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Computational Homogenization of Piezoelectric Materials using FE2 to
determine Configurational Forces

M. Khalaquzzaman, B.-X. Xu, S. Ricker, R. Müller

Due to the growing interest in determining the macroscopic material response of inhomogeneous materials, com-
putational methods are becoming increasingly concerned with the application of homogenization techniques. In
this work, two-scale classical (first-order) homogenization of electro-mechanically coupled problems using a FE2-
approach is discussed. We explicitly formulate the homogenized coefficients of the elastic, piezoelectric and dielec-
tric tensors for small strain as well as the homogenized remanent strain and remanent polarization. The homoge-
nization of the coupled problem is done using different representative volume elements (RVEs), which capture the
microstructure of the inhomogeneous material, to represent the macro material response. Later this technique is
used to determine the macroscopic and microscopic configurational forces on certain defects.

1 Introduction

The purpose of this work is to investigate the effects of the micro inhomogeneities of piezoelectric materials to
the configurational force on macro level. Special attention is given on the configurational forces at certain defect
situations. These defect situations include the configurational force at a sharp crack tip. To fulfill the task, one needs
to deal with three broad fields of mechanics: electro-mechanically coupled piezoelectric material; computational
homogenization of piezoelectric material; and configurational force theory. Piezoelectric material is widely used in
sensing and actuation devices. This material is highly inhomogeneous on the micro level due to different domains
of polarization, domain walls, grains, grain boundaries, micro cracks, etc. Inhomogeneities of the material on
different scales are illustrated in Figure 1. For a detailed description of piezoelectric materials, readers are referred
to the text books by Xu (1991) and Qin (2001).

It is rather difficult to accurately capture the macroscopic material responses only with pre-assumed overall con-
stitutive relations. To have the overall macro material response of microscopically inhomogeneous material, we
need to use some kind of homogenization techniques. There are several homogenization or multiscale techniques,
e.g., asymptotic homogenization, semi-analytical homogenization, computational homogenization (FE2 based or
Fourier transformation based homogenization), see Kanouté et al. (2009). The first two homogenization methods
are only applicable to simple microstructure, while the computational homogenization technique is suitable for
more complex micro domain. To have a comprehensive overview on overall properties of heterogeneous materials,
see for instance the paper by Hill (1972) and the textbook by Nemat-Nasser and Hori (1993). A comprehensive
survey on homogenization techniques can also be found in Kanouté et al. (2009). Homogenization of piezoelectric
materials based on FE2-approach can be found in Schröder (2009), Schröder and Keip (2010, 2011). To capture
the effect of the micro inhomogeneities on the configurational force on macro level, one also needs to homog-
enize the Eshelby stress tensor. Several approaches for large deformation problem are proposed in Ricker et al.
(2010). As large deformation are not present in piezoelectric materials, we used the averaging technique for small
deformations to get the homogenized Eshelby stress tensor.

Eshelby (1951) introduced the concept of the energy-momentum tensor in continuum mechanics of solids, although
at that time Eshelby did not use the term energy-momentum tensor, but preferred the expression Maxwell-tensor
of elasticity. The term energy-momentum tensor was introduced later, see Eshelby (1970). Configurational forces,
which can be interpreted as the energy changes in the system, are a convenient tool to investigate inhomogeneities
or fracture of solids. Further, this physical quantity was also used in refinement of finite element meshing in Müller
and Maugin (2002), Müller et al. (2002) and Braun (1997). To get a more detailed idea on configurational forces,
readers are referred to Maugin (1993), Maugin (2010), Kienzler and Herrmann (2000), Gurtin (1995) and Gurtin
(2000). The nodal configurational forces represent the defect driving forces, e.g., the configurational force at a
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crack tip corresponds to theJ-integral proposed by Rice (1968). Thus, the magnitude of the configurational crack
tip force yields a criterion whether a crack propagates.

polycrystal domains atomic

Figure 1:Illustration of piezoelectric materials on different scales

2 Theory of Piezoelectric Material

2.1 Field Equations

We consider a piezoelectric bodyB which contains domain walls and domains. The normalnS to a domain wallS
points from the sub-bodyB− intoB+, for details see Figure 2. Neglecting the inertia term the Cauchy stress tensor
σ fulfills the mechanical equilibrium condition. The mechanical equilibrium has the form

div σ + f = 0 in B,
JσKnS = 0 on S,

(1)

in the bulk considering the volume forcef and on the domain wall, respectively.

The operatorJ(∙)K in (1) is the jump operator. The mechanical problem must be supplemented with suitable
boundary conditions. Prescribing either the displacementsu∗ on the boundary∂Bu or the tractiont∗ on the
boundary∂Bt, one has

u = u∗ on ∂Bu,
σn = t∗ on ∂Bt.

(2)

The electric displacement vectorD satisfies the electro-static relation (Gauss law). In the presence of the volume
chargesq, the field equations in the bulk and on the domain wall are

div D + q = 0 in B,
JDK∙nS = 0 on S,

(3)

respectively. One can prescribe either the electric potentialϕ∗ or the surface chargeQ∗ on the boundary,

ϕ = ϕ∗ on ∂Bϕ,
D ∙ n = −Q∗ on ∂BQ.

(4)
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Figure 2:Body containing a domain wall

The kinematic relations in the bulk and on the domain wall are given by

ε =
1
2

(
gradu + (gradu)T

)
in B,

JuK = 0 on S,
(5)

where the linearized strain tensorε is the symmetric part of the displacement gradient. The second relation indi-
cates a continuous displacement across the domain wall. Thus, no separation, sliding, or interpenetration of the
domains is allowed, see also Leo and Sekerka (1989). For the electric part, we need the following relations of the
electric fieldE and electric potentialϕ,

E = −gradϕ in B,
JϕK = 0 on S.

(6)

The electric fieldE is defined as the negative gradient of the electric potentialϕ. Across the domain wall, a
continuous electric potential is assumed. All the field equations mentioned above are applicable for a boundary
value problem (BVP) of the piezoelectric material on micro level. In case of a macro BVP all field equations
except for the equations with jump operator should be taken into account, since we assume that the piezoelectric
material is macroscopically homogeneous.

2.2 Piezoelectric Constitutive Law

To complete the field equations in the previous sections, constitutive relations, which bridge the Cauchy stress
tensorσ, the electric displacement vectorD and the strain tensorε, the electric fieldE, are needed. The material
response of a ferroelectric ceramics under small electric or mechanical loading may be described by a linear
piezoelectric constitutive law. One can write the electric enthalpy function as a thermodynamical potential,

H(ε,E) =
1
2
(ε − ε0):

[
C(ε − ε0)

]
− (ε − ε0):(bT E)

−
1
2
E∙(AE) − P0 ∙E (7)

which comprises of an elastic, a coupling and an electric part. In the electric enthalpy function,C is the fourth order
elastic tensor,b the third order piezoelectric tensor,A the second order dielectric tensor,ε0 the remanent strain,
andP0 the remanent polarization. Taking the partial derivative with respect toε and the negative of the partial
derivative with respect toE, one obtains expressions for the Cauchy stress tensorσ and the electric displacement
D,

σ =
∂H

∂ε
= C(ε − ε0) − bT E, (8)

D = −
∂H

∂E
= b(ε − ε0) + AE + P0, (9)
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2.3 Configurational Forces for Piezoelectric Materials

The theory of configurational forces, which are also known as material forces, gives an adequate tool for inves-
tigating the material behaviour with various kinds of material defects. The credit of making the introduction and
calculating the configurational forces goes to the work of Eshelby in the early fifties of the 20th century. Config-
urational forces are interpreted as energy changes of the system. It is widely used in fracture mechanics and in
phase transformations. For the derivation of the configuration force balance, we start from the gradient ofH in
(7). Making use of the mechanical balance law, kinematics, electrostatic, and the definition of electric field, the
gradient ofH leads to the balance of configurational force

div Σ + g = 0, (10)

whereΣ is the electromechanical Eshelby stress tensor

Σ = H 1 − (gradu)T σ − gradϕ ⊗ D

andg is the volume configurational force, expressed as

g = σ: gradε0 − (gradu)T f + (gradϕ)q −
∂H

∂x

∣
∣
∣
∣
expl.

(11)

for electro-mechanically coupled problem. The notation expl. in (11) stands for the explicit derivative of the
electric enthalpyH with respect to the positionx. Readers are referred to Maugin (2010), Kienzler and Herrmann
(2000), Müller et al. (2006) and Schrade et al. (2007) for a detailed derivation of the electromechanical Eshelby
stress tensor and the volume configurational force of piezoelectric material.

Finite element methods can be used to determine the nodal configurational forces in the discrete computational
domain. The weak form of (10) is ∫

Ω

(div Σ + g) ∙ η dΩ = 0, (12)

whereη is a test function. After integration by parts,
∫

Ω

(−Σ: gradη + g ∙ η) dΩ +
∫

∂Ω

Σn ∙ η dΓ = 0, (13)

wheren is the normal vector on the boundary. Discretizing the volume integral in (13) by finite elementsΩe and
determiningΣ at each Gauss point of the element, one can obtain the nodal configurational force at nodeI as

GI =

n∗
el⋃

e = 1

∫

Ωe

Σ gradN I dΩ, (14)

wheren∗
el is the total number of adjacent elements to nodeI andN I is the corresponding shape function. It is

possible to determine the nodal configurational forces without solving the balance equation of configurational force
(10). Solving the standard balance equations and computing the required quantities, one can compute the Eshelby
stress tensor. By using this Eshelby stress tensor in equation (14), one can estimate the nodal configurational
forces.

3 Homogenization of Piezoelectric Material

In this section we will briefly describe the homogenization technique of the mechanical and electrical quantities
and the material parameters of piezoelectric materials. Among the homogenization techniques, the FE2 based
homogenization is computationally efficient. FE2 based homogenization is a two-scale homogenization, in which
two boundary value problems are solved: one on the macro level and the other on the micro level. On the macro
level no constitutive law is prescribed, but a boundary value problem on the micro level is used to determine the
homogenized material response. To have representative numerical results on the macro level or to capture the
effect of micro inhomogeneities on the macro problem, it is necessary to attach a micro domain to each macro
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Gauss point. This micro domain should contain enough microstructural features of the material; therefore, it is
usually called representative volume element (RVE), see Figure 3. To prescribe the relevant admissible boundary
conditions for the RVEs, one needs to pass at each Gauss point either the macro displacement gradient and the
macro electric field, or the macro stress tensor and the macro electric displacement down to the micro level. With
the help of these boundary conditions, one solves the micro boundary value problem and determines the remaining
quantities such as average stress tensor and electric displacement, or average displacement gradient and electric
field, respectively. These averaged quantities are passed back to the macro level as the material response.

Gauss points

Micro level  

Macro element

Figure 3: Macro-micro transition

In the present paper, the macro or averaged quantities are denoted by the symbols with over bar and the micro
quantities by the non-marked symbols. In the absence of the body forces, volume charges and holes on the micro
level, the transition between the macro and the micro quantities is given as

ε =
1
V

∫

∂Bmic

sym(u ⊗ n) dΓ, σ =
1
V

∫

∂Bmic

sym(t ⊗ x) dΓ, (15)

E = −
1
V

∫

∂Bmic

ϕn dΓ, and D = −
1
V

∫

∂Bmic

Qx dΓ. (16)

To have a comprehensive proof of the connection between the macro and the micro quantities, readers are referred
to Schröder (2009).

3.1 Determination of the Admissible Boundary Conditions for Micro BVP Problem

To have a consistent transition between the macro and micro quantities, it is required to satisfy one kind of energy
criterion which is so called the Hill-Mandel condition. As the piezoelectric material is an electro-mechanically
coupled material, it has two parts in the Hill-Mandel condition. The mechanical and the electrical parts of Hill-
Mandel condition are

σ:ε̇ =
1
V

∫

Bmic

σ:ε̇ dΩ and D ∙ Ė =
1
V

∫

Bmic

D ∙ Ė dΩ, (17)

respectively. The Hill-Mandel condition for coupled problem assumes that the power of the mechanical and electri-
cal contributions on macro level are equivalent to the volume average of the power of the mechanical and electrical
contributions on micro level. By introducingP1 andP2, the Hill-Mandel conditions (17) can be reformulated

P1 =
1
V

∫

Bmic

σ:ε̇ dΩ − σ:ε̇ = 0 and P2 =
1
V

∫

Bmic

D ∙ Ė dΩ − D ∙ Ė = 0. (18)

By the Gauss formula, the volume integrals in (18) can be transformed to the surface or boundary integrals. Taking
the mechanical part as an example,

σ:ε̇ =
1
V

∫

Bmic

σ:ε̇ dΩ =
1
V

∫

∂Bmic

t ∙ u̇ dΓ. (19)
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Adding and subtracting the termσ:ε̇ to the right hand side (RHS) of the first equation in (18) and using (19),P1

can be rewritten as

P1 =
1
V

∫

∂Bmic

t ∙u̇ dΓ − σ:ε̇ − σ:ε̇ + σ:ε̇. (20)

Using the definitions of the average quantities or the boundary integral on the micro level, the mechanical power
on macro levelσ:ε̇ can be expressed in three different ways as

σ:ε̇ = σ:
1
V

∫

∂Bmic

sym[u̇ ⊗ n]dΓ =
1
V

∫

∂Bmic

(σn) ∙ u̇dΓ,

σ:ε̇ = σ: ˙gradu

=
1
V

∫

∂Bmic

sym[t ⊗ x] dΓ: ˙gradu =
1
V

∫

∂Bmic

t ∙( ˙gradu x) dΓ,

σ:ε̇ = σ: ˙gradu

= (σ
1
V

∫

∂Bmic

n ⊗ x dΓ): ˙gradu =
1
V

∫

∂Bmic

(σn) ∙( ˙gradu x) dΓ






. (21)

Inserting the different expressions ofσ:ε̇ into the right hand side of (20) and doing some mathematical manipula-
tions, we get

P1 =
1
V

∫

∂Bmic

[
t∙u̇ − (σn) ∙u̇ − t ∙( ˙gradu x) + (σn) ∙( ˙gradu x)

]
dΓ (22)

=
1
V

∫

∂Bmic

((t − σn) ∙ (u̇ − ˙gradu x)) dΓ. (23)

As P1 = 0, one of the two terms of the multiplication under the boundary integral in (23) must be zero. Thus
from equation (23) two types of mechanical boundary conditions for the micro boundary value problem (BVP) are
deduced

t = σn or u̇ = ˙gradu x on ∂Bmic. (24)

Another possible mechanical boundary condition for the micro scale problem is called periodic boundary condition.
This boundary condition allows a fluctuation ofu, i.e.

u̇ = ˙gradu x + ˙̃w ⇒ gradu̇ = ˙gradu + grad ˙̃w, (25)

wherew̃ denotes the fluctuation of displacement field at micro scale away from homogeneous termgradu x.
Suppose that the boundary of the representative volume element∂Bmic can be divided into two parts: one positive
boundary∂B+

mic and one negative boundary∂B−
mic, whose normal vectors are related inn+ = −n−. With the

assumption in (25), the equation (23) can be transformed to

P1 =
1
V

∫

∂Bmic

(t − σn) ∙ ( ˙̃w) dΓ (26)

=
1
V







∫

∂B+
mic

(t+ − σn+) ∙ ˙̃w
+

dΓ +
∫

∂B−
mic

(t− − σn−) ∙ ˙̃w
−

dΓ





 . (27)

By further assuming equal fluctuation of the displacement field on the opposite boundaries of theBmic, i.e.,w̃+ =
w̃−, the equation (27) can be simplified to

P1 =
1
V







∫

∂B+
mic

t+ ∙ ˙̃w
+

dΓ +
∫

∂B−
mic

t− ∙ ˙̃w
−

dΓ





 . (28)
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To fulfill the Hill-Mandel conditionP1 = 0 in equation (28), it follows thatt+ = −t−. So we can write the
mechanical periodic boundary condition for theBmic as

˙̃w
+

= ˙̃w
−

and t+ = −t− on the oposite faces of∂Bmic. (29)

Similarly, by using the electrical part of the Hill-Mandel condition, three boundary conditions for electrical balance
equation can be determined, i.e. the Dirichlet b.c.

ϕ̇ = −Ė∙x (30)

or the periodic b.c.

ϕ̇ = −Ė∙x + ˙̃ω
˙̃ω
+

= ˙̃ω
−

Q+ = −Q−

(31)

or Neumann b.c.
Q = −D∙n. (32)

For explicit derivation of the boundary conditions of the electrical part, see Schröder (2009).

3.2 Homogenized Material Moduli

For simplicity the formulation of the homogenized material parameters are described in detail only for the dis-
placement boundary condition or the Dirichlet b.c. to the micro domain. In this section underlined symbols are
used for the matrix notation with Voigt style. The constitutive relations of piezoelectric material in (8) and (9) can
be expressed in a combined Voigt notation as

[
σ
D

]

=

[
C bT

b −A

] [
ε

−E

]

+

[
−C ε0

P0 − b ε0

]

, (33)

alternatively,
S = L e + e0, (34)

where

S =

[
σ
D

]

, L =

[
C bT

b −A

]

, e =

[
ε

−E

]

and e0 =

[
−C ε0

P0 − b ε0

]

.

The prescribed boundary displacements and potentials on the micro domains are

uq = graduxq = εxq + ω xq (35)

and ϕq = −E∙xq, (36)

respectively, whereq = 1, . . . ,M (M is the total number of boundary nodes). In equation (35),ε andω are the
symmetric and the anti-symmetric part of the displacement gradient tensorgradu, respectively. Introducing Voigt
notation for the macro strain tensor in 2D problemsε = [ε11, ε22, 2ε12]

T , the alternative representation ofuq and
ϕq are

uq = QT
qm

ε + PT
qmω (37)

ϕq = −QT
qe

(E), (38)

whereQ
qm

, Pqm andQ
qe

are defined in the following way,

Q
qm

=
1
2




2x1 0
0 2x2

x2 x1





q

, Q
qe

=

[
x1

x2

]

q

, Pqm = [−x2 x1]q . (39)
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As there is no contribution from the rotational part of the displacement gradient (the second term in (35)) to the
stress field, we omit this term in the following formulations. In a combined way the generalized displacement
vector is

uqc = QT
qc

e, (40)

where

uqc = [u1q, u2q, ϕq]
T

, (41)

e =
[
ε11, ε22, 2ε12,−E1,−E2

]T
, (42)

Q
qc

=

[
Q

qm
0

0 −Q
qe

]

. (43)

The boundary displacements and the electric potentials in global formub = QT
c
e, whereub contains all boundary

degrees of freedom (the boundary mechanical displacements and electrical potentials) and

Q
c

=
[
Q

1c
,Q

2c
, ∙ ∙ ∙ ,Q

Mc

]
. (44)

AssumeK u = F is the linear system of equations on the micro level after performing the assembling in the
Finite Element Analysis (FEA). The stiffness matrixK, the displacement vectoru and the right hand sideF are
partitioned as [

Kii Kib

Kbi Kbb

] [
ui

ub

]

=

[
Fi

Fb

]

, (45)

where the indicesi andb denote the internal and the boundary degrees of freedom, respectively.

And the linear displacements and potentials on the boundary can be represented in the compact global combined
form

d(ub; e) = ub −Q
T
c
e = 0. (46)

Using the Lagrange multiplier method to incorporate the boundary constraints in the total energy of the discrete
system, one has

π =
1
2
uT Ku − uT F − δT (ub −Q

T
c
e), (47)

whereδ is the Lagrange multiplier. To have the equilibrium solution of the system, the following conditions must
be satisfied

∂π

∂u
:= 0 and

∂π

∂δ
:= 0. (48)

Determining the partial derivatives in (48), it is possible to deduce the following equations,

Kiiui + Kibub − Fi = 0

Kbiui + Kbbub − Fb − δ = 0 (49)

ub −Q
T
c
e = 0.

The average or homogenized stress tensor and electric displacement in a combined way with the help of Voigt
notation is expressed in the following way,

S =
1
V
Q

c
δ, (50)

whereS =
[
σ11, σ22, σ12, D1, D2

]T
. Eliminatingδ from the second equation in (49) and (50) and using the first

equation in (49), one has

S =
1
V
Q

c
(Kbiui + Kbbub − Fb) (51)

=
1
V
Q

c

(
KbiK

−1
ii (Fi − Kibub) + Kbbub − Fb

)
(52)

=
1
V
Q

c

(
(Kbb − KbiK

−1
ii Kib)ub + KbiK

−1
ii Fi − Fb

)
(53)

=
1
V
Q

c

(
(Kbb − KbiK

−1
ii Kib)Q

T
c
e + KbiK

−1
ii Fi − Fb

)
(54)

=
1
V
Q

c
K̃bbQ

T
c
e +

1
V
Q

c
F̃b. (55)
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Comparison between the equations (34) and (55) leads to

L =
1
V
Q

c
K̃bbQ

T
c

and e0 =
1
V
Q

c
F̃b, (56)

where
K̃bb = Kbb − KbiK

−1
ii Kib and F̃b = KbiK

−1
ii Fi − Fb. (57)

For the complete derivation of the homogenized material parameters (only mechanical part), readers are referred
to Miehe and Koch (2002). From equation (56) the homogenized material parameters, elasticity modulusC,
dielectric modulusA, piezoelectric modulusb, remanent strainε0 and remanent polarizationP0 can easily be
determined.

3.3 Homogenization of Configurational Forces

Because of the inhomogeneities of the material, it is essential to homogenize the Eshelby stress tensor to capture the
effects of the micro discontinuities to the configurational forces on the macro level. There are several approaches
to determine the homogenized Eshelby stress tensor, see Ricker et al. (2010). In this work the direct approach is
used to determine the homogenized Eshelby stress tensor which is volume average of the Eshelby stress tensor on
micro level

Σ =
1
V

∫

Bmic

Σ dΩ

=
1
V

∫

Bmic

[
H1 − (gradu)T σ − gradϕ ⊗ D

]
dΩ. (58)

The homogenized Eshelby stress tensor can also be computed using averaged mechanical and electrical quantities
as

Σ
∗

= H 1 − (gradu)T σ − gradϕ ⊗ D, (59)

but this averaged Eshelby stress tensorΣ
∗

does not satisfy the Hill-Mandel condition. Ricker et al. (2010) showed
for large strain problem that it does not satisfy the Hill-Mandel condition or it needs some extra terms to satisfy
the Hill-Mandel condition.

Using the averaged Eshelby stress tensorΣ, the nodal configurational forces on macro level can be determined.
The configurational force at nodeJ on macro level is

GJ =

n∗
el⋃

e = 1

∫

Ωe

Σ gradNJ dΩ, (60)

wheren∗
el is the total number of adjacent elements to nodeJ .

4 Numerical Results and Analysis

In this work the main focus is to establish a numerical technique which is capable of capturing the effect of micro
inhomogeneities of the piezoelectric materials on the macro responses. Here the configurational forces at the crack
tip of the macro domain are used as the macro response. We attempted to figure out the influence of the underlying
microstructure on the configurational force at the crack tip of a macro specimen. An extensive investigation is
done to understand the influence of the external electric field on the configurational forces at the crack tip. In
a real life problem the underlying microstructures containing domains, domain walls, grains, grain boundaries,
micro defects, etc. are very complex in nature. If we want to capture the influences of the whole scenario of
the underlying microstructures, it is computationally very expensive or in some cases it is impossible. But to
understand the characteristic behaviour of the microstructures, it is sufficient to restrict attention to simplified
micro domains with different orientations of the domains, domain walls, micro cracks, grains, etc.
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4.1 Macro Geometry and Microstructure

A 4 mm×4 mm macro specimen with a sharp crack (see in Figure 4) is simulated to determine the configurational
forces at the crack tip with different micro domains at every Gauss point of the macro domain. The length of the
crack is 2 mm and the width of the crack at the opening is 0.1 mm. In all simulations the bottom boundary of the
macro domain remains fixed and the top boundary is displaced by 0.2 mm. Three different electric field situations
are taken into account to simulate the problem: no external electric field, external upward electric field and external
downward electric field. These electric field situations are realized by applying the electric potentials on the top
and the bottom boundaries (see in Figure 4) of the macroscopic specimen. Here, the crack in the macro specimen
is modelled as electrically impermeable crack.

h

Δh

l wc c

ϕ  =  0

ϕ  =  ϕ ’

w

y

x

Figure 4:A macro fractured specimen with dimensionh × w containing a sharp crack (with crack lengthlc and
width at the openingwc). The top of the structure is displaced withΔh and the applied potentials on the top and
the bottom areϕ′ and 0, respectively.

4.2 Material Parameters

In the following all the simulations are done for poled soft lead zirconate titanate ceramics. The material parameters
in Voigt notation are given in the following:

C =




12.6 5.3 0.0
5.3 11.7 0.0
0.0 0.0 3.53



 ∙ 104 N
mm2

b =

[
0.0 0.0 17.0
−6.5 23.3 0.0

]

∙ 10−6 C
mm2

(61)

A =

[
1.51 0.0
0.0 1.3

]

∙ 10−11 C
Vmm

.

These material data are acquired from McMeeking and Ricoeur (2003). This data set prescribes a material which
is poled in the direction of positivey-axis. The polarization in positivey-direction is also considered by assigning

ε0 = [−0.0039 0.0076 0.0]T and P0 = [0.0 0.2]T ∙ 10−6 C
mm2

. (62)

For the material poled with other orientations, the material parameters are transformed with the multiplication of
the corresponding rotation matrices.

4.3 Configurational Force on the Micro Domain

To determine the boundary conditions of the micro domain, the displacement gradient and the electric field from the
macro problem are provided to the micro BVP. Using equations (24) and (30) the displacements and the potentials
on the boundary of the micro domain are determined. Equations (24) and (30) give the displacement type b.c. or
the Dirichlet b.c for the micro domain. To simulate this micro problem, the following displacement gradient and
electric field are used,

gradu =

[
0.1 0.05
0.07 0.15

]

and E =

[
0
5

]

∙ 105 V
mm

.
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The micro domain (in Figure 5a)) with three domains and two vertical domain walls is simulated. The central
domain is poled downward and other two domains are poled upward. Figure 5b) shows the nodal configurational
forces (arrows) on the domain walls. Additionally, large configurational forces, which are not plotted in Figure 5b),
appear on the boundary of the micro domain.

a)

x

y

b)

Figure 5:Configurational forces on the domain walls of the microstructure: a) domain structure, b) configurational
forces

4.4 Influence of Different Microstructures without External Electric Field

Figure 6a) - 6d) show the stress and the electric field distributions in the macro specimen which is simulated with
the homogenized material parameters. At the crack tip of this macro specimen, one can see the stress or the electric
field singularities. These are the reason for the appearance of a large configurational force at the crack tip. And it
may lead to crack propagation in the opposite direction of the configuration force (energy release).

a) b)

c) d)

Figure 6:Stress and electric field distributions on macroscopic specimen:a) σyy component of the stress tensor

in
(

N
m2

)
, b) σxx component of the stress tensor in

(
N
m2

)
, c) Ey component of the electric field in

(
V
m

)
, d) Ex

component of the electric field in
(

V
m

)

In Figure 7 and 8, the pictures on the top are the corresponding micro domains which are assigned to each
Gauss point of the macro domain, and in the second row the deformed macro domains with configurational forces
at the crack tip are displayed. At the bottom the numerical values of the configuration forces at the crack tip are
reported. The arrows at the crack tips of the macro domains indicate the direction and the value of the configu-
rational forces at the crack tip. The significance of the configurational forces is that the crack propagates in the
opposite direction of the configurational force.
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Figure 7a) shows that when the assigned micro domain is homogeneous and poled upward, there is a horizontal
configurational force of608.48 N. In Figure 7b) the assigned micro domain has three domains with two vertical
180◦ domain walls. The two outer domains are poled upward and the middle domain is poled downward. In this
case the configurational force is approximately the same as in the previous case. The reason for this is that the
elasticity tensor does not change, when the remanent polarization switches to the opposite direction. Thus the
material response remains unchanged, when no external electric field is applied. In Figure 7c) the corresponding
micro domain has three domains and two horizontal90◦ domain walls, here the polarizations are inclined by45◦.
In this case we get a upward inclined configurational force with ay-component of 34.894 N andx-component of
745.30 N. It means that the crack may move in an inclined direction with respect to thex-axis.

In Figure 8a), the assigned micro domain is homogeneous and horizontally poled in the positivex-axis. In this
case, a horizontal configurational force of 879.19 N, which is larger than the configurational force in Figure 7a), is
produced at the crack tip. Similar to Figure 7a) or 7b), Figure 8b) gives an almost identical configurational force
as in Figure 8a). In Figure 8c) the assigned micro domain comprises three domains of inclined polarity and two
vertical90◦ domain walls. In this case one gets a similar configurational force as in Figure 7c). In Figure 8d) the
microstructure has four domains: two are horizontally poled and the other two are vertically poled. It results in four
90◦ domain walls. In this case, the configurational force has anx-component of 793.62 N and noy-component.

It is worthwhile pointing out the two extreme cases of configurational forces: when the polarization is horizontally
poled, it gives the maximum value of the configurational force and when it is vertically poled, it gives the minimum
value of the configurational force. The other cases report an intermediate value of the configurational forces
between the two extreme values. The coefficients of the elasticity tensor in the poling direction are with lower
values, it means that the material is more rigid in the transverse direction to the polarization than in the poling
direction. For that reason, the minimum configurational force is obtained, when the mechanical displacement is
applied along the poling direction.

a) b) c)

G =

[
608.48
0.000

]

N, G =

[
608.53
0.000

]

N, G =

[
745.30
34.894

]

N

Figure 7:Configurational forces for different microstructures without external electric field

4.5 Influence of External Electric Field

In this section the simulations are carried out for different external electric field conditions. In each example,
results are compared for three cases: merely mechanical loading, mechanical along with upward external electric
field, and mechanical along with downward external electric field. In Figure 9 the simulations are performed with
a micro domain poled in the direction of the mechanical displacement. Simulations without an external electric
field exhibit a horizontal configurational force of 608.16 N, while simulation with an upward external electric field
results in a smaller horizontal configurational force of 278.66 N. Meanwhile the simulations with a downward
electric field give also a smaller horizontal configurational force of 293.80 N. It is noticeable that for both upward
and downward external electric fields the configurational forces are reduced by more than 50%.

In Figure 10 the simulations are done for a micro domain poled in the transverse direction to the mechanical
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a) b) c) d)

G =

[
879.19
0.000

]

N, G =

[
879.16
0.000

]

N, G =

[
745.29
34.904

]

N, G =

[
793.62
0.000

]

N

Figure 8:Configurational forces for different microstructures without external electric field

a) b)

~E

c)

~E

G =

[
608.53
0.000

]

N, G =

[
278.66
0.000

]

N, G =

[
293.80
0.000

]

N

Figure 9:Configurational forces for different electric loading conditions

displacement. The simulation without an external electric field gives a horizontal configurational force of 879.16 N.
The simulation with an upward external electric field reduces the configurational force by a significant amount and
it produces a small positivey-component. Similarly, in the simulation with a downward external electric field the
configurational force is reduced and a small negativey-component in the configurational force is obtained. It is
also noted that there is a reduction of the configurational force in presence of either upward or downward electric
field. The reduction is about 50%.

All previous simulations are done for the simple micro domains. These micro domains may not represent the
real situations of the micro inhomogeneities of piezo-ceramics. However, the microstructures in real problems
are featured with complex inhomogeneities, for example with domains, domain walls, micro cracks, grains, grain
boundaries, etc. With an attempt to get closer to real situations of the micro inhomogeneities, the micro domain in
Figure 11 is used to simulated the macro domain. In this micro domain we see five grains of piezoelectric materials
enclosed by boundaries. In the grains we see domains and domain walls. When the simulation is done only for
mechanical displacement, we get a configurational force with anx-component of 741.97 N and ay-component
of -33.168 N. These values favor that the crack may propagate in an inclined direction to thex-axis. When it is
simulated with an external electric field, both for the positive and the negative electric field iny-axis direction, the
configurational forces are reduced to anx-component of 386 N and and ay-component of -26 N. The amounts
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N

Figure 10:Configurational forces for different electric loading conditions

of reduction in the components of the configurational force are not exactly equal. For that reason the crack will
propagate in a slightly different direction.

a) b)

~E

c)

~E

G =

[
741.97
−33.168

]

N, G =

[
386.21
−26.173

]

N, G =

[
386.24
−26.205

]

N

Figure 11:Configurational forces for different electric loading conditions

In Figure 12 the configurational forces for different micro domains and different external electric field conditions
are summarized.
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Figure 12:Configurational forces for different microstructures with different electric loading conditions

5 Conclusion

We have presented a homogenization technique for piezoelectric material, which is an electro-mechanically cou-
pled material. Special emphasis has been given to the homogenization of the electromechanical Eshelby stress
tensor for the determination of the configurational force at a crack tip on macro level. In case of FE2 based com-
putational homogenization, one can assign three different types of boundary conditions to solve micro BVP of
piezoelectric material. For simplicity displacement types or Dirichlet boundary conditions for the homogeniza-
tion were used. A macro specimen with a horizontal sharp crack has been simulated. To observe the effect of
the micro inhomogeneities on the crack tip configurational force on macro level, simulations with several micro
domains containing different inhomogeneities assigned to the Gauss points of macro domain were performed. In
case of a horizontal or a vertical polarization in the micro domain, we got a configurational force parallel to the
crack center line. Configurational forces slightly inclined to the crack center line were found in case of inclined
polarization. An upper and a lower bound for the configurational force for purely mechanical loading on macro
level were observed. When the mechanical displacement is along the polarization of the micro domain, the lower
bound was obtained. And in case of the mechanical displacement transverse to the polarization, the upper bound
is found, because piezoelectric material is stiffer in the transverse direction to the polarization. If an electric field
is applied together with a mechanical displacement, the value of the configurational force reduces significantly for
both positive and negative electric fields. The amount of the reduction is different for different micro domains.

In all cases we neglected possible movement of the domain walls, but in practical situation the domain wall moves
in order to lower the total energy of the system. Meanwhile, rather simplified microstructures are used, which do
not represent the real microstructures of the piezoelectric materials. When simulating the problem with a complex
microstructure including grains, the grain boundary was modelled as a coherent and uncharged interface, as farther
physical information on the nature of grain boundaries in piezoelectric materials is not yet available to the authors.
The configurational force at the crack tip was investigated only for mode-I type crack. In future we will focus
attention to configurational force at the crack tip using evolving micro domains by movement of domain walls.
The homogenization will be carried out for other types of boundary conditions assigned to the micro domains.
Furthermore, we will try to model the grain boundary of the piezoelectric material and simulate the specimen for
other types of crack situations, e.g., mode-II, mode-III cracks.
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