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Modeling of Martensitic Transformations in Pure Iron by a Phase Field
Approach Using Information from Atomistic Simulation

R. Schmitt, B. Wang, H. M. Urbassek, R. Müller

A phase field approach for martensitic transformations is introduced. The parameters are determined due to results
from molecular dynamic simulations for pure iron. The continuum model is provided with the atomistic input data
to examine the evolution of microstructure in 2D, both under the influence of external load and for interface motion
through the transformation induced eigenstrain. Therefore, different configurations of the two phases are used. In
addition, the energy evolution of the system is studied in detail during the transformation process. The numerical
implementation of the model is performed with finite elements while an implicit time integration scheme is applied
for the transient terms.

1 Introduction

Iron is an example for an allotropic material. In this paper two allotrops are of interest. At room temperature and
ambient pressureα-iron is the stable phase. It has a body centered cubic (bcc) crystal structure. If the temperature
is increased, it transforms into theγ-iron, also called austenite. The austenitic crystal lattice consists of face cen-
tered cubic (fcc) elementary cells. The change from austenite toα-iron depends on the cooling rate. If the probe
is cooled slowly, the transformation is diffuse. For a sufficiently high cooling rate, a diffusionless transformation
from the fcc to the bcc phase takes place, which is known as martensitic transformation in iron (Sandoval et al.
(2009a)). The change of structure can be described by the Bain model (Bain (1924)) which defines a preexisting
bcc unit cell within two fcc cells (Figure 2). To attain the martensitic bcc cell, a distortion of the preexisting bcc cell
is necessary. The Bain model demonstrates that due to the crystallographic misfit an eigenstrain in the martensitic
phase exits, which is considered in the proposed model for martensitic transformations.

The continuum mechanical background of phase transformations in solids is given by Fischer et al. (1994). Con-
ventional models of phase transformations assume an infinitely sharp interface between the phases. Using this
approach, energetic considerations yield the driving forces on the interfaces (Cherkaoui and Berveiller (2000)).
However, tracking the interfaces can become difficult, so the numerical realization of this approach is cumber-
some. The phase field concept can be applied as an alternative. In mathematical terms it is a regularization of
a sharp interface approach: By the introduction of a scalar valued order parameter, which indicates the present
phase, the discontinuities are regularized so that the transition zone is diffuse. Based on Chen et al. (1992) and
Wang and Khachaturyan (1997) many phase field models on martensitic transformation have been developed, for
example Artemev et al. (2000), Jin et al. (2001), which are based on the fast Fourier transformation (FFT) for-
malism. Kundin et al. (2011) propose an FFT-based approach, too, in which additionally dislocation kinetics are
considered. Yamanaka et al. (2008) use a finite differences scheme to solve the field equations for an elastoplastic
phase field model. Also Bartel et al. (2011) focus on the interaction of plasticity with martensitic phase transfor-
mations, which is based on the concept of energy relaxation. For considering complicated boundary conditions
or complex material laws, the finite element method is more effective. In the context of phase field modeling of
the martensitic transformation it is for example applied by Levitas et al. (2009), Hildebrand and Miehe (2011)
or by Schmitt et al. (2013). Hildebrand and Miehe model two-variant martensitic laminates at large strains. The
two martensitic variants are both stable states of the system. The thermomechanical model proposed by Levitas
et al. (2009) considers stable and metastable phases of the martensitic transformation. However, the same elastic
compliance tensor is used for both phases so that the different elastic properties of the phases cannot be taken into
account.
Based on Schmitt et al. (2013), a finite element scheme is applied for the proposed phase field model for martensitic
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transformations. The elasticity tensor depends linearly on the order parameter so that the different elastic prop-
erties of the different phases can be taken into account. Furthermore, the model considers stable and metastable
phases. In this paper the parameters of the phase field model are chosen using the results from molecular dynamic
(MD) simulation for pure iron. With a MD simulation, data from the atomistic scale can be gained, which is
difficult to realize experimentally. On the other hand, length scales beyond100 nm and time scales beyond a few
ns are difficult to access in atomistic simulations. However, this is possible with the continuum phase field model
provided with atomistic data.
The parameters are initially identified by a MD simulation for pure iron for the temperatureT = 100 K. The
temperature can be taken into account by the parameters in the separation potential which are provided by MD
simulation. Then we verify the input data used forT = 1300 K.
Subsequently, we examine the evolution of the martensitic phase with the phase field model using the MD-
parameters. In this context, we study the impact of an external load applied on the interface velocity. Additionally,
the formation of the martensitic phase due to the transformation induced eigenstrain of a martensitic inclusion is
considered. Since the model is based on a minimization of the global total energy, we also take the energy evolution
during the martensitic transformation into account. Illustrative examples in 2D are studied. In these 2D problems
a plane strain state is assumed.

2 Phase Field Model

In the phase field approach the present phase is indicated by an order parameterci, which isci = 0 for the austenitic
phase andci = 1 for theith martensitic orientation variant. The model is based on minimization of the global free
energyF =

∫
V

ψ dV . The local energy density or phase field potentialψ is split up into the elastic energy density
W , the gradient energy densitiyψgrad and the separation potentialψsep(Schrade et al. (2007))

ψ(ε, ci,∇ci) = W (ε, ci) + ψgrad(∇ci) + ψsep(ci) (1)

with

ψsep =
G

L
f(ci), ψgrad =

1
2
GL||∇ci||

2. (2)

The gradient energy densityψgrad yields a diffuse transition zone between the phases. The width of this zone
is controlled by the constant parameterL. The parameterG is a measure for the characteristic interface energy
density. Note that these parameters appear in both equations (2).
The functionf(ci) in the separation potentialψsep in equation (2.1) is a Landau polynomial

f(ci) = 1 +
A

2

(
∑

i

c2
i

)

−
B

3

(
∑

i

c3
i

)

+
C

4

(
∑

i

c2
i

)2

(3)

On Figure 1,f(ci) is plotted fori = 2 martensitic orientation variants. It defines the stable and metastable states of
the system: The local minimum of value1 at (0, 0) corresponds to the metastable -at room temperature- austenitic
phase, the two absolute minima of value 0 at(1, 0) and(0, 1) correspond to the first and the second martensitic
orientation variant, respectively, which are the stable phases at room temperature. Thus, the energy landscape of
the separation potential ensures that in each point only one phase occurs. The coefficientsA, B andC in (3)
configure the shape off(ci) and therefore form the stable and metastable states of the system. These states of the
system change with temperature, soA, B andC are temperature-dependent coefficients.
The elastic energy density

W (ε, ci) =
1
2
[ε − ε0(ci)] : C(ci)[ε − ε0(ci)] (4)

is a function of the linearized strain tensorε. Furthermore,W considers the transformation-induced eigenstrain
ε0(ci) which arises due to the crystallographic misfit of the austenitic and the martensitic phases. The eigenstrain
tensorε0(ci) and the elasticity tensorC depend linearly on the order parametersci

ε0
ci

(ci) =
∑

i

ci ε0
i , C(ci) = Cfcc +

∑

i

ci(Cbcci − Cfcc). (5)

The eigenstrainε0
i of the martensitic phase is calculated according to the Bain model (Bain (1924)) which defines

a tetragonally distorted virtual bcc unit cell within two fcc unit cells (Figure 2). Taking the axes of the virtual bcc
unit cell in Figure 2 as coordinate system, an extension inx- andy-direction and a compression inz-direction
of the virtual bcc unit cell yield the martensitic crystal structure. For the 2D calulations we assume plane strain.
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Figure 1: Landau polynomial expansionf(ci) = f(c1, c2)

Figure 2: Orientational relationship between the unit cells of the fcc and the bcc phase

Considering the geometrical relations of Figure 2 in thex-z-plane withabcc
!
=

afcc√
2

in x-direction andabcc
!
= afcc

in z-direction results in the following eigenstrain tensor

ε0
1 =









abcc−
afcc√

2
afcc√

2

0

0
abcc− afcc

afcc









. (6)

A rotation of the coordinate system in Figure 2 about90◦ results in an eigenstrain tensor with the same entries,
however interchanged. In that way different martensitic orientation variants arise which need to be respected with
different eigenstrain tensorsε0

i .
To describe the formation of the microstructure, the order parameter is governed by a time-dependent Ginzburg-
Landau equation (TDGL), i.e. the temporal evolution of each order parametersċi is given by the variational
derivative of the phase field potentialψ with respect to the order parameterci

ċi = −M
δψ

δci
= −M

[
∂W

∂ci
+ G

(
1
L

∂f

∂ci
− LΔci

)]

. (7)

The mobility factorM is proportional toċi, thus it determines the kinetics of the microstructure evolution. The
second field equation, which the mechanical quantities have to satisfy is the balance of linear momentum. For
the paper at hand, inertia effects are neglected and the absence of volume forces is assumed, which yields the
equilibrium condition

divσ = 0. (8)
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In (8), σ is the Cauchy stress tensor for which the constitutive relation

σ =
∂ψ

∂ε
= C(ci)

(
ε − ε0(ci)

)
(9)

holds.
Equations (7) and (8) represent a non-linear time-dependent system of equations, coupled through the dependencies
on the order parameterci. This problem is solved by applying a finite element scheme.

3 Numerical Implementation

The phase field model is implemented into a finite element framework with the mechanical displacementsu and
the order parameterci as nodal degrees of freedom, wherei is the number of martensitic orientation variants
considered. Thus, for a 2D implementation the number of degrees of freedom isi + 2. With the test functionsηu

andηci
the weak forms of the field equations (7) and (8) is

∫

V

∇ηu : σ dV =
∫

∂Vt

ηut∗ dA. (10)

and ∫

V

ηci

ċi

M
dV −

∫

V

∇ηci qi dV +
∫

V

ηci

(
∂W

∂ci
+

G

L

∂f

∂ci

)

dV = −
∫

∂V

ηci qi
∗ dA, (11)

whereqi = −GL∇ci. The necessary boundary conditions are given byt∗ = σn for the stressesσ and by
q∗i = qi ∙ n = 0 for qi wheren is the outer normal vector to the volumeV .
For the 2D-plane strain problem ofu, ε andci, ∇ci are discretized with shape functionsNI for nodeI, where the
use of Voigt notation is denoted by an underbar(∙) and nodal quantities by the superimposed hat(̂∙)

u =
N∑

I=1

NI ûI , ε =
N∑

I=1

Bu
I ûI , (12)

ci =
N∑

I=1

NI ĉiI
, ∇ci =

N∑

I=1

Bci

I ĉiI
(13)

ċi =
N∑

I=1

NI
ˆ̇ciI (14)

with

Bu
I =




NI,x 0

0 NI,y

NI,y NI,x



 and Bci

I =

[
NI,x

NI,y

]

. (15)

These discretizations applied to the left hand sides of equations (10), (11) yield the nodal residuals as a function of

the nodal degrees of freedom̂dJ = (ûJ , ciJ
)T and the rateŝ̇dJ ,
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For the transient terms the Euler backward method is applied. The stiffness matrix is

KIJ =
∂RI

∂d̂J

=

[
Kuu

IJ Kuci

IJ

Kciu
IJ K

cicj

IJ

]

, (17)
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with the submatrices

Kuu
IJ = kuu

IJ (2 × 2) (18)

Kuci

IJ = [kuc1
IJ , ..., kuci

IJ ] (1 × i) (19)

Kciu
IJ =






kc1u
IJ
...

kciu
IJ




 (i × 1) (20)

K
cicj

IJ =




kc1c1

IJ ... kc1ci

IJ

... ... ...
k

cjc1

IJ ... k
cjcj

IJ



 (i × j) (21)

with j = (1, ..., i). (22)

The matrix entries can be calculated withσ̃ = (Cbcc− Cfcc)
(
ε − ε0(ci)

)
andσ0

i = C(ci)ε0
i as follows
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∫
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The damping matrix is given by

DIJ =
∂RI

∂
ˆ̇
dJ

=
∫

V




0 0 0
0 0 0
0 0 D

cicj

IJ



 dV (23)

with

D
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





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1
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I 0 ... 0

0
... 0

...
... 0

... 0

0 ... 0
1
M

N2
I












(i × j) (24)

with j = (1, ..., i). (25)

For the evaluation of the integrals Gauß quadrature is used. The equations are implemented into a finite element
scheme using a four node quadrilateral plane element with bilinear shape functions.

4 Parameters in Cooperation with MD-simulation

In this section the model parameters are chosen, based on MD simulation of pure iron. The MD parameters used
are determined as follows.

4.1 Atomistic Simulation Method

Atomistic simulation may be employed to study the energetics and dynamics of solid-state phase transitions; a
recent review is available which summarizes the state of the art for the iron system: Urbassek and Sandoval
(2012). For such studies, the interatomic interaction potentials have to be chosen with care. Engin et al. (2008)
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analyzed available potentials for iron and concluded that there are only few potentials which implement theα-γ
transition. Among these, in the class of embedded-atom method (EAM) potentials (Daw et al. (1993)), the Meyer-
Entel potential (Meyer and Entel (1998)) is able to describe the phase transition in Fe. It has several advantages:
The free enthalpies of the bcc- and the fcc-phase cross at a transition temperature predicting the bcc phase to
be stable above this temperature and the fcc phase to be stable below this temperature. Due to its simple EAM
form, the Meyer-Entel potential can be calculated sufficiently fast. This potential has been used successfully in
the past to study the phase transition in Fe. Bulk iron (Entel et al. (1998, 2000); Sandoval et al. (2009b)) was
investigated as well as Fe nanoclusters (Entel et al. (2004)) nanowires (Sandoval and Urbassek (2009a,b,c)), and
supported thin films (Kadau et al. (1999); Kadau and Entel (1999)). Finally, the dynamics of the Nishiyama-
Wassermann transformation was analyzed in detail for this potential (Sandoval and Urbassek (2009c); Sandoval
et al. (2009a)). We use classical (fully 3D) molecular-dynamics simulations to determine the properties of the
bcc and the fcc phase as well as that of a bcc/fcc interface. Details of the approach have been given in Wang
and Urbassek (2013). All calculations are performed with the open-source LAMMPS code (Sandia (1997-2012)).
The lattice constants of the pure phases are determined as follows. A crystallite is relaxed with periodic boundary
conditions; here, the pressureP is controlled to be zero by allowing the volume to change, while the temperature
is set to the desired temperatureT by a thermostat. After the equilibration, the simulation runs for 50 ps under
these conditions. We take the average of the lattice constant during these 50 ps as the estimate of the lattice
constant at this temperature. The elastic constants are also determined in these systems. After equilibration at zero
pressure, we put well-defined strains to the system by changing the length of the simulation box. By measuring
the resulting stress components, the elastic constants can be determined. Again, a temporal average allows us to
get rid of temperature-induced fluctuations. The calculation of the free-energy difference between the bcc and fcc
phase requires more effort. As described in detail in Engin et al. (2008), we implemented two schemes in order to
allow for a reliable calculation: the method of metric scaling as introduced in Miller and Reinhardt (2000) and the
method of thermodynamic integration (Mei and Davenport (1992); Frenkel and Smit (2002)). Both methods give
results in good agreement with each other. The calculation of the interface energy and velocity needs a biphasic
crystal. We construct an interface between a bcc crystal and a fcc crystal according to the Nishiyama-Wassermann
orientation relationship (Nishiyama (1934); Wassermann (1933)) as detailed in Sandoval et al. (2009a). Using
periodic boundary conditions at all boundaries of the system, we can calculate the specific phase boundary energy
E by

E =
Etotal − (EbccNbcc + EfccNfcc)

2A
, (26)

whereEtotal is the total potential energy of the simulation volume,A is the interface area,Nbcc is the number
of atoms, andEbcc the cohesive energy on the bcc side; analogously for the fcc side. The factor of2 in the
denominator takes into account that due to the periodic boundary conditions, there are effectively two interfaces in
the system. Note that this interface is under zero stress. For the determination of the interface velocity, we let the
system evolve freely (at constant temperature and pressure). The interface then spontaneously starts moving in the
direction normal to the interface such that the phase with the higher free energy shrinks. We average the speed of
the interface over time and thus determine the interface velocity.

4.2 Determination of the Parameters for the Phase Field Model

Based on the results of the atomistic simulations the parameters for the phase field model are chosen. Therefore
a single martensitic orientation variant (i = 1) is considered, so that in the following for the order parameterc is
used instead ofc1. With the atomic volumes given by MD for fcc and bcc for the temperaturesT = 100 K and
T = 1300 K, the lattice constants are calculated easily due to the cubic crystal structures of both phases. With the
lattice constants, the eigenstrain tensorsε0

1 for both temperatures are determined according to (6) with

ε0
1(T = 100 K) =

[
−0.2217 0.0

0.0 0.1007

]

(27)

ε0
1(T = 1300 K) =

[
−0.2063 0.0

0.0 0.1091

]

. (28)

Using the elastic constants of the fcc- and bcc-lattices resulting from MD simulations, effective Lamé parameters
are calculated in agreement with Pimpinelli and Villain (1998)

λ =
1
5
(C11 + 4C12 − 2C44), μ =

1
5
(C11 − C12 + 3C44) (29)
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which eventually yield the effective isotropic elasticity tensors for the austenitic and the martensitic phase, respec-
tively

C
fcc

=




221 880 149 840 0
149 840 221 880 0

0 0 36 030



 N
mm2

, C
bcc

=




292 700 106 250 0
106 250 292 700 0
0 0 93 220



 N
mm2

. (30)

The characteristic interface energy density is calculated atomistically according (26) (cf. Wang and Urbassek
(2013)):G = 0.96 J

m2 . This value is comparable to the energy densities used for other phase field models, e. g. in
Schrade et al. (2008). The transition zoneL = 10 nm is sufficiently small to resolve several finite elements.
The remaining parameters are the coefficientsA, B andC of the Landau polynomial (3) and the mobility parameter
M of the TDGL (7). To determine the coefficientsA, B andC, the energy per atom is calculated for the states the
atom occupies during the martensitic transformation with MD simulation. These data are plotted in Figure 3(a),

(a)T = 100 K (b) T = 1300 K

Figure 3: Energy barrier resulting from MD (black curve), Landau polynomialf(c) (grey curve)

(black curve) for the temperatureT = 100 K, with the order parameterc on thex-axis. The curve is normalized,
so that the ordinate-valuef = 1 for the local minimum. Thus, the black curve resulting from MD-simulations
corresponds to the Landau polynomial (3). To determine the coefficientsA, B andC, we apply a least-square
methode (grey curve in Figure 3(a)) and attainA = 6, B = 30 andC = 24 while B = 3A + 12 andC = 2A + 12
must be satisfied (Yamanaka et al. (2008)). These relations between the coefficients ensure the local minimum
at c = 0 and the global minimum atc = 1. For T = 100 K those extrema correspond to the metastable phase
austenite and the stable phase martensite, respectively.
Using these parameters a beam with a length of176.5 nm is simulated to determine the mobility parameterM .

The initial configuration can be seen in Figure 4(a): The left half of the beam is austenitic, depicted in black, the
right half martensitic, depicted in white; no external load is applied. Figure 3(a) indicates, that forT = 100 K,
austenite is the metastable phase and martensite the energetically more favourable stable phase. Concerning the en-
ergy of the initial configuration depicted in Figure 4(a), the martensitic phase has an eigenstrainε0 which increases
the elastic energy of the system while the austenitic phase has a contribution resulting from the separation potential
ψsep. Additionally, the interface between the phases contributes to the gradient energy densityψgrad. Hence, the
system minimizes the global total energy by shifting the interface between the phases to the left (Figure 4(c)) until
the beam is completely martensitic (Figure 4(e)). For a purely martensitic material, there is no contribution for the
gradient energy densitiyψgrad since there is no interface. Furthermore, the energy contribution of the separation
potentialψsep is zero because all points of the system are in the global minimum atc = 1.
The mobility parameterM in (7) is directly proportional to the time derivative of the order parameterċ, so thatM
determines the velocity of the evolution of the microstructure. During the transformation process, thex-coordinate
of the interface is tracked so that the interface velocity can be detected. In the next step, the mobility parameter
M is adapted until the interface velocityvif of the simulation is in accordance with the interface velocity given
by MD simulationvMD

if = 24.2 m
s . This is the case forM = 9.6 ∙ 106 mm2

N s which leads to the interface velocity
vif = 24.11 m

s .
This procedure is repeated for a temperatureT = 1300 K. The energy per atom during the martensitic transfor-
mation can be seen in Figure 3(b) (black curve). It indicates, that forT = 1300 K austenite is the stable and
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(a) t = 0 ns (b) t = 0 ns

(c) t = 1.26 ns (d) t = 1.26 ns

(e)t = 3.8 ns (f) t = 3.2 ns

Figure 4: interface motion for a two-phase beam, black: austenite, white: martensite
(a),(c),(e):T = 100 K, (b),(d),(f): T = 1300 K

martensite the metastable phase. Thus, the Landau polynomial has a global minimum is atc = 0 and the local
minimum atc = 1, so it becomes fori martensitic orientation variants

f(ci) =
A

2

(
∑

i

c2
i

)

−
B

3

(
∑

i

c3
i

)

+
C

4

(
∑

i

c2
i

)2

. (31)

For the grey curve in Figure 3(b), which results again from the least square method, this is ensured by the relations
B = 3A−12 andC = 21−12 for the coefficients in (31), which yieldsA = 15, B = 33 andC = 18. Using these
coefficients, the initial configuration shown in Fig 4(b) is employed: a beam with no external loads applied, on
the right side martensitic (depicted in white) and on the left austenitic (depicted in black). For this calculation, the
same mobility parameterM = 9.6 ∙ 106 mm2

N s than forT = 100 K is considered. The resulting interface velocity
for T = 1300 K is vif = 28.52 m

s . This value fits the velocity from MD simulationvMD
if = 26.0 m

s quite good.
We interpreted this as verification of the mobility constantM . As a result, for this simulation the mobility constant
M hardly depends on the temperatureT .

5 Numerical Simulation

For the following numerical simulations, the parameters derived in Section 4 for the temperatureT = 100 K are
used. We consider a single martensitic orientation variant (i = 1), so that the formation of a single phase can be
studied individually. A further martensitic orientation variant can be incorporated readily.

5.1 External Loads on a Two-phase Beam

In the first example the dependence of the interface velocityvif on an extenal load is studied. Therefore, again the
beam with the initial configuration of Section 4 is applied (Figure 4(a)/(b)) with martensite on the right side of the
beam (depicted in white) and austenite on the left (depicted in black). The material parameters derived in section
4 for T = 100 K are considered, thus, for the eigenstrainε0 (6) is taken into account. It corresponds to pressure in
horizontal direction and tension in vertical direction.

With this study, we noticed a correlation between the external load applied, the eigenstrainε0 and the interface
velocity vif . When the eigenstrainε0 is supported by applying pressureσa = −22.7 N

mm2 in horizontal direction
of the beam, the interface velocityvif = 26.12 m

s (Figure 5(a)) is higher than with no load applied (see above
vif = 24.11 m

s ). In analogy, applying tensionσa = 22.7 N
mm2 in horizontal direction, which works against the

eigenstrainε0, leads to a lower velocityvif = 22.35 m
s (Figure 5(c)). So, the interface velocityvif is affected by

external loads, depending on the eigenstrainε0.
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(a) t = 1.26 ns

(b) t = 1.26 ns

(c) t = 1.26 ns

Figure 5: Interface motion for a two-phase beam under external load, black: austenite, white: martensite

(a) t = 0 ns (b) t = 0.04 ns (c) t = 0.1 ns (d) t = 0.4 ns (e)t = 1.5 ns (f) t = 5.5 ns

Figure 6: Evolution of the martensitic phase for a martensitic inclusion (white)

5.2 Martensitic Inclusion in an Austenitic Matrix

With the following example the martensitic evolution is studied for a martensitic inclusion in an austenitic matrix
with an edge length of176.5 nm. The initial configuration can be seen in Figure 6(a), where the austenitic matrix
(c = 0) and the martensitic inclusion (c = 0.9) are depicted in black and white, respectively. No external loads are
applied so that the boundaries are stress free.

Regarding the energy of the system for the initial configuration, the martensitic inclusion increases due to its
eigenstrainε0 the global elastic energy

∫
V

WdV while the interface between the inclusion and the matrix increases
the gradient energy densityψgrad. Additionally, the points of the austenitic matrix (wherec = 0) contribute to the
separation potential. Initially, the global total energy

∫
V

ψdV is minimized by decreasing the elastic energy.
This could be done by degenerating the inclusion (Figure 6 (b)) which means reducing the eigenstrainε0 and
thus, decreases the elastic energy. However, this mechanism increases the separation potentialψsepsince the order
parameterc is getting smaller in the area of the inclusion. Figure 3 shows that in a point, where the order parameter
is decreasing starting fromc = 0.9, the area of the global minimum is left, so that the separation potentialψsep

increases. This can be seen in Figure 7, where the global separation energyEsep =
∫

V
= ψsepdV is plotted as a

function of simulation time. For the first few time steps the global separation energyEsep is increasing strongly.
Yet at a certain point, it becomes energetically more favorable for the system to decrease the separation energy
Esepinstead of the elastic energy. So, in the area of the inclusion the order parameterc increases again to reach the
global minimum of the separation potentialψsep at c = 1 (martensitic phase). Figure 6(c) shows the martensitic
phase starting to grow in diagonal direction. This direction coincides with crystallographic (geometrical) theories
(Wechsler et al. (1953)). The plate like shape of the martensitic phase, which can be observed in Figure 6(c) is in
agreement with theoretical studies of the martensitic transformation, e. g. in Yamanaka et al. (2008).
When the martensitic plate has grown completely through the matrix, it expands its width until the matrix is
completely martensitic (Figure 6(f)). For that configuration, all points of the system are in the global minimum
of the separation potentialψsep at c = 1. Since for the global minimumψsep = 0, the global separation energy
Esep = 0, too (see Figure 7).
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Figure 7: Global separation energy

6 Concluding Remarks

A phase field model for martensitic transformation is introduced. Initially, the model parameters are determined
by comparison with MD simulation for pure iron for a temperature of100 K. The parameters are verified for a
temperatureT = 1300 K, where the phase transformation in reverse direction led to the same result. By applying
atomistic data for the continuum modeling we are able to study the martensitic transformation on a scale, which
cannot be accessed by MD simulation.
Using the parameters gained in the first part for numerical simulations, an impact of external loads on the interface
velocity could be detected, depending on the eigenstrain of the martensitic phase. Additionally, we studied the for-
mation of the martensitic phase generated by a martensitic inclusion without external load applied. An accordance
with theoretical studies and crystallographic theories could be shown. Furthermore, we focused on the energy
evolution, which coincided with the growth of the martensitic phase.
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