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Three-dimensional Simulation of Local and Global Behaviour ofaFe-Cu
Composites under Large Plastic Deformation

Y. Schneider, A. Bertram, T. Bohlke

The mechanical behaviour ef~e-Cu composites is numerically investigated for largesptadeformations under
simple tension and compression by three-dimensional (8i¢ #lement (FE) simulations, where an elasto-visco-
plastic material model is applied. Seven types of the afergioned polycrystals are systematically studied in
order to reveal the effects of local events on the global kiha, in particular, the role of the bcc-fce-grain inter-
action. Compared to the axisymmetric 3D model taking thémgerostructure as the cross-section in Schneider
et al. (2010), the current work uses periodic boundary ctads (PBCs) and a Poisson-Voronoi microstructure to
simulate the flow behaviour, the stress in each phase, tlstatiggraphic texture, and the local strain distribution
of the Fe-Cu polycrystals. In particular, the crystallogtac texture evolution and its dependence upon the phase
distribution have been investigated. A quantitative siggyerformed for the mean value of the local strain in both
phases, where a good agreement with the experimental restibwn for the Fe17-Cu83 composite under tension.
Furthermore, a comparison is performed between the numleBsults presented here and those in Schneider et al.
(2010) which uses the same material model for two types aftibee mentioned seven polycrystals.

1 Introduction

Since a good balance has been reached between the marintactist and the mechanical properties (Evans et al.,
2003), the metal matrix composites (MMCSs) are very favoleraltructural materials for the automobile and the
aerospace industries. The Al-based composites cover s published data, and there are also Mg- and Ti-
based composites, wheres8l; or SiC are normally taken as the discontinuous reinforcémen, the inclusion
phase (Llorca et al., 2002). These composites show imprpuagerties and, at the same time, more complex
material behaviour than single-phase ones. There is evea amallenge to understand the plastic deformation
behaviour of thexFe-Cu composites taken here. On the one hand, bothfeeand the Cu are ductile, which
causes a more complex local deformation compared to thesational composite with a hard inclusion mostly
taken as being only elastically deformable. In particullais polycrystal is composed from body-centred-cubic
(bcc) and face-centred-cubic (fcc) materials. On the dtlaad, the matrix phase would be the inclusion phase for
a given composition by exchanging the volume fraction offfleeand Cu phase, e.g., Fe17-Cu83 and Fe83-Cul?7
composites. The question arises whether an iron or a cogptclp in an Fel7-Cu83 behaves more or less the
same as in an Fe83-Cul7 composite. By the analysis of theimgrgal and numerical observations, we can
clearly deny this supposition. As a matter of fact, the madm of the effect of the Fe phase on the Cu phase
is different from that of the opposite direction. A detailedalysis will be presented in Chapter 5.2. Another
question is whether the higher strength of a composite witlirger harder (Fe) phase content results from the
higher strength of both phases or just from a single phaseevealed by the numerical simulation, it results from
the contribution of both phases.

A reliable model is necessary to successfully describe lgn&ip behaviour of the two-phase polycrystals. A vis-
coplastic self-consistent model has been applied by Cornmegral. (1999) to study the mechanical behaviour of
the aforementioned Fe-Cu composites, where the simuleggults are compared with the corresponding experi-
mental measurements. The finite element method (FEM) istalsteore accurately describe the local interaction
of the grains, the texture and its evolution. Commentz (20B@rtig and Mecking (2005) and Daymond et al.
(2005) investigated the complex plastic deformation o tiype of composite for the first time. Schneider et al.
(2010) numerically study the deformation behaviour of tled FCu83 and Fe50-Cu50 iron-copper composites
by introducing a mechanical approach based on 3D axisyno e simulations. As a continuation, this work
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applies a Poisson-Voronoi tessellation as an artificiakrositucture, periodic boundary conditions (PBCs), and
the same elasto-visco-plastic material model in 3D withgula mesh to investigate the behaviour under large
plastic strains. Simulations are performed for the purs,itbe pure copper, and five of their composites, namely
Fel7vol.%-Cu83vol.%, Fe33vol.%-Cu67vol.%, Fe50vol. #b0Avol.%, Fe67vol.%-Cu33vol.% and Fe83vol.%-
Cul7vol.%.

The structure of the present work is the following. Sectiobrizfly describes the manufacturing process, and
the parameters and conditions used in the tests for theragooned composites. In Section 3, the constitutive
equations are presented for single and polycrystals. Tieettlimensional FE model is shown in Section 4 with
information about the PBCs, the Poisson-Voronoi micragtme and the input parameter identification process. In
Section 5, the flow behaviour is discussed by the stresstimolm each phase for the Fe33-Cu67, the Fe50-Cu50,
and the Fe67-Cu33 composite. The crystallographic texsustudied systematically according to the variation of
the phase volume fraction. The texture of the above mendisegen types of the polycrystals is presented by the
standard inverse pole figures for each phase, and its sioiatcompared with experimental results. The local
strain distribution is given in histograms for each phadeen® the numerical and experimental data are presented
for the Fel7-Cu83 composite at about 20% tensile plastanstrThe discussion is performed not only for the
experimental and numerical results but also for the oneaidd from the current 3D and from the axisymmetric
3D models (Schneider et al., 2010).

Notation. In the present work, the"2- and 4"-order tensors are presented4sndC, respectively.A~ %, AT
and A indicate the inverse, the transpose and the material timeatige of the tensord. The mapping of a
2"d-order tensor by a4-order tensor is written a8[A]. A ® B andA - B = tr(AB") are the dyadic product
and the scalar product of the tensetsand B, correspondingly]|A|| = v A - A denotes the Frobenius norm of
tensorA.

2 Experiment

The microstructures of the pure copper and pure iron sampleieh are produced by powder metallurgy, are
shown in Figure 1(a) to (g). The same manufacturing procespplied to all their composites mentioned in
the current work. The diameter and the purity of both pow@eesno more than 68m and higher than 99.9%,
respectively. Both the pure copper and iron, and their cait@®have a polycrystalline character (Figure 1), where
the porosity is less than 1vol.% for the aforementioned gistals after the composition. The darker phase in
these figures (Figure 1) presents the iron phase.

Copper Matrix/Inclusion Interpenetrating Inclusion/Matrix iron

Cul00 Cu83-Fel7 Cu67-Fe33 Cu50-Fe50 Cu33-Fe67 Cul7-Fe&3 Fel00

(@) (b) @ @ @ ® ©

Figure 1: Microstructures of the pure copper, pure iron dmditon-copper polycrystals (compositions in
vol.%, unit: ym), Commentz (2000)

A schematic overview of the extractions of the samples isvehim Figure 2 for the compression test, where
ND, TD and RD mean the normal direction, the transverse timecand the rolling direction, respectively. The
compression test is performed on cylindrical samples fhiélgnm and diameter Gam) which are obtained from
the ground plate (1717x6 mm?), where the axial direction of this cylindrical cut-out spraen corresponds to
the rolling direction of the plate (Figure 2). The stregsistbehaviour is studied by monotonic compressive tests
which are performed at room temperature {£5) at a constant strain rafe= 10~* s~!. After the compression
test (90% logarithmic plastic strain), the sample (“a” igie 2) is ground and polished until its middle plane is
laid open (“b” in Figure 2). The above-mentioned middle plésparallel to the top/bottom surface. The texture
measurement is accomplished on this middle surface, he.tdp surface in “b” in Figure 2. Pole figures are
determined for three reflections, namely {200}, {211}, arPQ} for the iron phase, and {200}, {220}, and {311}
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for the copper phase, by scanning the hexagonal grid (Matédmd Wenk, 1992). The final texture for the simple
compression test is presented as the standard inversegaie. fi

7 ND(RD)

7 LD(ND)
NPRD) i TD(TD
QTD(ND) @ @ RDRL o)
RD(TD) b

Fiqure 2: Samole after production rocessesFigure 3: Extracted sample used for measure-
9 P P P ment of the distribution of the local strain field

and sample extracted for the compression testn a tension test (the loading direction LD in

“a”. sample after compression; “b”: sam-
le ground from “a” for texture measurement; b” is also the tension direction; unitimm)
P "’ (Commentz, 2000)

unit: mm) (Commentz, 2000)

The strain test is performed with a tension sample from thHE7Keu83 composite. The geometry of the sample
for the tension test is presented in Figure 3. The measuredutus extracted from the middle plane (through
the tension direction LD and the transverse direction TD igufe 3b) of the unloaded sample. The change
of the displacement in the chosen cut-out is achieved by eoimgp the digital photos before and after a given
load step. The rigid body translation and the rotation at®raated from the measured displacement vector.
Therefore, only the local displacement remains. Theseranpats have been performed by WMA, Institut fur
Werkstoffforschung, GKSS Forschungszentrum, Geesth@armany.

More detailed information about the experiments can bedanrCommentz et al. (1999) and Commentz (2000).

3 Crystalplasticity Modelling

3.1 Elastic Law

d:.vQPK

We use a finite anisotropic linear elastic law in which the Pmala-Kirchhoff stress tens is a function of

the Green strain tens@

'K =~ K[E] 1)
with

E = %(FTF 1), 2

whereF is the deformation gradient arfdis the identity tensorK denotes the 4 order elasticity tensor, which
acts in the current state. For plastic materials, howehes,elastic law is not constant in time if yielding occurs.
Therefore, it is recommended to transform it into a timeejpehdent reference law

7% =K[E.] ©)
with

E, = %(PTFTFP - P'P). (4)
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P presents the plastic transformation (Bertram, 1999, 2@@8)is unimodular for metals, i.e., its determinant
equalsl, which leads to plastic incompressibility. So if

K=K"Mg ©g,®8g,®a, (5)

denotes the (time-independent) elasticities of the elasference law in an undistorted state with a lattice vector
g,, then the isomorphy condition gives for the (time-depemdeumrrent elasticities

K = PxK = K" (Pg,) @ (Pg,) ® (Pg,) @ (P@,). 6

* in equation (6) indicates the Rayleigh product. The stressdr in this law is related to the Cauchy stresses
by

T?PK — det(F)P'FloF "P T 7
For more details see Bertram (2005).

3.2 Flow Rule

An evolution equation of? can be fqugd based on the slip kinematics, where the equat@wven in terms of the
shear raté, and the Schmid tensdvl

. N s
P'P = - A4,(T., 78 )M
a=t 8

= 7k(T,ev To?)'
The Mandel stress tensft, is defined ag’. := C.T?"* with C, = (FP)" (FP) = P'F'FP. We specify
a certain slip system by the slip directiord,, and the slip plane normai®, ie,M" =d,®n% In equation
(8), N is the number of slip systems, anff is the critical resolved shear stress in a slip systeriihe shear rate
4., is specified by (Hutchinson, 1976)

m

Yo = Yo SEN (Ta) (9)

—C
TOL

where the resolved shear stressis given asr, ~ T2 . M“. The reference shear ratg is a constant.
For F(0) = I, the initial condition of the differential equation (8) isvgn asF'(0)P(0) = Q € SO(3), where

Q = g,(0)®e; describes the initial orientation of the single crystakhvitie lattice vectorg, (0) and the orthogonal
vectore; at time zerog = Pg presents the lattice vectors in the reference placememthviditime-dependent in
contrast tqg.

3.3 Hardening Rule

The Kocks-Mecking hardening rule (Kocks, 1976) puts the leasjs on the mechanisms of the dislocation move-
ment, the accumulation, and the annealing. This rule isBlgtto describe the hardening behaviour of the Fe-Cu
composite in this work. Detailed information about thisdening rule can be found in Kocks and Mecking (2003).

The applied hardening rule has the form

C) =78 + (S~ 7)1~ exp(= 5 ) + Ouc (10

co 10

Oy is a material parameter identified from the experiment amkdds on the temperature, the strain rate, and
C

. . . . d o
also the geometrical arrangement of the dislocatidéfg, can be obtained b, = lim —dT .~y is given by
Y00 ’)/
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f Z |9«| dt, wheret presents the time and the upper limit. In this work, the rati®..:0 is taken as 1:50.

|s the shear stress for a given slip system at the yieldingranis the one when, — co. Gliige et al. (2006)
have used the same hardening rule.

3.4 Homogenization of Stresses

Based on the postulate of the equivalence of work on the naiedithe macro scale (Hill, 1963), the local'("¥)
and the effectiveTlPK) 15! Piola-Kirchhoff stresses are related by

R / 'K qv, (11)
V'JB

0

which is the volume average over the reference volliir{eee Bertram (2005), p.231B, presents the region that
the body occupies in the reference placement. Equatiorigtéjtricted to the quasi-static case and homogeneous
or periodic boundary conditions. In order to describe tlamgition from the micro to the macro variables, a
representative volume element (RVE) is applied in the curveork. By appropriate averages over the RVE,
the macroscopic material variables are obtained through#mogenisation over the corresponding micro fields,
which are calculated by the constitutive equations in $aestB.1, 3.2 and 3.3. The FE microstructure is assumed
to be free of pores.

4  Finite Element Simulation
4.1 Periodic Boundary Conditions and Mesh

In the case of the RVEF is taken as the mean deformation. For a periodic cell, thedkaty condition can be
expressed as

= (F - Dz + w", (12)

whereu” andzf present the displacement and the position vector for a gieelek in the reference placement,
correspondingly.w”® in equation (12) denotes the fluctuation of nddeWe prescribe the pa(tF' — I)xk in
equation (12). The fluctuation is permitted everywhere a@tdsbe equal on the opposite boundarigand ,
ie.,

wﬂj:wﬂ;. (13)

i andj in equation (13) denote the equivalent boundary nodes dicgpto the periodicity condition. In addition,
the stress field is assumed to be equilibrated on the opgamsitedaries. This can be denoted by the anti-periodicity
condition

th=—t|, (14)

with t being the tension vector on the surface. The periodic bayndanditions are implemented using the user
subroutines by the above-mentioned condition (equati@)) (With the aid of the finite element method. The
requirement of such calculations is a periodic mesh, whielms, for every node on an edge there is exactly one
equivalent point on the opposite edge of the cell. For siaitglia regular mesh is preferred for the Poisson-Voronoi
micromechanical models (see Section 4.2), the element auaflwhich is253. Figure 4 presents a model with a
regular mesh and periodic boundary conditions in the deddratate.

In the simulations, the hybrid element C3D8H is chosen aslétaent type (ABAQUS/Standard, 2003). The num-
ber of averaged elements per grain is approximately tak80 &§30x 8=240 integration points). All the integration
points inside one grain initially have an identical cryltgiaphic orientation which varies from one grain to an-
other. Each integration point presents thgolume fraction of the whole element which haintegration points.

If the volume of each grain is normalised by the minimum onemgrall the grains in each phase, the ratio of the
grain sizes is between 2 to 25 for most of the grains in the FHaifor each composition. In the experiment, the
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(b)

Figure 4: Undeformed 3D finite element model with the regutash (a) and the periodic boundary condition in
deformed state

diameter of the input iron and copper powder is, mostly, eetw10-50:m, and the corresponding mean value is
20.5um (iron) and 18.3:m (copper). The same distribution is detected for both thie &nd the copper phases in
the output material (Commentz, 2000). The above obsenatiwicate that the volume ratio of grains considered
in our microstructures is acceptable. There is no initiatuee for the FE simulation, which corresponds to the
experimental measurement (Commentz, 2000).

4.2 Artificial Microstructure

To evaluate the microstructural influences on the matergbgrties, it is important to statistically estimate the
mean grain size, the grain size distribution and geoméfritaracteristics. Such geometrical characteristics can
give quantitative insight into the effects of the proceggiarameters (Ohser and Mucklich, 2000). Since the iron
and the copper powders have an identical shape geometrg extieriments, the artificial microstructure can be
presented by the same type of cells (or grains) for both ghdsés a reasonable assumption that the grains are
randomly distributed. A random microstructure can be axprately presented by a Voronoi tessellation. For the
models shown in this work, the grain structure is given agkortessellations (Ohser and Micklich, 2000) in three
dimensions. Firstly, the generator points of the graineHasen created by a Poisson process. These points are
uniformly distributed (Poisson distribution). Periodiells are applied in our 3D FE models. The aforementioned
generator points can be taken as the number of the grainen@gcthe periodicity is obtained by copying the
generator points in three directions. Finally, there aneial 33=27 such point sets (cubes) for the periodic cell in
the 3D space. A unique periodic cell (see Fig. 4 (a)) for theugation is taken from the centre of the above-created
Voronoi structure, i.e., the middel one in the 27 point setbés).

During the simulation and inside the microstructure, thtiil@r mesh of which is given in Fig. 4 (a), it is assumed
that a given integration point A belongs to a grain, the gateerpoint of which is B, if the distance between A
and B is the minimum. There are in total five FE models w2t elements for the prediction of the numerical
results for the Fel7-Cu83 composite. Each model has 89 laiosgand 431 fcc grains. The information for a
given integration point, whether it belongs to a bcc or angi@in and to which generator number, can be obtained
from the user subroutine UMAT in ABAQUS. Eight integratiooipts of each element are distributed in two layers
which are located in the planes parallel to the X-Y plane (ARFS/Standard, 2003) (Figure 5(a)). Taking<Zs
elements in the X and the Y direction, each layer {fas 25)2 = 2500 integration points. For a model witth3
elements, there ar2 x 25 = 50 such integration-point-layers in the Z direction. By usgrgphic software and
presenting each integration point with a small rectangte, ©ne pixel, one can visualise the grain structure. Each
aforementioned layer h&® x 50 =pixelsx pixels. It is assumed that all the pixels have the same sigeré&5(b)
shows the bce phase, which includes 22 grains taken fromritddier in a Fe17-Cu83 FE model. The bcc and
fcc phases are given in Figure 5(c) which is taken from theespasition as Figure 5(b). Figure 6 shows the 89
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grains for the bcc phase in an Fel7-Cu83 model, which is isadby the software AVIZO (Avizo, 5.4, 2007)
with the assumption that the distance between two neiglifogppictures is one pixel.

- -
O l l X
¢ layer 2 v
- layer 1
|
a C3D8H element a
(®) & =

(b)

Figure 5: A sketch of the locations of the integration poiinta C3D8H element (ABAQUS/Standard,
2003) where the circles and rectangles present the comdsmmp4 integration points in layer 1 and layer 2
(a); 22 bcc grains presented by %050 pixels where the same grey scale indicates that the pomding
integration points belong to an identical grain (b); 72 feaigs, where the bcc phase as given in (b) is
shown in white (c)

To simulate the micromechanical behaviour of the two-pliasée/pearlitic steels, models based on the Voronoi
algorithm and periodic boundary conditions are also ag@ieNygards and Gudmundson (2002a) in the 2D case
and Nygards and Gudmundson (2002b) in the 3D case. Fritzaln @009) developed an algorithm to generate
the periodic mesh based on the Voronoi and Hardcore Voressetlations of random point seeds.

In order to minimise the effect of the grain orientation oa tllobal composite behaviour, more than one calcu-
lation has been performed for the composites. Taking th& 183 composite as an example, the calculation is
performed five times so that the total number of initial graiirentations is 445 for the iron phase. All FE models
with 253 elements include different Voronoi tessellations, i.eeitt microstructure is not identical. The applied
element type is C3D8H (ABAQUS/Standard, 2003). Table % like total grain number, which is the sum of the
grain number in each calculation, and the volume fractioreéch phase in the FE simulation for all 7 types of the
Fe-Cu compositions.

. Grains vol. (%)
Material Fe Cu Fe Cu
Cul00 - 520 - 100
Fel00 520 100

Fel7-Cu83| 445 2155| 17.16 82.84
Fe33-Cu67| 516 1044| 32.44 67.56
Fe50-Cu50| 520 520 | 49.27 50.73
Fe67-Cu33| 1047 513 | 66.21 33.79
Fe83-Cul7| 2160 440 | 83.01 16.99

Table 1. The number of grain orientations, the volume faactf the iron and the copper phases in models with
252 elements

4.3 Material Parameters

We apply the Taylor model, the constitutive equations ofalihére identical to those mentioned in Section 3,
to identify the input material parameters for the given pojgtals. The material parameters are estimated by
simulating a uniaxial compression test and comparing thelt®with the corresponding experimental data from
Commentz (2000). A more detailed description of the ides@tfon process of the parameters is referenced to
Schneider (2008).

Three independent components of the elasticity teRs@@quation (6)) in the cubic symmetry case are presented
in Table 2 (after Commentz et al. (1999)).

Twelve glide system$§111}(110) are considered for the fcc crystals, and twelve glide systgri0}(111) for the
bcce crystals (Hartig and Mecking, 2005). Among #1d0}(111), {112}(111), and{123}(111) glide systems in
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Material K’HM(GPa) K1122(Gpa) KQgQg(GPa)
Cu 166.1 119.9 75.6
Fe 230.1 134.6 116.6

Table 2: Three independent components of the elasticityotgki in the
cubic symmetry case for Cu and Fe

the bec, the{110}(111) glide systems are firstly activated, because the Peiedsssis the smallest one for them
(Gottstein, 2001). Furthermore, the dislocation motiothatbeginning of the yielding strongly affects the texture
development. The simplicity for the simulation is anotheason for just considering twelve glide systems for bcc
crystals. Only isotropic hardening is assumed for the sitiwh. +j is taken a%).001. Table 3 lists the values of
the constants applied in the FE simulation.

Material 7 IMPa] | 7€ — 7§ [MPa] | ©q []
Fe(vol.%)/Cu (vol.%)| Fe/Cu Fe/Cu Fe/Cu
Culoo -[70 -/86.86 -/330
Fel00 187/- 78.00/- 750/-
Fel7-Cu83 180/70 66.00/100.00 | 780/330
Fe33-Cu67 180/80 38.89/90.24 | 800/466
Fe50-Cu50 186/80 59.00/87.85 | 830/490
Fe67-Cu33 186/80 66.32/87.2 860/430
Fe83-Cul7 186/80 66.62/90.24 | 892/450

Table 3: Hardening material parameters for Fe-Cu compodié¢éermined by the
trial-and-error method

The rule of mixture considers only the volume fraction oftegbase to calculate the strength of the composite
or alloy. For polycrystals like the Fe-Cu composite, othiéeats, like crystal orientation, local interaction, and
local yield stress are also important to determine the behawf the composite. Hangen and Raabe (1995) and
Ratke et al. (1984) used some methods to modify the rule afum@based on their experimental input parameters.
However, these modifications are only suitable for the apoading material given in their work and only for one
composition. In the current work, the hardening behavisutifferent for each composition (in total 7 types of
compositions, see Figure 7). To the knowledge of the autsach complex hardening behaviour has been unclear
up to now, which means an improved description of the hardgbiehaviour cannot be obtained through the
modification of the rule of mixture for our Fe-Cu composités.overcome this in the present work, we expect that
the above-mentioned different hardening effects are eredad the simulation, if the three parameters, namely
¥, 7¢, and@y, in Table 3 are not identical. From Figure 7, the hardenirtials®mur of the composites, even for
the ones with the same composition, e.g., Fel7-Cu83 vs.-Eed3, is different. The different global hardening
behaviour comes from the different local deformation béhav It is assumed that both phases harden differently
from composite to composite’ describes the different local critical resolved yield stie$ presents the local
shear stress at = oo. ©g is a characteristic strain hardening and influenced by thleahtion and the shear
modulus. Ifr{ is different, it means that the composites locally yieldifedent stress magnitudes. Analogously,
the different values of,, mean that the local shear stress is not the same for the cdepass = oco. The
activation mechanism of the local dislocation and the Isbalar modulus are non-uniform. This causes the various
values of©,. By using a trial-and-error process, the material pararadete the pure Cu and the pure Fe are firstly
determined, which provides the first guess for the identificeof their composites. Figure 7 shows the comparison
between the identified and the experimental stress-stediaviour for the 7 types of Fe-Cu composites.

5 Results and Discussion
5.1 Stress-strain Flow Behaviour

Different grain geometries and orientations modify thealogtress and strain field. This influence would not be
obvious, if a large enough number of grains and grain ortemta is considered. Each graph in Figure 8 includes
the same number of grains as shown in Table 1.

All the simulated stress-strain curves match the experiah@mes well until about 10%-15% plastic strain. In
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Figure 7: Comparison of the stress-strain
Figure 6: Fe phase grains visualised by curves between the experiment and the
AVIZO 5.4 (Avizo, 5.4, 2007) for an Fe17-  Taylor model with the identified input pa-
Cu83 FE model witl253 elements where rameters given in Table 2 and 3
the grains are presented as the Poisson-
Voronoi tessellations

the range of 80%-90% plastic strain, the prediction is alsodg Among the seven polycrystalline materials
mentioned, the flow behaviour of the pure copper is capturédst. Due to the complex hardening process in the
polycrystalline composites at large plastic strains, Wwhias not been well understood up to now, some deviation
is shown in the range of 15%-80% plastic strain. Comparelda@kperimental stress-strain curves, the calculated
curve for the Fe67-Cu33 composite exhibits the largestadiewi which is approximately 10%. The stress flow
behaviour is underestimated to a certain extent (mostly legn 10%) by the 3D FE models. Compared to the
stress-strain curves predicted by the axisymmetric mdeigu¢es 10 and 11 in Schneider et al. (2010)), the 3D
FEM analysis predicts a softer material behaviour than xisymmetric one for the same input parameters. There
are at least two reasons for this effect. Firstly, since ngpaéns are considered in the microstructures of the 3D
case, this allows for a larger amount of interactions betwgains and phases on the microlevel, which causes a
lower stress. Secondly, the axisymmetric analysis gelyeyiades stiffer material behaviour due to its constrained
symmetry (see Chapter 6 in Schneider (2008)). In particiler homogeneous boundary conditions are also
responsible for the higher stress predicted in the axisytmerraodel.

In two-phase polycrystalline materials, the harder phaseas a strong stress concentrator during the deformation
(Commentz et al., 1999; Soppa et al., 1998). The stress flaiveofFe and Cu phases is plotted in the Figure
9(a) according to the evolution of the phase volume fractitla definesnqs. /0 as the normalised stress in each
phase. The normalised stress of the iron and the copperphapeesented for the Fe33-Cu67, the Fe50-Cu50,
and the Fe67-Cu33 composite in Figure 9 (b) to (d), wihgyg ;. ando indicate the stress of the iron phase or
the copper phase, and the total stress of the correspondimgasite in the simulation. The calculation for each
composite is performed only once by using the model &ith elements for Figure 9. In the present work, only
the numerical results shown in Figure 9 are obtained from BHats with36° elements.

As expected, the stress of the iron and the copper phaseges&vith the Fe volume fraction. It is believed that the
numerical result qualitatively reveals the reality, sitive identical FE model gives good predictions for the flow
behaviour (Figure 8), the texture (Figure 10 and 11) anddballstrain distribution (Figure 13). Obviously, the
higher strength of the composite with a larger Fe vol.% tedubm the stress increment of both the Fe phase and
the Cu phase. The ratio of the stress in the iron phase totidflestoess decreases quickly before 20% plastic strain
while that of the copper phase behaves inversely. The rdtésofiecrease (Fe phase) is faster for a lower Fe phase
content in the composites. The speed of the increase (Cweplsaslightly slower for a lower Fe phase content
in the composites. Such phenomenon shows that the locabdtedd is very sensitive to the plastic deformation
at the early stage. The above observation is also shown iaxilsgmmetric simulation (Figure 15 in Schneider
et al. (2010)). After such rapid change of stresses in bo#s@é the normalised stress-strain curves converge to
certain values for both the iron and the copper phases. Edrdh phase, this value is about 1.1 for all the three
composites. The normalised stress-strain curves of thperqphase converge to different values. This value is
higher for a lower Fe phase content in the composites. Sheetress of the Fe phase converges to the same
value for all the three composites while the stress of the lise does not, we conclude that the effect of the iron
phase on the copper phase is larger than vice versa. In tlegieent (Commentz, 2000), it is observed that the
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iron phase starts to yield shortly after the beginning ofytledding of the composite. On the other hand, some
iron phase is still in the elastic-plastic transition up thigher macroscopic strain (Commentz et al., 1999). This
means that the plastic deformation of the iron phase taleee@tep by step. If the harder phase yields, the load
is transferred back to the softer phase (Daymond et al.,)2085a result, the stress of the iron phase decreases
while the stress of the copper phase presents the oppofstt with the increase of the plastic strain. Han and
Dawson (2005) observed that at the beginning of the yieldoty theaFe and the Cu phases continue to increase
in load through the elastic plastic transition, as the sthardening continues in both phases. From our numerical
results (Figure 9), it seems that this phenomenon continntisnuch larger macroscopic strains. Observations in
the experiment proved that numerical results in Figure 9esonable for the flow behaviour of the stress in each
phase.
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Figure 8: Averaged numerical and experimental stres#siwa— <) curves for pure iron, pure copper and their
composites until 90% plastic strain from the FE models ®&ith elements

5.2 Crystallographic Texture

The texture of the iron phase presented as the inverse pale fig shown in Figure 10 for both the experiment
(left column) and the simulation (right column) at a compries plastic strain, = 90%. The measured textures
are characterised by the following five properties. (1) Tgbfibre textures are shown, which concentrate on the
<100>- and the <111>-fibre. (2) The pure iron polycrystalspres the sharpest texture. The presence of the
second phase (Cu phase), even with a small amount of voluaotdin (17% volume fraction), obviously reduces
the sharpness of the texture. (3) The effect of the volumgifna of the second phase (copper) on the texture
evolution of the iron phase is obvious, if one compares testamong the Fel7-Cu83, the Fe33-Cu67, and the
Fe50-Cu50 composites. (4) The maximum intensity of the =ifidre is similar for composites with the same
volume fraction of the inclusion, i.e., Fe83-Cul7 vs. FE€LR3 and Fe67-Cu33 vs. Fe33-Cu67. (5) Even though
the interpenetrating network of iron-copper phases (Fé680) has a much higher harder phase content than the
Fel7-Cu83 composite, there is not much difference for tlaepstess of the texture between the aforementioned
two composites. For a better view of the aforementionedesipoints, Figure 12(a) presents the evolution of the
maximum intensity of the <111>-fibre according to the voluiraetion for the iron phase. Since the numerical
predictions capture all the above-mentioned experimetservations of the crystallographic texture, we conclude
that the elasto-visco-plastic 3D model with Poisson-Voianicrostructures predicts appropriately the textures fo
the harder phase of Fe-Cu polycrystals. Concerning theeptpjn the fourth point, the simulated results are
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limited to the Fe67-Cu33 and the Fe33-Cu67 composites.

The maximum value of thez111>-fibre density is lower for the iron phase in the Fel7-Cu83 timathe Fe83-
Cul7 composite in the simulation. This may result from thesogeration of bcc slip systems (in the calculation)
during the hardening process which can be changed by themre®f the copper phase. Besides {1401 1>

slip systems, other ones are also observed in the experifienthe Fe83-Cul7 composite, this disadvantage in
the model may be accumulatively large due to the high irorier@n The above-mentioned points 4 and 5 indicate
that the local interaction is essential for the texture @tioh in the Fe-Cu composite, since the possibility for
such interactions is the same for the Fe33-Cu67 and the EaB3-(or for the Fe17-Cu83 and the Fe83-Cul7)
composites. As mentioned in Section 4.1, the size of thetippwders of iron and copper has approximately the
same distribution. During the composition, the solubibifythe iron in the copper and vice versa is negligible.
The Fe/Cu grain size and the size distribution are not clihbgethe production process. To a large extent, the
distribution of the phase-area is in the same range for bo#sgs. For the simulation and from Table 1, there
are 445 bcc grains and 2155 fcc grains (in total 2600 graordhe Fel7-Cu83 composite, and the corresponding
values are both 520 (in total 1040 grains) for the Fe50-Cufiposite. More grains result in more interactions
among grains, which should cause the reduction of the textitensity. Furthermore, the volume fraction of the
harder phase in the Fe50-Cu50 composite is nearly threes tianger than in the Fel7-Cu83 composite. This
means that the texture intensity in the simulation of theOF€550 composite should be much higher than that of
the Fel7-Cu83 composite in the simulation, since the formnercontains fewer grains and much more volume
fraction of the harder phase. But this effect is not so obwiouthe numerical prediction (Figure 12). It indicates
that some other phenomena exist, which compensate thekleditun of the reduced grain interaction and the
higher harder phase volume fraction to the higher textuensity. Since the Voronoi cells (grains) are randomly
generated, the chance to have the second phase as neigisitbersame for all grains. It means that the amount
of the interaction between bcc-fcc phase is about 17% larg&e50-Cu50 composite than in the Fel7-Cu83
composite in the simulation. One expects that the bcc-fasghnteraction exhibits a significant effect on the
texture. However, to fix the above conclusion (the stronguerfte of the interaction between phases on the
texture), more experimental data is necessary, in paatictile distribution of the phase-area for composites with
the same volume ratio of the inclusion to the matrix (e.gl,#€u83 vs. Fe83-Cul7). Numerical predictions of the
iron phase texture show less inflection of the radial widtthef<100>- and the <111>-fibres than the experiment.

The texture of the copper phase is presented in Figure 1hédCt and Fe-Cu composites in the normal direction
at 90% plastic strain under a simple compressive load. Tresuared texture of the copper phase has the following
three properties. On the one hand, the texture of the splgdse (pure) copper strongly concentrates in the <110>-
fibre, which develops in the <210>- and the <411>-directidn.the other hand, the copper phase texture becomes
much weaker by the presence of the second phase even witld énty.%, which is similar to the influence of
copper on the texture of the iron phase. Like mentioned irdibeussion of the iron texture, one reason might be
that the local heterogeneity is strongly amplified by the-faccgrain interaction. As a result, the sharpness of the
phase texture is reduced. Another indication is that thel=dand the <110>-fibre intensity of the interpenetrating
network, i.e., the Fe50-Cu50 composite, is the lowest anadirte 7 types of compositions for both the iron and
the copper phase, correspondingly. The possibility of ttefbc grain interaction is largest for the Fe50-Cu50
composite among the mentioned 7 types, if the phase-are#odi®on is taken as approximately the same for both
phases. Thirdly, in reality, the maximum pole density andgitsition varies due to a different phase volume ratio
among Fe-Cu two-phase polycrystals.

The above properties are well presented by the 3D simuktiBredictions for the above third point capture how
the maximum pole density changes according to the incrgagilume fraction of the second (iron) phase, even
though the difference is not as big as in the experiment. HeoF&e83-Cul7 composite, the position of the maximum
pole density is not predicted by the simulation (last rowiiguire 11).

As given in Figure 12(b), the <110>-fibre intensity increaggth its volume fraction in the experiment, where the
interpenetrating network of Fe-Cu phases is excluded. & bgperimental measurements mean that the effect of
the harder phase on the texture of the softer phase is ldrgenice versa. This phenomenon is predicted by the
simulations, where the maximum intensity of the <110>-filsrapproximately the same for the Fe67-Cu33 and
the Fe83-Cul7 composite. The difference of the maximummégities among composites is not so large as those
in the experiment for both phases (Figure 12(a) and (b)).

In order to improve the numerical prediction of the textune,an particular, the evolution of the maximum fibre
intensity according to the phase volume fraction, the samaetwith 362 elements and another one with 24 glide
systems, i.e., {110}<111> and {112}<111>, for bcc phaseppleed. However, no improvement is observed in
the above-mentioned two cases (Schneider, 2008). Thissieanthe model witR53 elements gives sufficiently
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and the 3D finite element simulation (right, models w#t¥ elements) under a simple compressive load at 90%
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accurate results. And for the hardening rule used here ahsideration of 12 glide systems, i.e., {110}<111>, is
acceptable for the bcc phase. A better prediction is predentthe axisymmetric 3D simulation in Schneider et al.
(2010) for the above-mentioned texture evolution due toptiese volume fraction. Since the real microstructure
cut-out is applied as the cross-section and the regionginegrain boundaries are finer meshed, it means that the
bce-fce grain interaction is better described than the arthé current work. By using the same material model
and periodic boundary conditions, we expect the improvederical results, if the real 3D microstructure and the
finer meshed regions near the grain boundaries, i.e., a dgoally adaptive mesh, are applied in the FE model
which also includes an improved glide system mechanismhiobtc phase.
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Figure 12: Comparison of the maximum intensity of the <1fibre for the iron phase (a) and the <110>-fibre for
the copper phase (b) between the experiment and the 3D FHasiomuwith 252 elements under a compressive
load at 90% plastic strain

5.3 Strain Distribution

The material heterogeneity on the microscale can be stumigtie non-uniform distribution of the strain field.
Figure 13 presents the distribution of the local strain ffeldboth the iron and the copper phase in the simulation
(left column) and the experiment (right column) at a macopsc tensile straire,=19.8%. The grain number
considered in numerical calculations is referenced to #17FCu83 composite in Table 1.

In the experiment (Figure 13), the distribution of the losahin field has a higher concentration in the shear
direction (LD/TD) than in the other two directions (LD and Yfr both the iron and the copper phase, which
means that more non-homogeneity is shown in the loading érid)the transverse directions (TD). Besides, this
distribution in the loading direction covers the widestgaramong these three directions. This indicates that the
material deforms more heterogeneously in the LD than in the The numerical results predict all the above-
mentioned properties well for both the harder and the spftase. The simulations also capture how the Fe phase
presents less heterogeneity than the Cu phase, espenigilg shear direction. There are two indicators for the
above conclusion for the comparison between the hardeihangbfter phases, the concentration of the distribution
curves and the mean values of the local strain in each direcfThe former can be obtained from the range of
the distribution curve and the maximum (relative) frequen€or the latter, the numerical results quantitatively
predict the mean value of the local strains well in all thee¢hdirections for both the iron and the copper phases.
The softer phase takes over more plastic strains, sincedtaged strain (absolute) value is much higher than the
harder phase one in both the loading and the transversdidirec

6 Summary

In this work, seven types of Fe-Cu polycrystals are inveséid. A crystal elastic viscoplastic material model
is applied on the microscale to investigate the plastic @rtigs of the aforementioned two-phase polycrystals.
Three-dimensional simulations are performed by the filément software ABAQUS. The models with periodic

boundary conditions have a Poisson-Voronoi microstr@ctuve incorporate the micromorphology, the grain
orientation, and the local interaction in the simulatiomtanerically study the flow behaviour including the phase
stress evolution according to the phase volume content;riystallographic texture, and the distribution of the

strain.
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Figure 13: Local strain field distribution of Fe (upper romdaCu (lower row) phases of 3D FE simulations and
experiments for Fe17-Cu83 composite under tensile loaaling=19.8%

The following conclusions are obtained for the mechaniedddviour of pure iron, copper, and their composites
by the numerical and experimental results.

e The stress flow behaviour of the seven types of the Fe-Cu csitegaare captured well by the numerical
prediction, where the deviation between the simulationthedexperiment is less than 10%.

e As seen by the FE simulation, both the Fe and the Cu phase $h@gases with a higher harder phase
content in the composites. Concerning this point, it isdyd that the numerical model is appropriate to
give realistic values.

e At the beginning of the yielding, the stress ratio of the aapphase to the total stress increases rapidly, and
that of iron phase decreases.

e The ratio of the copper phase stress to the total stress igas/ different values, where this value is higher
for a composite with a lower iron phase content. This rati@iatively constant for the iron phase.

e For both types of composites, the presence of the secon@ @vas with a small amount of the volume
fraction (e.g., Fe100 vs. Fe83 and Cul00 vs. Cu83) dralstizaluces the sharpness of the crystallographic
texture in both phases, if the same effect is compared wihfurther enlargement of the second phase
volume fraction (e.g., Fe83 vs. Fe67 and Cu83 vs. Cu67).

e The maximum fibre intensity<(111>-fibre) of the iron phase is similar for composites of FelB&us.
Fe83-Cul7 and Fe33-Cu67 vs. Fe67-Cu33. Simulations of Ehen8del capture the above mentioned
maximum fibre intensity for the Fe33-Cu67 and the Fe67-CuBposite.

e Without considering the Fe50-Cu50 composite, the hardes@thas a stronger influence on the texture
evolution of the softer phase than vice versa.

e The bcc-fce phase interaction exhibits a significant eféecthe texture.

¢ Inthe normal and the transverse direction, the mean valtreddtrain in both the harder phase and the softer
phase presents a deviation from the total mean value, antbfhpeer phase undergoes larger deformations
than the iron phase in the composite. These properties drenedicted by the 3D simulations.
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e The mean value of the local strain is quantitatively welldiceed for both the iron and the copper phase.
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