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Comparison of Two Bulk Energy Approaches for the Phasefield Modeling
of Two-variant Martensitic Laminate Microstructure

F. E. Hildebrand, C. Miehe

The unusual thermomechanical properties of shape memory alloys are closely connected to the formation and
evolution of their microstructure. At lower temperatures, shape memory alloys typically consists of martensitic
laminates with coherent twin boundaries. We propose a large strain phasefield model for the formation and dis-
sipative evolution of such two-variant martensitic twinned laminate microstructures. Our model accounts for the
coherence-dependence of the interface energy density and contains a Ginzburg-Landau type evolution equation.
We introduce two conceptually different modeling approaches for the regularized bulk energy, i.e. external and
internal mixing. We construct a suitable gradient-extended incremental variational framework for the proposed
formulation and discretize it by use of finte elements. Finally, we demonstrate the modeling capabilities of our for-
mulation by means of two-dimensional finite element simulations of laminate formation in two-phasic martensitic
CuAlNi and compare the energetic modeling properties of the two proposed bulk energy approaches.

1 Introduction

In this work, we present a large strain phasefield model for two-variant martensitic laminate microstructure. Our
model accounts for the coherence-dependence of the surface energy of twin interfaces and employs an evolution
of generalized Ginzburg-Landau type. We consider two different approaches to the modeling of bulk energy and
compare their modeling capabilities by means of numerical examples.

Martensitic laminates in shape memory alloys such as NiTi or CuAlNi are microstructures that consist of different
variants of the martensitic crystal phase. They form sharp, coherent interfaces – so called twin boundaries – whose
motion is connected to displacive, diffusionless first-order solid to solid phase transformations. Generally, the
behavior of the different variants can be considered elastic and reversible, whereas the phase boundary motion and
hence the phase transformation is considered dissipative. See, e.g., James (1981), Bhattacharya (2003) and Abe-
yaratne and Knowles (2006), for an overview of crystallographic, energetic and kinetic aspects of shape memory
materials.

Due to their extraordinary properties, shape memory alloys are used in a number of technical applications, see e.g.
Duerig et al. (1990). A reliable modeling of the complex behavior of these materials is hence of great interest. A
number of macroscale models have been proposed, see e.g. Bertram (1982), Boyd and Lagoudas (1996), Qidwai
and Lagoudas (2000), Auricchio et al. (1997) or Helm and Haupt (2003). However, the predictive capabilities of
these models are often limited. To substantially improve the macroscale models for martensitic transformations, a
profound understanding of microstructural phenomena is indespensable. Such understanding can be gained by the
use of mesoscale models that resolve and predict the evolving spatial morphology of the microstructure based on
micromechanical modeling ingredients. Such ingredients are a coherence-dependent interface energy density, see
Murr (1975) and Porter and Easterling (1992) or kinetic relations, see e.g. Hildebrand and Abeyaratne (2008) for
related atomistic simulations and Faran and Shilo (2011) for related experimental observations.

Basis for such mesoscale models is the continuum-mechanical theory of sharp interfaces, see e.g. Abeyaratne
and Knowles (1990, 2006). Depending on the chosen description of the sharp interface topology, mesoscopic
continuum models for martensitic transformation fall into two categories: sharp interface approaches that model
the interfaces as real discontinuity surfaces and regularized sharp interface approaches that make use of a smooth
approximation of the discontinuities. Examples for sharp interface approaches are adaptive meshing strategies as
employed by Merkle and Rohde (2006), the level-set method as desribed in Hou et al. (1999) and the extended
finite element/level-set approach as used by Ji et al. (2002). All these approaches generally face great difficulties to
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describe complex microstructure. This inherent difficulty can be overcome by the use of regularized sharp interface
approaches which belong to the class of phasefield models. They are based on the approximation of the sharp
discontinuities between different phases by smooth transitions of suitable order parameters. Such regularizations of
the sharp interface theory are treated in a general continuum-thermodynamical context in Fried and Gurtin (1993)
and Fried and Grach (1997), where the sharp interface topology as well as the surface energy of the interface
are smeared out over a region proportional to a chosen regularization length scale. All such approaches go back
to the classical Ginzburg-Landau equation as described in Allen and Cahn (1979) or Gurtin (1996). A relation
between variational equilibrium phase field problems and the resulting variational sharp interface problems can be
established by the use ofΓ-convergence, see e.g. Modica (1987) and Alberti et al. (2005). For time-dependent
evolution problems, a similar relation can be established by an asymptotic analysis, see e.g. Fried and Gurtin
(1993) and Alber and Zhu (2008).

Extensive work on the phasefield modeling of martensitic transformations has been carried out in the past. E.g. Ras-
mussen et al. (2001) and Jacobs et al. (2003) use certain strain components as order parameters in a small strain
context. Levitas et al. (2010) and Artemev et al. (2002) also use a small strain setting but employ the volume frac-
tions of the different phases as order parameters. The main drawback of these approaches is the use of small strains
in the context of a phasefield description of martensitic transformations. This causes two basic problems: (i) small
strains are not suited to describe the relatively large rotations connected with the formation of twin interfaces and
(ii) coherence-dependence can be properly modeled by the use of anisotropy only in the reference configuration in
a large strain setting. An example for a large strain phasefield model is Levitas et al. (2009). However, this work is
not a regularized sharp interface model in the meaning introduced here as it does not approximate sharp topologies
by enforcing phase separation but allows for regions of phase mixture away from the interface.

In this work, we outline a phasefield model for the analysis of the formation and time-dependent evolution of
martensitic laminate microstructure. We put a specific emphasis on the modeling of the regularized bulk energy,
where we compare two different modeling approaches: The external mixing as employed, e.g., by Fried and Grach
(1997) and an alternative internal mixing approach. We comment on advantages and drawbacks with respect to
energetic conciseness and driving force modeling. The proposed regularized sharp interface approach is then shown
to be capable of predicting the characteristic formation of twinned laminate microstructure in CuAlNi as observed
experimentally, e.g., by Abeyaratne et al. (1996). Section 3 introduces the underlying sharp interface problem
for a two-variant martensitic material. Section 4 explains the geometrically motivated approach to the regularized
description of sharp topologies, allowing the statement of an analogous regularized problem in Section 5. Our
models for the interface energy and two possible bulk energy approaches are treated in Section 6 and the dissipative
evolution of the phasefield is considered in Section 7. The model is embedded in a suitable gradient-extended time-
discrete incremental variational formulation in Section 8 and spatially discretized in Section 9. Finally, numerical
results are presented in Section 10 that underline the importance of a coherence-dependent interface energy and
show the advantages of one of the bulk energy approaches when requiring energetic conciseness.

2 Basic Properties of Martensitic CuAlNi

Shape memory alloys can consist of (at least) two different crystal structures: At high temperatures, they form the
high symmetry austenite, and at lower temperatures (or under appropriate loading) crystallographically equivalent
variants of the low symmetry martensite. Here, we consider the alloy CuAlNi that exhibits a cubic austenitic and
an orthorhombic martensitic phase. Specifically, we will treat mixtures of two of the six orthorhombic martensitic
variants of this shape memory alloy. These variants are characterized by the use of two Bain tensors that describe
the martensitic variants as deformations with respect to the cubic austenitic reference configuration

U1 =






α+γ
2

α−γ
2 0

α−γ
2

α+γ
2 0

0 0 β




 and U2 =






α+γ
2

γ−α
2 0

γ−α
2

α+γ
2 0

0 0 β




 , (1)

with parametersα = 1.0619, β = 0.9178 andγ = 1.0231, see Ostsuka and Shimizu (1974). The stability of the
martenistic variants implies that the individual free energies of the variantsψ1(F ) andψ2(F ) have minima atU1

andU2, respectively, leading to the requirements

ψ1(RU1) ≤ ψ1(F ) ∀R ∈ SO(3), ∀F∈ R3×3
+ and ψ2(RU2) ≤ ψ2(F ) ∀R ∈ SO(3), ∀F∈ R3×3

+ , (2)

whereR3×3
+ is the set of all second order tensors with positive determinant. Crystal symmetry relations further
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Figure 1:The martensitic transformation of CuAlNi. a) The cubic austenite lattice (black) and b) one variant of
the orthorhombic martensite lattice (light grey). The medium grey cell is shown in both cases for comparison.

imply equal energy of the martenisitc variants

ψ1(RU1) = ψ2(R̃U2) ∀R, R̃ ∈ SO(3) . (3)

In certain situations, this can lead to a coexistence of the variants, which then usually form a twinned laminate
microstructure with coherent sharp interfaces. The two variants1 and2 can form such a kinematically compatible
low energy interface if

∃Q, a, mo s.t. QU1 − U2 = a ⊗ mo , (4)

wheremo is the reference normal of the resulting (sharp) twin boundary. In other words, out of all reference
interface normalsm, the normalmo is the one that allows the connection of the two bulk-energy-minimizing
deformation statesU1 andU2 by a coherent and hence low energy interface. Equation (4) is referred to as the
twinning equation and generally has two solutions, see Ball and James (1987). ForU1 andU2 as specified in (1),
the two solutions of (4) are

Q1 =






2αγ
α2+γ2

α2−γ2

α2+γ2 0

−α2−γ2

α2+γ2
2αγ

α2+γ2

0 0 1




 , a1 = −

α2 − γ2

α2 + γ2






α − γ

α + γ

0




 , m1

o =






1

0

0




 , (5)

Q2 =






2αγ
α2+γ2 −α2−γ2

α2+γ2 0
α2−γ2

α2+γ2
2αγ

α2+γ2

0 0 1




 , a2 = −

α2 − γ2

α2 + γ2






α + γ

α − γ

0




 , m2

o =






0

1

0




 . (6)

see, e.g., Abeyaratne et al. (1996). In the following, when it is not essential to specify the particular solution being
used, we shall simply writeQ, a andmo.

3 Sharp Interface Boundary Value Problem

As a basis for our considerations, we briefly summarize the continuum mechanical description of sharp interfaces
as in twinned martensitic laminates. We consider a body with reference configurationB containing the material
pointsX ∈ B. B consists of two subdomainsB1 andB2 occupied by variant1 and variant2, respectively. The
two subdomains are separated by the sharp interfaceΓ with reference normalm, such thatB1 ∪ Γ ∪ B2 = B and

Γ

P ∙ n = tN

n

ϕ

ϕ = ϕD

γo

X ∈ B

B1 B2

m

vΓ

Figure 2:Sharp interface formulation of the phase transformation problem in terms of the deformation mapϕ.
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Figure 3:Sharp and regularized interface topologies. a) The sharp interface surfaceΓ separatesB into B1 and
B2. b) The regularized surfaceΓl(p) is a functional of the phasefieldp and smears outΓ over2l.

B1 ∩ B2 = ∅. The deformation of the body is described by the deformation mapϕ that maps referential points
X onto spatial pointsϕ(X) = x ∈ S that form the current configurationS of the body and by the deformation
gradientF = ∇ϕ. Furthermore, we assume that the body is subject to the referential body forceγ and that the
boundary∂B can be decomposed into a Dirichlet part∂Bϕ, where the deformation is prescribed asϕD, and a von
Neumann part∂Bt = ∂B \ ∂Bϕ where a traction is prescribed astN , see Figure 2. Assuming quasistatic loading
(such that the rate of phase transformation is much larger than the rate of loading) and isothermal conditions, we
can write down the resulting sharp interface boundary value problem for a given interfaceΓ as

Div
(
∂Fψ1

)
+ γ = 0 in B1 (7)

Div
(
∂Fψ2

)
+ γ = 0 in B2 (8)

∂Fψ1 ∙ n − tN = 0 on∂Bt ∩ ∂B1 (9)

∂Fψ2 ∙ n − tN = 0 on∂Bt ∩ ∂B2 (10)

ϕ − ϕD = 0 on∂Bϕ (11)

JF K ∙ s = 0 onΓ , ∀s ⊥ m (12)

whereJ∙K is the jump across the interface and where we have assumed that the two variants are hyperelastic mate-
rials with constitutive relations for the first Piola-Kirchhoff stress of the formP 1 = ∂Fψ1 andP 2 = ∂Fψ2 that
require the constitutive prescription of the free energy density functionsψ1(F ) andψ2(F ). Note that alternatively,
one can also prescribe a single energyψ(F ) with two wells corresponding to the minimaU1 andU2.

If we further assume that the body is capable of undergoing phase transformations between variant1 and2 such that
Γ can change its position in the reference configuration wherevΓ(X) denotes the referential interface propagation
velocity, then we also have to prescribe a kinetic relation of the form

V = V (fΓ) , V = vΓ ∙ m , (13)

wherefΓ is the sharp interface driving force defined in terms of the jump operatorJ∙K by

fΓ = m ∙ Jψ1 − (∂Fψ)T
F K ∙ m − 2gΓκm , (14)

wheregΓ is the constant interface energy density per unit area andκm is the mean curvature of the interface. Note
that the quantity inside the jump brackets is the energy momentum tensor introduced by Eshelby (1956). For a
more general treatment of the driving force also for the non-isothermal case (but without interface energy), see,
e.g., Abeyaratne and Knowles (1990). Note that both the description of the time-dependent topology ofΓ as well
as the enforcement of the jump condition (12) can be very demanding in numerical simulations.

4 Smooth Phasefield Approximation of Sharp Interfaces

To circumvent the direct and often very complex description of the sharp interfaceΓ that separates the constituents
of the martensitic laminate, we approximate its topology by use of a smoothphasefieldp(X) ∈ [0, 1], see Figure 3,
and thereby conceptually follow a recent work on regularized fracture, see Miehe et al. (2010). We associatep = 0
with variant1 andp = 1 with variant2. Assuming we are given a plane sharp interface with normalm that passes
through the origin, we can use the function

p(X) =
1
2

[

tanh

(
X ∙ m

l

)

+ 1

]

(15)
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Figure 4:Sharp and regularized interface modeling by use of an order parameterp: a) A sharp interface atX = 0
leads to a jump inp(X). b) The interface can be regularized by introduction of a regularization length scalel.

to smear out this sharp interface over the length2l, see Figure 4. Note that functions of the type (15) are solutions
of the elliptic partial differential equation

l2Δp − 4 p (1 − p) (1 − 2p) = 0 , (16)

under appropriate boundary conditions. We can further state a related variational principle as the weak form of
(16), namely

p(X) = arg

{

inf
p ∈ W

Γl(p)

}

, (17)

where the interface surface functionalΓl(p) is defined in terms of the interface surface densityγl(p,∇p) by

Γl(p) =
∫

B
γl(p,∇p) dV with γl(p,∇p) =

6
l
p2(1 − p)2 +

3l

2
|∇p|2 . (18)

Again, solutions of the type (15) will be the solutions of (17) under appropriate boundary conditions. The func-
tionalΓl(p) as defined in (18) has the very nice property that it approximates the interface surface areaSurf(Γ) in
the limit of l → 0, i.e.

inf
p∈W

{

lim
l→0

Γl(p)

}

= Surf(Γ) , (19)

see, e.g., Alberti et al. (2005) for a related consideration employingΓ-convergence.

5 Smooth Interface Boundary Value Problem

Having introduced the order parameterp, we can restate the sharp interface boundary value problem. Assuming we
are given a sufficiently smooth functionp(X) that approximates the given sharp interfaceΓ as outlined in Section
4, we can write

Div
(
∂Fψ

)
+ γ = 0 in B , (20)

∂Fψ ∙ n − tN = 0 on∂Bt , (21)

ϕ − ϕD = 0 on∂Bϕ , (22)

where we have again assumed a hyperelastic material with a constitutive relation of the formP = ∂Fψ that
requires the constitutive prescription of an energyψ(F , p,∇p) accounting both for bulk and interface effects that
recoversP 1 = ∂Fψ for p = 0 andP 2 = ∂Fψ for p = 1.

∇p ∙ n = 0

Γl(p)

2l

P ∙ n = tN

nn

pϕ

ϕ = ϕD p = pD

γo

X ∈ BX ∈ B

B1

B2

Figure 5:Regularized interface formulation of the problem in terms of the deformation mapϕ and the phasefieldp.
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If we further assume that the body is capable of undergoing phase transformations between variants1 and2, then
we also have to prescribe a suitable evolution equation forp, leading to the initial boundary value problem

ṗ − ṗ(f) = 0 in B , (23)

p(t = 0) − p0 = 0 in B , (24)

∂∇pψ ∙ n = 0 on∂B \ ∂Bp , (25)

p − pD = 0 on∂Bp , (26)

whereBp is the phasefield Dirichlet boundary and wheref is the smooth interface driving force usually defined
asf = −δψ(F , p,∇p), see section 7. Note that the introduction of the phasefieldp has simplified the structure
of the problem by removing the discontinuities at the cost of an additional field for the approximate description of
the sharp topologies.

6 Energy Storage

The energy storage in martensitic laminates consists of two basic contributions:interface energyandbulk energy.
The concise separation of these quantities is essential, e.g., for the prediction of size effects, where the two contri-
butions compete. Inspired by, e.g., Fried and Grach (1997), we consequently model the stored energy functional
Ψ as a sum of the interface energy functionalΨΓ and the bulk energy functionalΨB. Specifically, we write

Ψ(p) = ΨΓ(p) + ΨB(ϕ, p) , (27)

where the individual energy functionals are defined by

Ψ(ϕ, p) =
∫

B
ψ(F , p,∇p) dV , ΨB(ϕ, p) =

∫

B
ψB(F , p) dV , ΨΓ(p) =

∫

B
ψΓ(p,∇p) dV . (28)

Localization leads to an additive split of the energy density functions

ψ(F , p,∇p) = ψB(F , p) + ψΓ(p,∇p) . (29)

In the following, we will specify an interface energy density and propose two conceptually different approaches to
the modeling of the mixed bulk energy.

6.1 Interface Energy

Starting from (18) and (19), the construction of acoherence-independentinterface energy is straight forward.
Introducing the interface energy density per unit areagΓ = const., we can immediately write

ΨΓ(p) = gΓ Surf(Γ) ≈ gΓ Γl(p) ⇔
∫

B
ψΓ(p,∇p) dV =

∫

B
gΓ γl(p,∇p) dV . (30)

From (30) we can identify thecoherence-independentinterface energy density as

ψΓ(p,∇p) = gΓ γl(p,∇p) = gΓ

{
6
l
p2(1 − p)2 +

3l

2
|∇p|2

}

. (31)

As the interface energy in martensitic laminates is highlycoherence-dependent, i.e. as the interface energy is
much lower for coherent than for incoherent interfaces, see Murr (1975) and Porter and Easterling (1992), we
now modify (31) suitably in order to energetically punish incoherent interfaces. Conceptually following Fried and
Grach (1997), we suggest acoherence-dependentinterface energy density of the form

ψΓ(p,∇p) = ĝΓ

{
6
l

p2(1 − p)2 +
3l

2
∇p [1 + λ (1 − mo ⊗ mo)]∇p

}

, (32)

where forλ > 0, deviations of the interface normalm = ∇p/|∇p| from the coherent normalmo defined in (4)
are energetically punished, and whereĝΓ is the interface energy density per unit area of a coherent interface.
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6.2 Pure Phase Bulk Energies

As a starting point for the two presented approaches to the constitutive modeling of the regularized mixed bulk
energy densityψB(F , p), we first specify the bulk energy densities of the pure variantsψ1(F ) andψ2(F ) as
introduced in Section 4. A simple approach that satisfies the constraints (2) and (3) is to use an isotropic (poly-
convex) free energy density function with a single well atF = 1 and to shift its minimum toRU1 andR̃U2,
R, R̃ ∈ SO(3), respectively. Here, we make use of the Neo-Hookean free energy function

ψ̂(F ) =
μ̂

2

[
tr(F T F ) − 3

]
+

μ̂

β̂

[
det(F )−β̂ − 1

]
, (33)

whereμ̂ andβ̂ are material parameters. Shifting of the wells leads to the two bulk energy densities

ψ1(F ) = ψ̂(FU−1
1 RT ) and ψ2(F ) = ψ̂(FU−1

2 R̃
T
) , R, R̃ ∈ SO(3) . (34)

Note that the shifts of the isotropic function̂ψ(F ) by RU1 andR̃U2 induce an anisotropy inψ1(F ) andψ2(F )
that is consistent with the crystal symmetry of the variants. Because of our association ofp = 0 with variant1 and
of p = 1 with variant2, we now have to ensure thatψB(F , p) fulfills the requirements

ψB(F , p = 0) = ψ1(F ) ⇒ ψB(F , p = 0) = ψ̂(FU−1
1 RT ) , R ∈ SO(3) ,

ψB(F , p = 1) = ψ2(F ) ⇒ ψB(F , p = 1) = ψ̂(FU−1
2 R̃

T
) , R̃ ∈ SO(3) (35)

We will now consider two possible formulations that satisfy (35), and consider their further implications.

6.3 Externally Mixed Bulk Energy

One possible approach to the constitutive modeling of the regularized mixed bulk energy density is to mix the two
free energiesψ1(F ) andψ2(F ) externally, leading to

ψe
B(F , p) = (1 − h(p)) ψ1(F ) + h(p) ψ2(F ) , (36)

whereh(p) is a ramping function with the propertiesh(p = 0) = 0 andh(p = 1) = 1 (and possiblyh′(p = 0) =
h′(p = 1) = 0), see, e.g., Fried and Grach (1997). With the simple and intuitive choice ofh(p) = p we obtain the
regularizedexternally mixedbulk energy densityψe

B(F , p) as

ψe
B(F , p) = (1 − p) ψ1(F ) + p ψ2(F ) . (37)

We can also express this in terms of the Neo-Hookean free energy functionψ̂

ψe
B(F , p) = (1 − p) ψ̂(FU−1

1 ) + p ψ̂(FU−1
2 ) . (38)

Note thatψe
B(F , p) can become negative, even thoughψ̂(F ) is strictly positive. Insertion ofp = 0 andp = 1 into

(38) immediately yields (35) withR = R̃ = 1.

6.4 Internally Mixed Bulk Energy

Another approach to the constitutive modeling of the regularized mixed bulk energy density is to mix the two free
energy densitiesψ1(F ) andψ2(F ) internally, i.e. to write the mixed free energy density as

ψi
B(F , p) = ψ̂

(
FŪ

−1
(p)
)

(39)

and to parametrizēU(p) in such a manner that

Ū(p = 0) = RU1 and Ū(p = 1) = R̃U2 with R, R̃ ∈ SO(3) . (40)

Even though the straight forward choice ofŪ(p) would be

Ū(p) = (1 − p) U1 + p U2 , (41)
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we choose a parametrization along the rank-one connection betweenU1 andU2, leading to

Ū(p) = (1 − p) QU1 + p U2 = QU1 − p a ⊗ mo , (42)

whereQ, a andmo are solutions of the twinning equation (3). The choice (42) is motivated by the fact that inter-
faces connectingU1 andU2 constitute rank-one connections. With (42), we can write the regularizedinternally
mixedbulk energy densityψi

B(F , p) in terms of the Neo-Hookean free energy densityψ̂ as

ψi
B(F , p) = ψ̂

(
F [(1 − p) QU1 + p U2]

−1 ) = ψ̂
(
F [QU1 − p a ⊗ mo]

−1 )
. (43)

Note thatψi
B(F , p) cannot become negative aŝψ(F ) is strictly positive. Insertion ofp = 0 andp = 1 into (43)

yields (35) withR = Q andR̃ = 1 .

7 Dissipative Phasefield Evolution

Having specified the interface and bulk contributions to the energy densityψ(F , p,∇p), we can now move on to
prescribe the evolution of our internal variablep. This evolution is subject to a thermodynamic constraint, namely
the dissipation inequality.

7.1 Dissipation Inequality

Sinceψ(F , p,∇p) contains the gradient∇p, we start by evaluating the global dissipation inequality

D =
∫

B
δ dV =

∫

B

[
P : Ḟ − ψ̇(F , p,∇p)

]
dV ≥ 0 . (44)

and (obtaining the relationP = ∂Fψ) reduce it to the local statement

δ = − δpψ ṗ = − [∂pψ − Div (∂∇pψ)] ṗ ≥ 0 , (45)

whereδpψ is the variational or functional derivative ofψ with respect top. Often, one introduces the driving force
f and rewrites the dissipation inequality (45) as

δ = f ṗ ≥ 0 with f = − δpψ . (46)

Equation (46) is the thermodynamic constraint on the evolution equation forp given byṗ(f).

7.2 Resulting Driving Forces

The additive decomposition of the energy densityψ into an interfacial partψΓ and a bulk partψB also allows an
additive decomposition of the driving forcef as defined in (46)

f = fΓ + fB , fΓ = − δpψΓ , fB = − ∂pψB . (47)

With the definition (32) ofψΓ, the interfacial partfΓ of the driving force follows as

fΓ

(
p,∇p

)
= ĝΓ

[

3l Div
([

1 + λ (1 − mo ⊗ mo)
]
∇p
)
−

12
l

p (1 − p)(1 − 2p)

]

. (48)

For coherent interfaces with interface normals∇p/|∇p| = mo, equation (48) simplifies to

fΓ

(
p,∇p = |∇p|mo

)
=

3ĝΓ

l

[

l2 Δp − 4p (1 − p)(1 − 2p)

]

. (49)

Finally, from comparison of (49) with (16) we see thatfΓ as derived in (48) vanishes forp(X) of the form (15)
with coherent interface normalm = mo, i.e.

p(X) =
1
2

[

tanh

(
X ∙ mo

l

)

+ 1

]

⇒ fΓ

(
p,∇p

)
= 0 . (50)
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We can hence interpretfΓ as a driving force counteracting any deviations from the hyperbolic tangent shape and
the coherent directionmo. Furthermore, the LaplacianΔp in fΓ is related to the curvature part specified in (14).

Having analyzed the interface energy driving forcefΓ, we now turn to the evaluation and interpretation of the bulk
energy driving forcefB. Obviously,fB depends on the choice of the bulk energy densityψB, for which we have
specified the two alternative definitionsψe

B andψi
B. The bulk energy driving forcefe

B resulting from theexternally
mixed bulk energy densityψe

B as given in (38) is

fe
B

(
F , p

)
= − ∂pψ

e
B

(
F , p

)
= ψ̂(FU−1

2 ) − ψ̂(FU−1
1 ) = ψ2(F ) − ψ1(F ) = JψK . (51)

We thus observe thatexternal mixingof the energies leads to a driving force proportional to theenergy jumpi.e.
the energy part of the energy momentum tensor, see (14). The bulk energy driving forcef i

B resulting from the
internally mixed bulk energy densityψi

B as defined in (39) is given by

f i
B

(
F , p

)
= − δpψ

i
B

(
F , p

)
= −∂Ū ψ̂

(
FŪ

−1
(p)
)

: ∂p

(
Ū(p)

)
. (52)

With the definition (42) ofŪ(p), equation (52) can be simplified to

f i
B

(
F , p

)
= mo

(
P T F

)
Ū

−1
a . (53)

From (53) we observe thatinternal mixingof the energies leads to a driving force that is connected to the momen-
tum partP T F of the energy momentum tensor, see (14). Note that in contrast to (14), bothP andF undergo a
smooth transition in the interface region and are hence dependent onp.

7.3 Evolution Equation and Dissipation Potential

To complete our phasefield modeling of martensitic laminate microstructure, we now have to prescribe an evolution
equationṗ(f) that satisfies the thermodynamic constraint (46). The simplest possibility to do so is to prescribe a
linear relation betweeṅp andf , i.e.

ṗ =
1
η

f ⇒ δ = ṗf =
1
η

f2 ≥ 0 , (54)

whereη > 0 is a viscosity parameter. This simple viscous evolution equation is a generalized Ginzburg-Landau
equation of the form

ṗ = −δpψ , (55)

see e.g. Gurtin (1996). An alternative way of specifying the evolution equation ofp is to introduce a dissipation
potentialφ(ṗ) and to demand

∂ṗφ = f ⇒ δ = ṗf = ∂ṗφ ṗ ≥ 0 . (56)

It is easily seen from (56) that evolution equations of this kind are generally thermodynamically compatible if
φ(ṗ) is (i) convex inṗ, (ii) zero at the origin and (iii) always non-negative. This includes also functions with non-
differentiable points, for which the definition∂ṗφ has to be generalized to subgradients and for which the evolution
equation is rewritten as

∂ṗφ − f ∈ 0 ⇔ δṗφ + δpψ ∈ 0 . (57)

The Ginzburg-Landau evolution equation (54) can be easily expressed in the form of (57) by choosing

φ(ṗ) =
η

2
ṗ2 . (58)

Note that even though (54) and (57) together with (58) specify a linear relation betweenṗ andf , this does not
induce a linear relation between the normal velocityV of a moving phase boundary and the driving forcef .

8 Incremental Variational Framework

To express the proposed phasefield model in a variational framework, we employ a gradient-extended incremental
variational formulation, as outlined in Miehe (2010). To this end we introduce a time-discrete potential functional
Πτ given by

Πτ (ϕ, p; ϕn, pn) =
∫

B
[πτ (F , p,∇p) − γ ∙ (ϕ − ϕn)] dV −

∫

∂Bt

tN ∙ (ϕ − ϕn) dA , (59)
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where we callπτ the incremental internal work densitywhich we define by

πτ (F , p,∇p; F n, pn,∇pn) = ψB(F , p) + ψΓ(p,∇p) − ψ(F n, pn,∇pn) + τφ
(
[p − pn] /τ

)
, (60)

whereτ = tn+1 − tn is the finite step size and where all quantities without the subscriptn denote quantities at
tn+1. ϕ andp at tn+1 are then determined by the incremental minimization principle

{ϕ, p} = arg

{

inf
ϕ,p∈W

Πτ (ϕ, p; ϕn, pn)

}

, (61)

whereW is the set of admissible solutions

W =
{
{ϕ, p} | ϕ = ϕD on∂Bϕ and p = pD on∂Bp

}
. (62)

With the choice (58) for the dissipation potentialφ, the time-discrete Euler equations of (61) follow as

Div
(
∂Fψ

)
+ γ = 0 in B , (63)

∂Fψ ∙ n = tN on∂Bt , (64)

η(p − pn) +
[
∂pψ − Div

(
∂∇pψ

)]
= 0 in B , (65)

∂∇pψ ∙ n = 0 on∂B \ ∂Bp . (66)

We identify equation (63) as the balance of linear momentum forϕ specified in (20), equation (64) as the Neumann
traction boundary condition forϕ specified in (21), equation (65) as the time-discrete implicit algorithmic version
of the evolution equation ofp specified in (23) and equation (66) as the Neumann (zero) boundary condition forp
as specified in (25). Furthermore, we see that (62) ensures the Dirichlet conditions (22) and (26).

9 Finite Element Discretization

To numerically solve the smooth boundary value problem specified in Section 5, we spatially discretize the time-
discrete weak form (59) by use of the finite element method. Here, we restrict ourselves to domainsB ∈ Rd = 2
and consequently alsoϕ ∈ Rd = 2. We approximate the domainB by the union ofEh finite elementsBh

e with
Nh global nodes, whereh denotes the typical mesh size

B ≈
Eh
⋃

e=1

Bh
e . (67)

On an individual finite elemente with ne nodes, we approximate the deformationϕ and the phasefieldp by use of
the shape functionsNe

I (X) as

ϕh(X) =
ne
∑

I=1

[
Ne

I 0 0
0 Ne

I 0

]

de
I = N e

ϕde , (68)

ph(X) =
ne
∑

I=1

[
0 0 Ne

I

]
de

I = N e
pd

e , (69)

wherede
I = [ϕ1, ϕ2, p]T is the vector containing thed + 1 degrees of freedom at nodeI in elemente andde =

[
de T

1 , ..., de T
ne

]T
contains the collection of allne(d + 1) degrees of freedoms of thene nodes of elemente.

Similarly, the deformation gradientF is approximated by

F h(X) = ∇ϕh(X) =







ϕh
1,1

ϕh
2,2

ϕh
1,2

ϕh
2,1





 =

ne
∑

I=1







Ne
I,1 0 0
0 Ne

I,2 0
Ne

I,2 0 0
0 Ne

I,1 0





de

I = Be
ϕde , (70)

and the approximation of the phasefield gradient∇p follows as

∇ph(X) =

[
ph

,1

ph
,2

]

=
ne
∑

I=1

[
0 0 Ne

I,1

0 0 Ne
I,2

]

de
I = Be

pd
e . (71)
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Finally, we relate theEh element vectorsde to the vectord containing theNh(d + 1) global degrees of freedom
by use of the finite element topology matrixAe

de = Aed . (72)

We can now expressϕ, p, F and∇p in terms ofd and hence rewrite the time-discrete potentialΠτ (ϕ, p; ϕn, pn)
in a time-space discrete form asΠh(d; dn). This allows us to restate the time-discrete variational principle (61) in
time-space-discrete form, i.e.

d = arg

{

inf
d

Πh(d; dn)

}

, (73)

wheredn is the solution at time steptn. Equation (73) can be solved by use of a Newton-Raphson type iteration
leading to the update equation

d ⇐ d − [ Πh
,dd ]−1[Πh

,d] . (74)

Here we use bilinear quadrilateral finite elements for the discretization of both deformationϕ and phasefieldp.

10 Numerical Results

In this Section, we demonstrate the capability of our phasefield model to predict the formation of martensitic
laminate microstructure in two dimensions by means of finite element simulations. Specifically, we analyze the
influence of the incoherence-dependence and the choice of the bulk energy on the formation of microstructure.
Finally, we investigate the energetics of laminates with increasing fineness.

10.1 Boundary Value Problem

All subsequent simulations are based on the following boundary value problem: Given is a bodyB consisting of
the two orthorhombic martensitic variants1 and2 of CuAlNi. The Bain tensors of the two variants are given by
U1 andU2, see (1). Recalling equation (2) we know thatU1 andU2 can form kinematically compatible twin
interfaces, i.e. there existQ, a andmo such that

QU1 − U2 = a ⊗ mo . (75)

The boundary of the body∂B is now deformed by

ϕ(X) = F ξX on ∂B, F ξ = (1 − ξ)QU1 + ξU2, ξ ∈ [0, 1] , (76)

i.e. by a deformation gradient lying on the rank-one connection betweenQU1 andU2. Chipot and Kinderlehrer
(1988) have shown that under the assumption that coherent interfaces have no interface energy, the described
boundary value problem is solved by an infinitely fine laminate of variants1 and2 with twin boundary normals
mo satisfying (2) and with volume fractions1 − ξ andξ, respectively, see Figure 6.

To solve a boundary value problem of the presented kind for a material with coherence-dependent interface energy,
we specify the domain

B = {X |X ∈ [0, L] × [0, H ]} , (77)

whereL = 1.0×10−7m andH = 5.0×10−8m and apply the boundary conditions specified in (76) withξ = 1/2.
We discretize this domain by400×200 bilinear quadrilateral elements, leading to a mesh size ofh ≈ 2.5×10−10m.

QU1

U2

(1 − ξ)M

ξM

mo

B∂B

Figure 6:A boundary value problem of the type considered by Chipot and Kinderlehrer (1988): The boundary∂B
of a domainB is deformed byϕ(X) = F ξX whereF ξ lies on the rank-one connection betweenQU1 andU2.
In the absence of interface energy, analytical solutions are given by infinitely fine laminates ofQU1 andU2 with
volume fractionsξ and(1 − ξ) and laminate thicknessM .
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p0.0 1.0

Figure 7: Evolution of an initially random phasefield distributionp(x) in a domain under boundary conditions
(76) for acoherence-independentinterface energy densityψΓ (λ = 0). a) – d) show snapshots of the evolution
for an externally mixedbulk energy densityψe

B, whereas e) – h) illustrate the evolution for theinternally mixed
bulk energy densityψi

B.

10.2 Material Parameters

bulk shear modulus μ̂ = 7.0 × 109 N/m2

bulk exponent β̂ = 2.0

coherent interface energy densitŷgΓ = 21.0 mJ/m2

interface incoherence sensitivity λ = 0.0 / 1.0 × 102

viscosity η = 1.0 × 10−5 Nms

regularization length l = 7.5 × 10−10 m

Table 1:Material Parameters for Martensitic CuAlNi

Table 1 summarizes the material parameters used in the simulations.μ̂ andβ̂ are chosen to lie in a realistic range
for copper. Note in this context that the effective stiffness at the martensitic wells is modified by the shift with
U−1

1 andU−1
2 . For the coherent twin interface energy densityĝΓ we use the value given in Murr (1975) for the

interface surface energy density of a coherent twin interface in copper, see also Porter and Easterling (1992). The
associated incoherence penalty parameterλ = 100.0 is not based on any experimental data. Its influence on the
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a)

b)

c)

d)

e)
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p0.0 1.0

Figure 8: Evolution of an initially random phasefield distributionp(x) in a domain under boundary conditions
(76) for acoherence-dependentinterface energy densityψΓ (λ = 100.0). a) – d) show snapshots of the evolution
for an externally mixedbulk energy densityψe

B, whereas e) – h) illustrate the evolution for theinternally mixed
bulk energy densityψi

B.

shape of needles etc. will have to be further investigated. The value of the viscosity is chosen such that it guarantees
convergence for the employed time step size and has no physical interpretation. Finally, the regularization lengthl
is chosen to be both on a physically realistically small length scale and withl ≈ 3h also large enough to guarantee
a sufficiently small discretization of the gradients in the interface region. For all simulations, we usemo = m1

o as
specified in (5).

10.3 Influence of Incoherence Penalty

In our first set of numerical experiments, we investigate both the influence of the incoherence penalty parameter
λ as introduced in (32) as well as the influence of the choice of the bulk energy densityψB on the formation
of microstructure. To this end, we carry out four simulations with identical random initial conditionsp(X, t =
0) ∈ [0, 1]: Two simulations without coherence-dependence, i.e.λ = 0.0: (i) with the externally mixed bulk
energy densityψB = ψe

B , see Figure 7a–d and (ii) with the internally mixed bulk energy densityψB = ψi
B, see

Figure 7e–h. Furthermore, we carry out two simulations with coherence-dependence, i.e.λ = 100.0: (iii) with the
externally mixed bulk energy densityψB = ψe

B, see Figure 8a–d and (iv) with the internally mixed bulk energy
densityψB = ψi

B, see Figure 8e–h. All simulations are carried out with a time step ofΔt = 0.001s.
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Figure 9: Dependence of thecoherence-dependentinterface energyΨΓ (λ = 100.0), theexternally mixedbulk
energyΨe

B and the total energyΨ = ΨΓ + Ψe
B of a body under boundary conditions (76) on the number of layers

of martensitic twinsN . Note thatΨe
B 9 0 for N → ∞ in disagreement with Chipot and Kinderlehrer (1988).
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Figure 10: Dependence of thecoherence-dependentinterface energyΨΓ (λ = 100.0), theinternally mixedbulk
energyΨi

B and the total energyΨ = ΨΓ + Ψi
B of a body under boundary conditions (76) on the number of layers

of martensitic twinsN . Note thatΨi
B → 0 for N → ∞ as shown by Chipot and Kinderlehrer (1988).

As can be seen by comparing the columns of Figures 7 as well as 8, the choice of the bulk energy densityψB

has no drastic influence on the resulting microstructure. The most obvious difference is the slower evolution for
ψB = ψi

B that possibly stems from the different definition of the driving force. It should be noted that in contrast
to the external mixing, for the choiceψB = ψi

B, the phasefieldp does not take on values outside the admissible
range[0, 1].

In contrast to the choice of the bulk energy, a comparison of Figures 7 and 8 shows that the value of the incoherence
penalty parameterλ has a drastic influence on the resulting microstructure. A value ofλ = 0.0 leads to the
formation of initial microstructure that resembles the microstructure in diffusive transformations more than that of
martensitic phase changes, see Figure 7. Towards the end of the simulation withλ = 0.0, the interfaces start to
orient themselves towards the two solutionsm1

o andm2
o of the twinning equation as given in 5 but do not form the

characteristic laminate microstructure. On the other hand, an incoherence penalty value ofλ = 100.0 leads to the
initial formation of the typical needle shaped domains of the different variants that then traverse the body to form
characteristic martensitic laminates with coherent interfaces, see Figure 8.

In summary, we see from the simulations that the use of a coherence-dependent interface energy is required to
suitably predict the formation of martensitic laminate microstructure. The choice of the bulk energy influences the
rate of evolution but seems to have no effect on the form of the resulting microstructure.
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Figure 11:Comparison of phasefield and energy density distributions forexternally mixed( a)–c) ) bulk energy
ψe
B and internally mixed ( d)–f) ) bulk energyψi

B. a) and d) show the phasefield distributionsp(x) of an equi-
librated initial configuration with six layers. b) and e) show the distributions of the interface energy density
ψΓ(x)/1000N/m and c) and f) show the distributions of the interface energy densityψB(x)/1000N/m.

10.4 Energetics of Laminate Length Scales

As observed in the first set of experiments, the choice of the bulk energyψB had almost no effect on the resulting
microstructure. We now want to investigate the effect of the choice of the bulk energy on the energetic modeling of
the two approaches. To do so, we carry out an additional series of simulations. The idea is to identify the specific
laminate length scale that minimizes the total energyΨ of the laminate for the given sample size, and to better
understand the competition between interface energyΨΓ and bulk energyΨB for differently fine laminates. To this
end, we prescribe smooth representations of laminates withN ∈ 0, ..., 12 laminate pairs of thicknessM = L/N
each as initial conditions. We compute the evolution ofp with a time step ofΔt = 0.01s until equilibrium is
reached, and then calculate the total energyΨ as well as the interface energyΨΓ and the bulk energyΨB. We carry
out this simulation both forψB = ψe

B andψB = ψi
B. Figure 9 shows the resulting plot for the choice ofψB = ψe

B.
As expected,ΨΓ linearly increases with an increasing number of interfaces, i.e.ΨΓ ∝ N . The bulk energyψB first
decreases, but then increases again. Note that hence the bulk energyψB = ψe

B does not vanish for an infinitely fine
laminateN → ∞. This is not in agreement with the analytical results of Chipot and Kinderlehrer (1988). Figure
10 shows the resulting plots ofΨ(N),ΨΓ(N) andΨB(N) for the choiceψB = ψi

B. Again,ΨΓ linearly increases
with an increasing number of interfaces, i.e.ΨΓ ∝ N as expected. Furthermore, in contrast to the external mixing,
the choice ofψB = ψi

B leads to a proportionality ofΨB ∝ 1/N such thatψi
B → 0 for N → ∞. This is now in

agreement with the analytical results of Chipot and Kinderlehrer (1988).

The reason for the inconsistent energetics of the choiceψB = ψe
B can be understood by looking at the equilibrium

distributions of bulk and interface energy density for the two approaches. Figure 11 compares the distributions
of ψΓ(x) and ψB(x). Obviously, the externally mixed bulk energy densityψe

B leads to artefact bulk energy
contributions in the interface region. This is due to the fact thatψe

B is only zero forF = RU1 andF = RU2

for R ∈ SO(3) and hence does not allow any bulk energy free deformation states connecting the two minimaU1

andU2. However, a bulk energy free connection of the minima is necessary to prevent bulk energy contributions
in the interface region. Such a connection is facilitated by the internally mixed bulk energy densityψe

B that allows
bulk energy free deformation states on the rank one connection betweenU1 andU2 parametrized by (42).
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In summary, we see from the simulations that even though both choices of bulk energy lead to qualitatively similar
microstructures, only the the choiceψB = ψi

B allows an energetically concise modeling of two-variant martensitic
shape memory alloys. This energetically concise modeling is the prerequisite for the prediction e.g. of size effects.
Altogether, we thus see that a proper phasefield modeling of martensitic laminate microstructure is only possible
if a coherence-dependent interface energy is used together with an internally mixed bulk energy.

11 Conclusion

In this work, we have presented a large strain phasefield model for two-variant martensitic laminate microstruc-
ture. Our model accounts for the coherence-dependence of the surface energy of twin interfaces and employs an
evolution of generalized Ginzburg-Landau type. We have considered two different approaches to the modeling
of bulk energy: external and internal mixing. Our considerations and simulations show that both driving forces
are connected to the energy momentum tensor: the driving force resulting from external mixing is linked to the
energy part and the driving force resulting from internal mixing is linked to the momentum part. Together with
the coherence-dependent interface energy, both bulk energy approaches are capable of predicting the formation of
martensitic laminate microstructure. However, further investigations show that in contrast to the internal mixing
approach, the external mixing approach is energetically not fully concise and does not allow for the reproduction of
analytical results related to the vanishing of bulk energy for infinitely fine laminates. This inconsistency is caused
by the fact that the external mixing causes bulk energy contributions in the interface region.
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