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Fast Alternatives to Taylor and Sachs Models for Rigid Perfectly
Viscoplastic Polycrystals

J. Kalisch, A. Bertram

We consider polycrystals consisting of rigid perfectly viscoplastic single crystals. Instead of tracking the evolu-
tion of (a) many individual crystallite orientations we determine the evolution of (b) the Fourier coefficients of
the orientation distribution. Apart from the truncation order, the transition from single to polycrystal constitutive
equations is unique, it does not involve additional parameters. While the reference model (a) requires the solution
of numerous small systems of non-linear ODEs, our model (b) provides a system of linear ODEs the size of which
depends on the truncation order. Upon establishing a data base for the matrix of system (b), the computing time is
decreased significantly as compared to (a).

This paper is meant to introduce the fundamentals of our model in terms of the underlying physical concepts and
a compact and convenient notation. In addition, we introduce a class of alternative approaches that allow for a
non-negative approximation of the orientation distribution and generalise the equations for the texture evolution
to arbitrary sets of base functions.

1 Introduction

Objective. The focus of our work is on the evolution of the crystallographic texture and its influence on the
anisotropy of the plastic behaviour of polycrystals. Since the crystallographic texture is in essence described by
the orientation distribution we shall use a single crystal model with the internal state being completely described
by theorientation Thus we considerrigid perfectly viscoplastic single crystals and polycrystals consisting of these.
While the upper and lower bounds of crystal plasticity, i. e. the approaches devideylby (1938 andSachs

(T928), have been studied extensively in academics, in terms of computational costs they are still too demanding
to be applied in industrial forming simulations. Subsequently, we present a less demanding alternative.
Concerning the evolution of the crystallographic texture, we start from the approd&htike (2006, but con-

tinue in different directions. As far as the stress strain-rate relation is concerned, we extend the rEgilitkeof

and Berfrai(Z003 andBahlke (2004 to the general anisotropic case. For pgagentialsof strain-rate and stress

this has been done hisofsova and &hlke (20091 and'sofsova_and &hlke (20093, We shall include their
theoretical results along the lines.

From a superordinate point of view, our approach follows the strategy to condense the important information of the
microstructure and microscale constitutive functions prior to the application. This is a computationally demanding
procedure, but it needs to be done only once. The permanent costs of the resulting model are comparatively small.
Other approaches following this strategy are, e.g., the CP DFT (crystal plasticity discrete Fourier transformation)
suggested biKnezevic et al(?009, the CP FFT (crystal plasticity fast Fourier transformation) investigateldiby

et al. (2010) and the NTFA (non-uniform transformation field analysis) dealt wittEnizen and ®hike (20113
andFEritzen and B®hike (ZOTTH.

Outline. The paper is organised as followSection 2deals with the key mathematical tools of the subsequent
analysis. It contains the representation of functionsS@Ps which involves the invariant integration and the
Fourier expansionSection Yecasts the underlying general framework for rigid perfectly viscoplastic single crys-
tals in terms of non-dimensional and dual variabsction Zintroduces the orientation distribution function and
(locally) homogeneous processes. Then we discuss different models for rigid perfectly viscoplastic polycrystals.
Bohlke’s and our approach differ by the way the closure problem for the infinite number of texture coefficients is
dealt with. We then introduce a class of alternative descriptions of the orientation distribution function in terms
of harmonic tensors. This class allows for truncations that yield non-negative approximations of the orientation
distribution function. Moreover, we establish the decomposition of the truncation &eation Slists various
features of our approach that allow for a reduction of the computing time. This section is meant to be the outline
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of a forthcoming paper which includes a detailed description of the reduction procesiecgon 6contains the
example of a uniaxial tensile test. For tensile strains as large as 100 % we find our approach to agree well with the
reference model (i.e. the truncation error is negligible) while the computing time is reduced by several orders of
magnitude Section 7generalises the homogenisation procedure in Section 4 to arbitrary sets of base functions on
SOs.

Notation. Scalars, vectors, second-order tensors, and tensors of higher or arbitrary order are denated like

A, and A, respectively, whileA and A denote a supervector and a supertensor, respectively - we shall give a
more precise description of this concept later. The scalar, dyadic, Rayleigh and infinitesimal Rayleigh product are
denoted by, ®, » andX, respectively. For a given bagg;} and ann-th order tensol3 = Biti-hg; ® ... ® g;

(mind Einstein’s summation convention), the Rayleigh and infinitesimal Rayleigh product are given by

A-B AINB 1)
AxB = BU'Alg|®...Alg,] 2)
AXB = B (Alg,]®g,®...0g, +...+8,®...08,_, ®Alg,]) 3)

where[ ] indicates the linear mapping (complete contraction of all lower order tensor indices) defined via

A [IB] = Al IMJ1-JN leij g, R...0 Siu (4)
The Frobenius norm for tensors of arbitrary order is definefi by| := (A-A)z. To our knowledge, the operation

X does not have an official name, currently. It comes in handy whenever derivatives of the Rayleigh product are
required which is, why we have called it infinitesimal Rayleigh product.

Orientations and rotations are denoted®yand R, respectively. The difference between them is a subtle one,
similar to that between a point in space (or a position vector) and an ordinary vector. Rotations connect orientations
as vectors connect points. Groups are denotediile particularSQOj is the group of proper rotations in a three-
dimensional space.

2 Functions onSO3

Invariant integration on SO3. For locally compact groups, such 893, there exists a Biar measure. For our
problem, it suffices to know that this implies the existence of an invariant differentialdp(i@®) giving rise to a
left, right and inversion invariant normalised integration

VR € 8Os : /SO GRQ)Au(Q) = /so G(Q)du(Q) leftinvariance (5)
VR € SOs: /so GQR)du(Q) = /so G(Q)du(Q) rightinw. (6)
G(Q YHduQ) = / G(Q)du(Q) inversion inv. (7)
SO3 SO3
/ 1dp(Q) = 1 normalisation (8)
503

whereG is an arbitrary (possibly tensor-valued) function. On a modest level, we may understar8iEog.
considering the integration along a circle: neither the sense of integration nor the starting point affect the result.
In this context, the circle represents the set of a group, e.g., the unit {itgléi ¢)|¢ € [0, 27[} in the plane of
complex numbers; the group operation then is the usual multiplication of complex nhumbers. For more information
on the subject we refer tBistrodt(?009 andGel'fand etal (T963.

Fourier expansion onSQOs. If the function G is square-integrable, it allows for a Fourier expansiBogms
et al. (T992), Guidief al. (T99%), Sam_ et al (T993). The expansion involves Fourier coefficiedi&,,  } and
mutually orthogonal base functiod®,,  }. The latter are related to mutually orthogonal base tenS8rs } by
virtue of the orientatiorQ. BothB,,, andH,,  are harmonic (i.e. completely symmetric and deviatoric) tensors
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of orderm.

[ le@Pau@ < o ©)
SO4
oo 2m+1
m=0 a=1
Gm, = - G(Q) ® B, (Q)du(Q) (11)
Bma (Q) = Q * IHma (12)

Harmonic base tensors. The set of2m + 1 base tensors span the space of all harmonic tensors of srder
Consequently, we can exprdss - the identity on the space of harmonic tensors of orderin terms of the base
tensors,

Hy, - Hwy, = (2m+1)das (13)
2m-+1
> Hp, @Hu, = 2m+1)Iy, (14)
a=1

Base functions onSQO3. The Dirac distributions and the identity on harmonic tensors are related to the base
functions via

5Q.Q) = i:f Bun, (Q) - B, (@) (15)
/ L B (@8 B (@u@) = bundasT (16)

The Fourier expansion (EqEMIT) is then easily understood by considering
6Q) = [ ¢(@)5Q.QauQ) )

Scalar product. The scalar product of two square-integrable functidhand@G, is given by

oo 2m+41

| F@-C@dn@ =3 3 Fu G (18)

m=0 a=1

Supervectors and supertensorsSubsequently, we shall use more compact expressions such as

¢ 2 ¢BQ)] (19)

¢ 2 / ¢(Q) © B(Q) du(Q) (20)

B(Q ‘2 Q+H (21)

5Q.Q) 2 BQ) BQ) (22)

/ BQ eBQdu(Q T I (23)
/ FQ - cQduQ © F.c (24)

Here,BB, I, G andH are supervectors, while the identitys a second-order supertensor satisfying, &.0G | =
G. We have introduced this compact notation in order not to conceal the essential structure of the equations in the
subsequent sections.

3 Rigid Perfectly Viscoplastic Single Crystals

Locally homogeneous processThroughout this work, we consider constitutive functions at tinaed material
point x, (i.e. a material volume comprising, and being sufficiently small in comparison to the length scales
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across which the process variabMé and X change significantly and yet large enough to include all important
features of the crystallographic texture). However, we shall suppress the argupemst whenever possible.

The term locally homogeneous process is used subsequently to emphasize that within such a volume, the process
variables are assumed homogeneous, but they may still vary from one material point to another.

Single crystal model. The mechanical behaviour of rigid perfectly viscoplastic single crystals is specified by two
constitutive functionsA andS, mapping second-order harmonic tensors to second-order skew and second-order
harmonic tensors, respectively. More precisely, we have

QQ" = W-%QA(Q"XQ)Q" (25)
X; = QsS(Q™xXQ)Q" (26)

where EqZ3 describes the evolution of the lattice orientatiQrfor a givenW-X-process, while E(ZB relates

the dual variablesX andX; (see, e.gHuichinson(T9/6), Bahike and Berfran@003, Bohlke (2004).

The dual variables correspond to the non-dimensional strain rate de%atmd the Kirchhoff stress dewat&

or vice versa. The material parametégsand 7. are called critical shear rate and critical resolved shear" stress,
respectively. In addition, we can introduce a non-dimensional Qélrand a non-dimensional time increment
d’y = "y() dt.

Duality. The termdual is further emphasized by the following considerationsAlfS are given explicitly in

terms ofX and theW-X-process is prescribed, we can recover the same formulation by means of the dual func-
tions A andS; - providedsS is bijective. Introducing the abbreviatio®s := QTX Q andY; = QTX; Q,

Eq.E8 is compactly rewritten as

Y; =S(Y) (27)

allowing to establish the dual functions by
Si(Yy) = STHYy) (28)
Ai(Yy) = AoSTH(Yy) (29)

If, in addition, S has a convex potentigl = p(Y), thus

(30)

then the dual potentiab; = p;(Y+) is obtained via the Legendre-Fenchel transformation and satisifies

dp+(Y+)

S:(Y = —— 31
+(Yy) a0Y; (31)
pi(Yy) = Sup (Z-Y; —p(Z)) (32)

= Y Y;-p(Y) where Y =S(Y}) (33)

Moreover, we assumA andS (and thusp) continuously differentiable and bounded - and thus square-integrable
on S5 - for finite X and arbitrary orientations.

Dissipation. The non-dimensional dissipationis given by the scalar product of the dual variables and has to
be non-negative. I is convex, the non-negativity is ensured.

T D

Tc 70
= X -X; (35)
= Y- Y, (36)
= p(Y)+p;(Yy) (37)
= Y+ (38)

In the transition from Ed38 to Eq.B4, Eq.B3 has been used.
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4 Rigid Perfectly Viscoplastic Polycrystals

Orientation distribution function. The crystallographic texture can be described by means of the orientation
distribution function (ODFY, which, by definition, gives the volume fraction of single crystals (or grains) with a
similar lattice orientationBunge(T965)

#Q) du(Q) = W@ Q)

7 (39)
The ODF is normalised and non-negative
[H@au@ = 1 (40)
VQeSOs: f(Q) > 0 (41)
Furthermore, texture and crystal symmetries (with grdipsic C SO3) imply
VRregr: f{(RTQ) = f{(Q) (42)
VRce€Gc: f(QRe) = £(Q) (43)
The Fourier coefficients of the ODF are called texture coeffici#hts
fQ = T -B(Q) (44)
T = [(QBQd(Q (45)

If the ODF is time dependent, théfQ, t) = T(t) - B(Q) etc. as in the following sections.
The existence of a motion and its implications.For the sake of brevity we define the lattice spin functien

2(QW.X):=W-%QA(Q'XQ)Q" (46)

If A is continuously differentiable and th&-X-process is piecewise continuous, then the Picard-L&ideéEo-

rem implies the existence and uniqueness of a continuous sol{ion The uniqueness implies that trajectories
starting from different initial values cannot intersect at finite time. However, they may converge towards a common
limit. Thus, considering the set of all trajectories for a gi¥hX-process, we find - at any time - a unique relation
between initial and current orientations.

This corresponds exactly to the concept of a mofiai material points in continuum mechanics (see, 8arfram
(2012), however, now inSO3 with the initial orientation€, corresponding to material coordinates.

Q(t) = x(Qo, t) (47)

Since all initial orientations are assumed to be subject to the 3&R¥-process, our analysis is restricted to lo-
cally homogeneous processes - in other words, to Taylor and Sachs models.

Texture evolution. Using the concept of a motion, tdlke Bnhike (?006) has shown that the evolution of
the texture coefficients is given by

T = / QEBfdu(Q) (48)

which by means of EqE4 is rewritten as a linear ODE for the texture coefficients
T = L[T] (49)
L~ [@EDeBQ 50)
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The decomposition of the lattice spin (E) into W- andX-dependent part also translates to the evolutidii.of
As for single crystals, th®-dependent parts accounts for rigid body motions.

L(W.X)[T] = WRXRT-4AX)[T] (51)
A%) = [(AQX)BEQ)®BQd(Q) 52)
A(QX) = QA(Q'XQ)Q" (53)

Stress strain-rate relation. For locally homogeneous processes we can transform volume averages to orientation

and Hihike (?0093) and the volume average of the dual variable are given by

v o— / p(QTX Q)f(Q, ) du(Q) (54)
X = [8@X1Q0 4 (55)
S(Q,X) = QS(Q™XQ)Q" (56)

According to EqP32, the right hand sides are scalar products and can be rewritten as follows

v = P(X)-T (57)
X; = S$(X)[T] (58)
where the polycrystal constitutive functiofisndIP are given by
PX) = [p(@Q'XQ)BQdi(Q) (59)
S0 = [$(QX) 9 B@Q)(Q) (60)
Sincey andX; are related via derivatives (E8D) in single crystals, so aré andX; in polycrystals
N
X_ = e 1
f X |q (61)
ov
X: = —= 2
f X | (62)

4.1 Our Approach

The sum in, e.g., EJID involves an infinite number of terms, which is impractical to deal with. Therefore, we
consider a finite subsystem of B0 and neglect the contribution of higher order texture coefficients with order
m > M, whereM is the truncation order. Our polycrystal model is thus given by

IM = WKTy -0 éMM [IM } (63)

o= Py(X) Ty (64)

Xi = Su(X)[Ty] (65)
where

AuX) = [(AQ X)X By(Q) @By (Q)du(Q) (66)

P (Q'X Q) By(Q)du(Q) (67)

1€7]

=

ke
i

S(Q,X) ® By (Q) du(Q) (68)

L’%

£

]
—— —
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In terms of the ODF, this truncation corresponds to projecting the ODF on a subspace
f— 1ty =Ty By (69)

Depending on the single crystal functioAsandS, we choose a truncation order that renders a reasonable agree-
ment for a set of test processes.

4.2 Reference Model

The reference model (Sachs or Taylor, upper index R) consists of a sufficiently large nkirabsingle crystals
with volume fractiondy, and orientation€).. The orientations evolve according to Eg8.andZ6 and are subject
to the saméV-X-process,

QQf = W-—5A(QuX) (70)
K

o= Y hop(QEX Qu) (71)
k=
K1

xXF = > 6S(Qu.X) (72)
k=1

The respective ODF and texture coefficients are given by

K

Q) = > fd(Q Q) (73)
k=1
K

Thy = > fBay(Qu (74)
k=1

4.3 Decomposition of the Truncation Error

Comparing the results of the reference model ($%&&).to those of our approach, we find the following decompo-
sition of the truncation error

U—UR = Py(X) - (T — Ty) + (Py(X) - P(X)) - TV (75)
< | Py(X) || | Ty — Ty || + 1 Py(X) = BX) || || T (76)

A similar decomposition applies &; — Xﬁ.

The termel; describes the error due to truncating the Fourier expansign &f p is polynomial inQ, then its
Fourier expansion is finite and]; is zero whenever the truncation order is chosen at least equal to the polynomial
order. Otherwise, the error can be estimated using the equivalent expression

R ( / | PH(QIXQ) Q) ~ [ By(X) ||2> ’ (77)

Since the norm oP,, increases asl does, the truncation erref; decreases monotonously, andpas square-
integrable, it converges to zero
ek > 6§I+1 lim e =0 (78)
M—oo

By contrast, the termay; is the error inT,; due to truncating the system of evolution equations The relation of
truncation error and truncation order will be investigated in more detail in a forthcoming paper. For the time being
we have to content ourselves with numerical examples to investigate this error.
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4.4 Evolution of Non-negative ODF Approximations

Non-negative approximations.Working with an infinite number of texture coefficients is impractical. To circum-
vent this problem we may truncate the Fourier expansion, as has been done in the previous section. However, this
can induce regions where the ODF becomes negative, thus violating the constraint of non-negatidly. (Eq.
alternative approach ensuring non-negativity is described subsequently. First, we consider a continuously differ-
entiable bijective non-negative functign

g:R—-RE (79)
and, for the time being, an infinite vector of alternative texture coeffici&ntsimilar toT. Then, the ODF is
replaced by

f=g(K-B) (80)
Evolution of alternative texture coefficients. Based again on the concept of a motion, the respective evolution
equations are given by

MK)[K] = LW, X,K)K] (81)

MK) = / GK-B)B®Bdu (82)

L(W,X,K) = /ﬂ&B) ®B+(1-G(K B)Bo(QEB)dy (83)
o x dg(x)

Gx) = o ds (84)

with second-order supertensdvsandL. In this contextG = 1 corresponds to our original approach.

Lattice spin decomposition. Using Eq.d8, we find the reduced system where the influencdofand X are
separated
M(K) [K - WK K] = L(0,X, K) [K] (85)
Invertible M. If G is continuous and either non-negative or non-positive, then the linear mappisgositive
definite or negative definite, respectively. This implies invertibility and provides a system of non-linear first order
ODEs
K= M- YK)L LW, X,K) [K] (86)

Polynomial approach. M is K-independent only it = c with constant. This impliesg(x) := x°.

Homogeneity. Changingg — cg by a non-zero constamt # 0 does not alteG. Changingg — g* renders
G — kG.

Exponential approach. The maximum entropy approximation (see SBd) suggests to investigagéx) = exp x,
which providesG(x) = x. In this case]M can become non-invertible and the evolution is given by a system of
quasi-linear ODEs. We emphasize that this system doedescribe the evolution of the pseudo-texture coeffi-
cients in Bbhlke’s approach (Sed8).

Truncation. Sinceg is non-negative by definition, we can perform the truncalion- IK,,;, M — M, L-L,
without violating non-negativity.

f—fy = g(KM 'BM) >0 (87)
Certainly, there will be a truncation error due to employing a truncated system of evolution equations. However,

for an appropriate choice &f (and thery), an easier investigation of the related truncation error might be possible.
The following remarks apply to arbitragy(or G).

4.5 Quadratic Approximation

Among the recently introduced class of approximations, one strikes with particular simplicity: Chgosjng x>
(or G = 2), we obtain the evolution equation

K = F[K] (88)

(1=
|

/(Q®E)®B—B®(QXE)M (89)

o |
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where the matrid is exactly the skew part of the matrix in our approach (S&4d). This quadratic approximation
has been suggested kbyn Holff2(T983 in a different setting to solve an altogether different question. The
normalisation of the ODF implieB K || = 1 for any time, thugdK(t) differs from IK(0) merely by a rotation (in
accordance withi* being skew). This also applies to every subsystem emerging from the truncation procedure.
The potential is rewritten as a positive definite quadratic ford in

v = PX) (KeK) (90)

P(X) = / p(QTXQ)B(Q) ® B(Q)du ©1)

4.6 Bohlke’s Approach

An alternative approach based on a finite number of harmonic tensors and ensuring non-negativity of the approx-
imate ODF, has been investigated Biihike (2006. In order to circumvent the closure problem, he considers
a finite subvector of texture coefficieri&, (as we have done in our approach) and uses the maximum entropy
method (ayneqT9573, DayneqT9571), Bahike (2005, (unk ef-al) to approximaté in the integral on the right
hand side of EdZ8. This yields an exponential function ensuring the non-negativity of the pseudokQDBpon
replacing

f— kn = exp (Ky - Byp) (92)

the pseudo-texture coefficieriks,; are uniquely determined by the constraints

/ kv By dpe = Ty (93)

In the respective examples provided Biihike (2006, the approach allows for a good prediction of the texture
evolution even if the truncation order is as low as 6 or 8, i.e. only a small subvEgfds taken into account.
However, solving EqE3 for the auxiliary quantitied,; in every time increment is computationally demanding -

even for truncation orders as low as these. For the sake of completeness we note that there exists no closed system
of evolution equations foK,;, such adfy; (K, Ky, W, X) = 0.

5 Reduction of the Computing Time

Since this section is intended to be merely an outline of a forthcoming paper, we shall only sketch the facts that
help in reducing the computational costs. These facts also apply to the quadratic approximatichqSdeor
quick reference we restate our model

INT = LNH\/I [IM] (94)
LMM(W, X) = WX —4 éMM(X) (95)
X Syi(X) [y ] (96)
U= EM(X) 'IM (97)

where
A X)) = (A(Q,X) R By(Q)) ® By (Q) du(Q) (98)
Su(0) = [8(Q.X) 9 By(Q du(@) (99)
Py(X) = [plQTXQ)By(Q)du(Q) (100)

There are two types of computational costs associated with our approach: initial costs and permanent costs.

5.1 Permanent Costs

Due to the time discretisation in numerical simulations, the piecewise contin¥s0&-process is eventually re-
placed by a piecewise constant process which is in fact nothing but a sequence of monotonous subprocesses (or
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increments for brevity). The update Xf;, ¥ andT,,; along an increment gives rise to permanent costs.

Update. Given an incrementAt, W, X) and initial valuesT,(t), the task is to determin®&,,(t + At) by
virtue of Eq.B4 and then calculatX; (t + At) and ¥ (t + At) using Eq 8B and&d, respectively.

Analytic solution. The evolution equations form a system of linear ODEs. Thus, for any increment, there is
an analytical solution.

Ty (t + At) = exp (At LMM) [Ty (t)] (101)

Depending on the process, the increments can become arbitrarily large. By contrast, in the reference model the
increments are restricted by the problem of finding a solution to systems of non-linear equations.

The analytical solution (EdIII) involves the matrix exponential being applied to a vector. Usually, this can be
computed even more efficiently than the matrix exponential itself. For more information on computing the matrix
exponential we refer tMoler and van T 03 {2003.

5.2 Initial Costs

The initial costs emerge from determining the data base. For a given single crystal model (and truncation order),
the data base needs to be determined only once.

Data base. Obviously, the update requires to determing, (W, X), 8);(X) andPy;(X). The contribution

of WtoL, s trivial, thus we can considek,  (X) instead. If we had to evaluate these functions anew in
every increment via their definition in terms of integrals o$&?; (Eqs.98-T00), our approach would easily be
outperformed by the reference model. However, decomposing the vaKadtel invoking several symmetries of
the functions, we can reconstruct the function values forXnfyom a small data base of function evaluations.
This data base gives rise to the initial costs but reduces the permanent costs considerably.

Coaxial process.Within the aforementioned reconstruction, applying the rotaRo(obtained from the decom-
positionX = R X, RT) is by far the most time consuming operation. However, since we are interes¥d in
and¥ rather than in the auxiliary quantiti€g we can introduce a coaxial process and coaxial quantities and thus
circumvent this step. Again, this significantly reduces the permanent costs.

Zero elements. The first line of A is zero due to the normalisation of the ODF. The crystal symmetry renders
certain lower order elements B $ andA zero. Also, the number of non-zero texture coefficients - and thus the
size of the ODE system - is reduced considerably which, in turn, also reduces the permanent costs.

Depending onA andS, the integrands in Eq&3-TT0D are reasonably well approximated by polynomials in the
components of). ThenP andS are finite vectors, i.e. all elements are zero beyond some order related to the
polynomial order. Likewise, the matri& becomes a band matrix with the bandwidth related to that order. Of
course, these findings apply likewise to the subvediyssand$,, and the submatri&MM.

Independent components.The elements of?, $ and A are linear mappings from harmonic to harmonic ten-

sors (real numbers can be referred to as harmonic tensors of order zero). In addition, they are invariant under all
rotations that leav& invariant. This implies orthotropy for all elements of the data base. Once more this reduces
the number of independent components to be evaluated.

6 Example

Schmid’s law. Denoting slip direction and slip plane normal of slip systerby d, andn,, (in an undistorted
reference placement), respectively, we obtain antisymmetric and symmetric Schmid tAnsarglS,,, by virtue
of the additive decomposition

d,®n, =A,+ S, (102)
Sinced,, - n, = 0, we havetr S, = 0. The non-dimensional resolved shear stress on slip systisngiven by
TTI
Xq 1= QTQ -Sa (103)
7—C
and Schmid’s law can be written as
max | x, | <1 (104)
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Hutchinson'’s flow rule. As a regularisatiortHutchinsonT976 proposed a power law with a strain-rate sensitivity
parameter; > 0.

A = ) signx,|x.|?Aq (105)

S = ) signxa|xa|?Sa (106)
1

b= Gr el (107)

The largerq, the better is the approximation (of the shape) of Schmid’s yield surface by the isolines of the flow
potentialp

1 1

1 q+1 q+1
li o q+1 = li o q+1 — o 108
Jim <q+1 Ea | Xa | ) Jim (Ea | Xa | max | Xq | (108)

Uniaxial tensile test. We consider a polycrystal consisting of body-centred cubic (bcc) single crystals subject to
uniaxial tension (stress controlled process - Sachs model) and apply Hutchinson’s flow rule.
The crystal symmetry (cubic/octahedral, upper ind8xrenders several elements Bf 5, A andT zero (see
Sect.52), reducing the list of relevant independent base functions to (seeAdams et al (1992, Guidi ef al.
(T992), Bahlke (2004)

B® = (By,, By, Bg,, Bs,, By, , Bio,, Bia,, Bia,, . . .) (109)

which is why we do not consider truncation order 1, 2, 3, 5, 7 and 11. Starting from isotropy
Ty (0) = (1,0,...,0) (110)

and applying uniaxial tension (thus a transversely isotrdfievith zero spin,

T 2 1 1
X = :\/> e;jRe —-e®e—-e3@es (111)
Te 3 2 2

W = 0 (112)

all texture coefficients become transversely isotropic tensors. Being harmonic tensors at the same time, this renders
all odd order texture coefficients zero and all even order texture coefficients having only one independent compo-
nent. Here, we choose tfié. . . 1)-component. This discards (truncation) order 9 from further consideration.

Analytical solution to our approach. Making use of these reductions and introducing the non-dimensional time
v := 4o t, we end up with a small system of linear ODEs,

dT;
v *ZAU T;  T=(To,Ta, T, Ts, Tro) (113)
J

Evaluating the analytical solution

Ti(7) = > (exp(=y A))y T5(0)  T(0) = (1,0,...,0) (114)

is a matter of split seconds and negligible when compared to the reference model.

Numerical results. Within any of the figures, the predictions for the evolution of one texture coefficient of or-
derm based on different truncation ordévsare given. Clearly, if the truncation order is, say, 6, then there are
predictions for order 4 and 6 but not the evolution of the texture coefficients of order 8 and 10. The left (a) and right
(b) column contain the plots ¢ . . . 1)-components of the texture coefficients and their difference to the reference
model, AT := T — T*®, respectively. The non-dimensional tim¢horizontal axis) is related to the nominal strain

€ via )
e (20
gep(%) 1 (115)
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M line vy €

4 black dashed | 0.25 22.6%
6 black dotted 050 504%
8 black dot-dashed 0.75 84.5%
10 black solid 1.00 126.3%
R grey solid 0.849 100.0%

Herem andM denote the order of the texture coefficient and the truncation order, respectively.

In Fig. 2a and 3a, the black lines are almost indiscernible, i.e. the results for truncation orders 6, 8, 10 and 8, 10
coincide, respectively.

Ta Ala m=10. M=6
, 0.001
0.03 M=6.,8,10
et :4
~0.002
M=4 "
025 05 075 17
Fig.1la:(1,...,1)-component ofl'y, vs.~ Fig.1b:(1,...,1)-component oA Ty, vs.~
Te AT
0.09 M=6,8.10
0.002
025 05 075 17 025 05 075 17
Fig.2a:(1,...,1)-component ofl's, vs.~y Fig.2b:(1,...,1)-component oATg, vs. v
Tg ATy
0.007 025 05 075 17
M=8.10 " _0 0003 M=8
y M=10
025 05 075 1
Fig.3a:(1,...,1)-component ofl's, vs.~y Fig.3b:(1,...,1)-component oATg, vs.
Tio ATyo
M=10
0.001 0.00007 M=10
025 05 075 17 025 05 075 17

Fig.4a:(1,...,1)-component ofl';o, vs.~v Fig.4b:(1,...,1)-component oAT;q, vS. v
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Even for strains as large as 100%, the agreement between the reference model and our approach is quite convincing
for truncation orders as low as six. However, having chasen3, X; and¥ contain coefficients up to order eight.

Thus, onlyM > 8 providesst; = 0 (see Sect3).

Upon increasing the order, we expect the solutions to converge to those of the reference model. We find this as-
sumption all in all confirmed by the example (see Fig.1a-4b) , but we shall discuss this issue in more detail in a
forthcoming paper. Partly, deviations could be attributed to the initial values of higher order texture coefficients in
the reference model, which are most likely non-zero.

Saturation. It may appear as if the all texture coefficients are bound to increase infinitely. However, since the
first line of the matrixA and its submatrices is zero, they are singular and thus have at least one zero eigenvalue.
The corresponding eigenvectors give stationary solutions.

7 Generalisation to Arbitrary Base Functions

Apart from the Fourier expansion in terms of harmonic tensors that was key to our model of rigid perfectly
viscoplastic polycrystals, there are other sets of base functions, notably the generalised spherical harmonics (or
Wigner D-functions) (see, e.gHielscher et al(?0T0)). For some of these sets there already exist quite sophis-
ticated codes. Therefore, we shall generalise our approach to a complete but otherwise arbitrary set of square-
integrable base functions a$0;. Let SO3 be parametrised by three coordinates- (q!,q2,q®). The base
functions{b*} and dual base function$,, } fulfil

D b @bal(@) = d(a.d) (116)

[ @bs@dnta) = 5 (117)
The Fourier expansion and texture coefficients are given by

fla,t) = > *(t)ba(a) (118)

0 = [ a0 (@) (119)

Thus, using eq. 35 iBhhike (2008, the evolution of the coefficients is governed by (mind the implicit summation
overi)

I~ 4 @ ia.n ) (120)
= / la) f(q,t) du(q) (121)
ot |y,
_ ob* dq! 3
= / <3qi En q);f (t)bs(a)du(q) (122)
= > Lgf (123)
B
ab* dq’
R I aoi . bs(q) du(q) (124)

To obtain the time derivatives, we consider

Q2 = QQ°" (125)
9Q 9q' T
= % ol Q (126)
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and perform a double contraction of BB with the Levi-Civita tensoe. Introducing appropriate abbreviations,
this provides a linear system for the derivatives

c’;o{ v (127)
90
v = £[Q] (128)
vi = ¢ [gQi QT] (129)
q

For[v1, va, v3] # 0 this system has the unique solution

oa'|  _ [v, v v (130)

ot Qo [Vl,VQ,Vg]

where(i, j, k) is a cyclic permutation of (1,2,3). As expected in view of Bill. the matrixL. only depends oW

andX.

The focus of this work is on the evolution of the crystallographic texture and its influence on the stress strain-rate
relation. However, the procedure outlined in this section applies to an arbitrary choice of internal variables provided
(2) the locally homogeneous process and micro-scale constitutive equation ensure the existence of a motion and
(2) a complete set of base functions can be devised.

8 Summary

Summary. We have derived an alternative formulation of rigid perfectly viscoplastic polycrystals. The transition
from single to polycrystal model is unique in that no additional parameters are required. The numerical results
obtained hitherto agree well with the reference model but our approach reduces the computing time by several
orders of magnitude. Since it requires the same inpdtgndX) as the Sachs or Taylor model, it can be likewise
implemented in FE codes. Moreover, the evolution equations in terms of arbitrary base functions and for a class of
non-negative approximations have been derived.

Outlook. In forthcoming papers we shall (a) present details of the reduction of the computing time, (b) discuss
the convergence of solutions (truncation error vs. truncation order) more rigorously, (c) include examples based
on Taylor models for plane strain compression and simple shear deformation and (d) investigate the quadratic ap-
proximation in more detail.
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