 + µ2

√
I1 − 3)

(
γ2 + 4

)1/2

general Ogden τ =
N∑

p=1
µp

(
λαp − 1

)
τ =

N∑

p=1
µp

(
λ

αp

1 − λ
αp

2

)

Table 3: Shear stress in pure shear, I1 = I2 = λ2 + λ−2 + 1 and in simple shear, I1 = I2 = 3 + γ2

we observe a biaxial tension state commonly known as pure shear. From (36-37) follows the principle
shear stress:

τ =
1

2
|σ1 − σ2| =

(
1 − λ2

) ∂W

∂I1
+

(
1

λ2
− 1

)
∂W

∂I2
(39)

In a deformation state of simple shear the material is not elongated but sheared by an angle θ. With
γ = tan(θ) the eigenvalues λ2

i of the resulting right Cauchy-Green tensor are:

λ2
1 =

1

2

(
γ2 + 2 − γ

√

γ2 + 4
)
, λ2

2 =
1

2

(
γ2 + 2 + γ

√

γ2 + 4
)

λ2
3 = 1 . (40)

This directly evaluates to I1 = I2 = 3 + γ2 and I3 = 1, i.e., the deformation is also isochoric. Evaluating
the Cauchy stress components (36-37) we obtain the maximal shear stress,

τ =
1

2
|σ1 − σ2| = γ

√

γ2 + 4
(∂W

∂I1
+

∂W

∂I2

)

. (41)

Tab. 3 summarizes the stresses for the different material models and Fig. 5 shows the maximal shear
stresses as a function of deformation for both pure shear and simple shear states. Please note that in
both cases I1 = I2 holds, and, thus there is no difference between Neo-Hookean and Mooney-Rivlin
materials.

Finally we consider the case of equibiaxial stretching, i.e.,

λ1 = λ2 = λ and λ3 =
1

λ2
(42)

Neo-Hookean material σ = µ
(
λ2 − 1

λ4

)

Mooney-Rivlin material σ = µ1

(
λ2 − 1

λ4

)
+ µ2

(
λ4 − 1

λ2

)

Gent material σ = µ
(
λ2 − 1

λ4

)
cG

cG+3−I1

van der Waals material σ = µ
(
λ2 − 1

λ4

) √
ce

√
ce−

√
I1−3

Fung material σ = µ
(
λ2 − 1

λ4

)
exp

(

cF

(
I1 − 3

))

Yeoh material σ = µ
(
λ2 − 1

λ4

)(

1 + c1

(
I1 − 3

)
+ c2

(
I1 − 3

)2
)

Arruda-Boyce material σ = µ
(
λ2 − 1

λ4

)(

1 + d1I1 + d2I2
1

)

Hartmann and Neff material σ = µ1

(
λ2 − 1

λ4

)
+ µ2

(
λ4 − 1

λ2

)√
I1 − 3

general Ogden material σ =
N∑

p=1
µp

(
λαp − λ−2αp

)

Table 4: Cauchy stress in equibiaxial tension, I1 = 2λ2 + 1/λ4, I2 = λ4 + 2/λ2
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Figure 6: True stresses versus logarithmic strain ǫ = log λ for different elastic materials compressed and
elongated equibiaxially. Left: all models are independent of the second invariant; material parameters
used are cG = 25, ce = 5, cF = 0.5, c1 = d1 = 0.889, c2 = d2 = 0.0124. Right: Models with terms of the
second invariant, (1 − α)µ1 + αµ2 = µ

and evaluate the in-plane stresses σ = σ1 = σ2 from (36-37), see Table 4.

σ = 2

(

λ2 − 1

λ4

)
∂W

∂I1
+ 2

(

λ4 − 1

λ2

)
∂W

∂I2
(43)

3.4 Discussion

In order to adapt the constitutive models to the experimental data we first study the stresses of different
material models as a function of strain in uniaxial tension and compression, Fig. 4. All stress-strain curves
are plotted in an admissible range of deformation, i.e., the corresponding energy densities W (I1, I2) are
polyconvex here; Gent and von der Waals model fail for higher straining. Clearly, for same initial shear
moduli the Neo-Hookean model is bounding the stresses from below. This follows immediately from the
fact that polynomial terms (I1 − 3)i are convex only for i ≥ 1 and the Neo-Hookean model is given
by i = 1. Moreover, combinations of polynomial terms require positive material constants to guarantee
polyconvexity of the resulting strain-energy functions, cf. Hartmann and Neff (2003). Although negative
constants c1i in (21) do not always result in a loss of polyconvexity, care needs to be take when applying
such energy forms in numerical computations.

The Fung model (19) clearly shows the strongest strain stiffening, and, thus is not a model of choice for
the application we have in mind. The Gent and van der Waals model have a singularity at I1 = cG + 3
and at I1 = ce + 3, respective, and the corresponding limiting stretch for well posedness can easily be
calculated. For example, in uniaxial tension cG = 25 corresponds to a failure of model (15) at λ = 5.26
whereas the same value in pure shear and equibiaxial tension gives material failure at λ = 5.19 and
λ = 3.74; similar values hold for van der Waals model with ce = cG. Therefore, though the van der Waals
model has a solid physical background, these models are not a proper choice for numerical computations.

The polynomial Yeoh model and the Arruda-Boyce model lead to a rising slope of the stress-strain curve.
In the latter the material constants are positive by definition of the model. A polynomial form like (22)
can be fitted to a specific set of stress-strain data. However, polyconvexity is only guaranteed for ci > 0 in
general. In particular, for a negative value of c2 one can easily calculate the general convexity condition
c1 > −2c2(I1 − 3). This reduces the rising slope only marginally. For example, with c2 = −0.1 and
λ ∈ (0.25, 5) in uniaxial tension convexity is given for c1 > 4.48 which corresponds to immediate strong
stiffening and a minor reduction of stiffness later on.

A calibration of the material data using the general Ogden model may as well give a good agreement, see,
e.g., El Sayed (2008); Reina (2010). However, the material characterization of El Sayed (2008); El Sayed
et al. (2009) is cumbersome and very specific using different material models for different strain rates,
whereas the fit of Reina (2010) holds only in the compressive range (loss of convexity for λ > 1, see
comments in Section 2). In general, stable fits following restrictions (29) are very similar to the models
discussed here and, moreover, numerical computations in terms of principle stretches are expensive and
not at all efficient for (explicit) dynamic computations.

28



0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

 

 

σ

log λ
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

10

20

30

40

50

60

70

80

 

 

σ

log λ

our experiments

Zhao et al. (1000/s)
Roland et al. (294/s)

Neo-Hooke
Mooney-Rivlin
polynominal approx.

Figure 7: Approximated stress-strain curves of the elastic models for simulation of the Taylor anvil test;
the left plot shows the inset marked on the right

A reduced slope of the stress-strain curve may be obtained via the second invariant, see Fig. 4. Whereas
the first invariant has a clear physical meaning (measuring the stretch of a line element), the effect of
the second invariant is less obvious. In uniaxial tension, models using the second invariant seem to be
softer than the corresponding Neo-Hookean material with µ = µ1 + µ2. However, this is misleading, in
equibiaxial tension the Mooney-Rivlin type of materials are much stiffer, see Fig. 6. Picturing the second
invariant as measure of surface element deformation this may be illustrated. For example, a volume
preserving uniaxial stretching of a unit cube with λ = 2 leads to a 29% longer diagonal and ≈ 11% more
surface of the material element. An equibiaxial stretching with λ =

√
2, however, lengthens the diagonal

of 19% and gives ≈ 14% more surface to the material element. In this way, parameter µ2 characterizing
the resistance against ‘surface extension’ is weighted strongly. Such a material response can only be
verified by experiments under multiaxial conditions. A pure shear test, as performed in Chakkarapani
et al. (2006) is not sufficient, because a distinction between first and second invariant is not possible here,
cf. Tab. 3. Models which employ high order terms of the second invariant, e.g. model (26-27), describe
a form of strain stiffening which is hard to validate.

Summarizing we state that it may be tempting to fit the material parameter in a way that the curves of
experimental data and model lay on top of each other. However, such fits pretend an accuracy which is
usually not supported by different experimental setups, cf. El Sayed (2008); Xue et al. (2010). Moreover,
no elastic model is able to map a strong initial but subsequently rapidly decaying stiffness. Wether such
material data are artifacts of experiments on soft polymers or wether this softening is due to some kind
of damage (comparable, e.g., to the Mullins effect of rubber), this is not to answer without additional
experimental investigations under different conditions. Employing the classical models of hyperelasticity
the material constants can only be adapted to the strain rage of interest in an averaging manner.

4 Numerical Example

In the following we present simulations of the Taylor anvil impact experiment, cf. Fig. 1. The experiments
have been performed by Mock et al. at the Naval Surface Warfare Center, Dahlgren, VA, USA; using a
1/2×1 in. specimen of polyurea with an impact velocity of 246 m/s, cf. Reina (2010) for more information.
The deformation of the specimen has been recorded and the monitored contour plots will be compared
with the our numerical simulations here.

In consequence of the discussion above we model the specimen with the simplest possible material models,
namely a Neo-Hookean (NH) and a Mooney-Rivlin (MR) model and, additionally, with a polynomial
model. In order to consider the effect of strain stiffening observed by Roland et al. (2007) we state a
model of the form:

W =
µ1

2

(
I1 − 3

)
+

µ3

6

(
I1 − 3

)3 ⇒ σ = −pI + µ1B + µ3

(
I1 − 3

)2
B (44)

The rate dependence is taken into account by the initial shear modulus, its calibration to the experimental
data, however, is not straightforward. We may fit to the initial slope, to the full range of measurements
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Figure 8: Comparison of the deformation during the experiment and a simulation using the Neo-Hookean
model

or to the range of interest in our simulation. The first has been done with the Neo-Hookean model and
µ = 16 MPa which is still less than the value given by Knauss and Zhao (2007) for linear elasticity
(E = 69 MPa/µ = 23 MPa). For ǫ ≤ 0.2 (λ = 1.25) the fit gives a fair agreement, for larger straining
it clearly deviates from the experimental curves. A good fit to a wider range of measurement gave
model (44) with small values of µ1 and µ3. Clearly, for small straining it then underestimates the
stiffness of the material, whereas for high straining it shows pronounced stiffening. We use µ1 = 5.2 MPa
and µ3 = 0.015 MPa, which agrees reasonable well with the experimental data of Roland et al. (2007) at
strain rates of 294/s (engineering strain rate of 573/s). A similar fit to the range of interest -the Taylor bar
is compressed to half of its length- gives a Mooney-Rivlin model with µ1 = 6 MPa, µ2 = 1.5 MPa. Fig. 7
shows the corresponding stress strain curves together with some experimental results in two different
scales.

Let us mention that the material parameters have been thoroughly adapted, and combinations of the
above mentioned models, e.g., a softer Neo-Hookean model with µ = µ1 + µ2 or a Mooney-Rivlin model
with additional 3-rd order term as in (44), have been tested as well. The latter give comparable results,
but we omit them here for clarity and compare the performance of the three different models in the
Taylor anvil impact simulation instead.

The numerical simulation uses an explicit Newmark scheme. The spacial discretization is done with 800
hexahedral finite elements. The unilateral contact is assumed to be frictionless; the effect of friction has
been studied but is negligible (Voll, 2009). To approximate incompressibility the volumetric part of the
elastic energy is modeled by an elastic energy density W = K/2(1 − J)2 with K ≈ 100µ. Figures 8-11
summarize the results.

From Fig. 8 and 9 we can see that all three models are appropriate to simulate the experiment. Not
only the diameter and length fit well, also the shape of the deformation are adequately recreated. All the
simulation results almost coincide during compression until ≈ 50µs. In the softer polynomial model the
deformation is somewhat larger than in the Mooney-Rivlin and Neo-Hookean models, see Fig. 9.
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Figure 9: Deformation during simulation data for Neo-Hookean (NH), Mooney-Rivlin (MR) and polyno-
mial model (PM)
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The maximal compression is reached at 72µs, then follows the relaxation period, which now shows differ-
ences for the different models. The contours of the Mooney-Rivlin model in Fig. 10 and the polynomial
model in Fig. 11 show a sidewards bulging and for the latter a stronger compression. Apparently the
3-rd order term in (44) does capture resistance against (fast) compression here. However, the overall
deformation versus time is best matched by the Mooney-Rivlin model, as well as the relaxation of length,
see Fig. 9.

Because all models are elastic the specimen later start to oscillate, i.e., to compress and relax periodically.
This, of course, is not realistic but as we do not model any dissipation it is correct. Here an improvement
can be achieved using a viscoelastic model and/or by including damaging effects, which, however, is
beyond the scope of this paper. Therefore, regarding the fit to experimental data as well as the Taylor
anvil test simulations, we recommend for dynamic elastic modeling of polyurea a Mooney-Rivlin material
model with µ1 = 6 MPa, µ2 = 1.5 MPa.
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