
3 
 

TECHNISCHE MECHANIK,   36, 1-2 , (2015), 3 - 12 
submitted: June 30, 2015 

 
 
 

Elastic Constitutive Laws and Stability Analyses 
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In this paper, the influence of several elastic constitutive laws upon the stability analyses of plane trusses is 
discussed. The chosen laws are connected to the engineering strain, Green’s strain and logarithmic strain 
concepts. A geometrically exact nonlinear formulation for a truss bar element is developed for each of them and 
the correspondent tangent stiffness matrices are obtained. 
The stability analyses of some sample plane trusses are performed by finding the conditions when the 
determinant of their respective global tangent stiffness matrices is found to be zero. The first example is a 
symmetric two-bar structure and both limit loads and buckling loads are plotted for the full range of possible 
initial inclination angles of the bars for the three chosen constitutive laws. A similar truss with an extra vertical 
bar is studied to discuss possible material instability if Green’s strain concept is adopted. 
 
1 Introduction 
 
The presented direct formulation of the geometrically exact nonlinear theory of elastic trusses is of great 
simplicity and elegance and has already been obtained, for plane trusses and adopting the engineering strain 
concept, in a pioneer paper by Turner et al (1960). 
Instability issues related to trussed structures have been recently revisited by Pecknold et al. (1985), e.g., and 
Deng and Kwan (2005). 
The central idea of this approach can be described as follows, following Levy and Spillers (1995). Let the 
equation of equilibrium of a system be written as 
 
 =P CN                       (1) 
 
where P represents the applied loads, N the internal forcers or stresses and C an appropriate equilibrium 
operator. Under a load perturbation dP, the system responds as 
 
 d d d= +P C N C N                (2) 
 
For discrete systems such as trussed structures it turns out to be relatively simple matter to convert this equation 
into the usual 
 
 d d= TP K q                 (3) 
 
where dq represents the incremental generalized displacements of the system, and TK is the tangent stiffness 
matrix containing the usual elastic and geometric  stiffness matrices. With this approach, which is followed 
throughout this paper, nonlinear structural analysis becomes simply an application of Newton-Raphson’s method 
of nonlinear equations solution. 
 
 
2 Theory 
 
In the geometrically exact theory for trusses, no restrictions are made to the amplitude of angular deflections. Let 
us consider the plane truss bar of Fig. 1. Its initial length is L. The relationships between the vector of nodal 
displacements q of a plane truss bar and the values of θ  and L′ (the angle between the displaced position of the 
bar and its original position and the deformed length of the bar, respectively) are 
 
 L L′ − = cq                       (4) 
where 

 [ ]cos sin cos sinθ θ θ θ= − −c             (5) 
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Figure 1. Reference and actual configuration of a truss element 

 

 [ ]1 2 3 4
tq q q q=q               (6) 

 
To compute the strain iε  (with i= 1 for engineering strain, i = 2 for Green’s strain and   i = 3 for logarithmic or 
natural strain) the following expressions are used, according to Argyris et al. (1960), 
 

 1 1ε λ= −                (7) 
 

 

2

2
1

2
λ

ε
−

=                (8) 
 

 1 lnε λ=                (9) 
 
where /L Lλ ′= . 
 
The exact values of the components of nodal forces, as depicted in Fig. 1, are 
 

 
tN=Q c              (10) 

 
where 
 

 [ ]1 2 3 4
tQ Q Q Q=Q             (11) 

 
and N is the normal force in the bar. The constitutive laws render the actual normal stress iσ  by the following 
expressions 
 

 1 1 1Eσ ε=              (12) 
 

 2 2 2Eσ λ ε=              (13) 
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3

3 3E ε
σ

λ
=              (14) 

 
where iE  is the elastic modulus corresponding to the chosen strain concept. 
 
Thus, the normal force is given, for each constitutive law, by 
 

 i iN Aσ=              (15) 
 
where A is the area of the cross section of the bar. 
 
To obtain the expression of the tangent stiffness matrix Tk , one must differentiate Eq. 10 to get 
 

 d dN N dθ= +t tQ c s             (16) 
 
where 
 

 [ ]sin cos sin cosθ θ θ θ= − −s           (17) 

 
Next, one must establish relationships between the differentials dθ and dN and the displacement increments dq . 
To that end, Eqs. 4 and 15 are used to obtain 
 

 
1d d
L

θ = s q              (18) 

 

 
1

idN D A d
L

= c q             (19) 

 
where 
 

 1 1D E=               (20) 
 

 
( )22

2 3 1
2

ED λ= −             (21) 

 

 
( )3

3 2 1 ln
ED λ
λ

= − .            (22) 

 
It is now necessary to introduce into Eq. 16 the values of dθ and dN  given by Eqs. 18 and 19, to obtain 
 

 
i iD A N

d d
L L

 = + ′ 
t tQ c c s s q            (23) 

 
the equation that renders the tangent stiffness matrix of the exact theory for each of the elastic constitutive laws 
adopted 
 

 
i iD A N
L L

= +
′

t t
Tk c c s s             (24) 

 
As in the usual matrix analysis of structures, once the tangent stiffness matrix of the bar in the local reference 
frame is known, its counterpart in the global one is easily obtained by the rotation formula, given, for example, 
by Meek (1991), 
 

 = t
T Tk T k T              (25) 
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where 
 

 

cos sin 0 0
sin cos 0 0
0 0 cos sin
0 0 sin cos

α α
α α

α α
α α

 
 − =
 
 

− 

T           (26) 

 
andα is the angle between the original direction of the bar and the x axis of the global reference frame, as shown 
in Fig. 1. 
 
As a more practical alternative, one can introduce the new matrices 
 

 [ ]cos sin cos sinϕ ϕ ϕ ϕ= − −c           (27) 
 

 [ ]sin cos sin cosϕ ϕ ϕ ϕ= − −s           (28) 
 
where ϕ θ α= + , which are related to Eqs. 5 and 17 by 
 
 =c cT               (29) 
 
 =s sT               (30) 
 
Thus, a new form of the tangent stiffness matrix of the truss member in the global reference frame is 
 

 
i iD A N
L L

= +
′

t t
Tk c c s s             (31) 

 
which is formally identical to Eq. 24. 
 
To obtain the tangent stiffness matrix of the structure as a whole, the following summation process is extended to 
all members of the system 
 

 = ∑ t
T TK A k A              (32) 

 
where A is the usual incidence matrix of each bar. 
 
 
3 The First Example 
 
The first chosen example is the classic two bars truss whose stability was studied by Ratzersdorfer (1936), also 
known as von Mises truss, depicted in Fig. 2. 
 

 
 

Figure 2. The first example 
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As it is well known, depending to the initial geometry, either bifurcation or limit point instabilities may happen. 
The original length of the bars is L and their original inclination α. After a vertical load P is applied to the central 
node the length of the bars becomes L′ and their inclinationϕ . 
If the exact theory is applied, the tangent stiffness matrix associated with the two degrees of freedom of the 
central node is 
 

 

2 2

2 2

cos 0 sin 02 2
0 sin 0 cos

i iD A N
L L

ϕ ϕ
ϕ ϕ

   
= +   ′   

TK          (32) 

 
where the constant iD and the normal force iN  depend on the particular constitutive law chosen. 
The instability criterion is that the determinant of this matrix must be zero. 
 
 
3.1 Engineering Strain 
 
For the engineering strain constitutive law, the instability criterion is 
 

 ( )( )2 3sin cos cos cos cos 0ϕ ϕ α ϕ α− − = .           (33) 
 
The condition for lateral buckling of the structure is given by 
 

 
2sin cos cosϕ ϕ α= ,             (34) 

 
and the corresponding buckling load is 
 

 
2

12 cos sinbP E A ϕ ϕ=              (35) 
 
Limit point instability (snap-through) may be reached according to the condition 
 

 
3cos cosϕ α= ,              (36) 

 
and the corresponding limit load is 

 
3

12 sinlP E A ϕ= .             (37) 
 
In Fig. 3, both buckling and limit loads are plotted for the full range of possible initial inclination angles of the 
bars. One should note that for α > 68.898o bifurcation instability (lateral buckling) will prevail with buckling 
loads given by the lower branch of the respective curve. For α bellow that value the structure may undergo snap 
through instability. It is important to see that this value, denoted as point A in the figure, is slightly different from 
that of the tangential point between the limit point and buckling curves, where φ = 45o and α = 69.295o. 
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Figure 3: Instability loads, First Example, Engineering Strain 

 
3.2 Greens’s  Strain 
 
For this strain definition, the condition for lateral buckling of the structure is given by 
 

 
2 2tan tan 2ϕ α= − ,             (38) 

and the corresponding buckling loads is 
 

 
3 2

22 cos tan 2bP E A α α= − .            (39) 
 
For Green’s strain, limit point instability (snap-through) may be reached according to the condition 
 

 

3tan tan
3

ϕ α= ,             (40) 

 
and the limit load is 
 

 

3
2

2 3 sin
9lP E A α= .             (41) 

 
In Fig. 4, both buckling and limit loads are plotted for the full range of possible initial inclination angles of the 
bars. One should note that for α > 60o bifurcation instability (lateral buckling) will prevail with buckling loads 
given by the right branch of the respective curve. For α bellow that value the structure may undergo snap through 
instability. It is important to see that this value is exactly that of the tangential point between the limit point and 
buckling curves. 
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Figure 4: Instability loads, First Example, Green's Strain 

 
3.3 Natural Strain 
 
For this strain definition, the condition for lateral buckling of the structure is given by 
 

 
2 2ln (1 2 ln ) cos 0λ λ λ α+ − = .            (42) 

 
For natural strain, limit point instability (snap-through) may be reached according to the condition 
 

 
2 2(1 ln ) (1 2ln ) cos 0λ λ λ α− − − = .           (43) 

 
Instability loads for both cases are given by 
 

 

2 23
2

2
ln cos .

E AP λ λ α
λ

= − −             (44) 

 
In Fig. 5, both buckling and limit loads are plotted for the full range of possible initial inclination angles of the 
bars. It is important to see that the two curves never touch each other and for α >71.278o bifurcation instability 
(lateral buckling) will prevail with buckling loads given by the lower branch of the respective curve. For α less 
that value, the structure may undergo snap through instability. 
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Figure 5: Instability loads, First Example, Natural or Logarithmic Strain 
 
 
4 The Second Example 
 

 
Figure 6: The Second Example 

 
The structure of Fig. 6, similar to the first example except for an extra vertical bar under the upper node, is now 
analyzed using Green’s strain constitutive law. The starting point is Eq. 32 which gives the contribution of the 
two inclined bars to the tangent stiffness matrix of the structure. 
 
By adding to this equation the new term 
 

 
( )22 0 0 1 0
3 1

0 1 0 02 V
E A V

h h
λ

   
= − +   ′   

Tk            (45) 

where 
 

 

tan
tanV

h
h

ϕ
λ

α
′

= =               (46) 
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is the stretching of the vertical bar, the complete TK is found to be 
 

 
( )

2
22

2 3

cos 0 1 022
( csc )

0 00 sin 1 1/ 2 csc
iND A V

L L L

ϕ
λ ϕ

ϕ α

   
= + +   ′ ′+    

TK        (47) 

 
In Eq. 47,  
 

 

2
2 ( 1)

2
E AN λ λ −

=              (48) 

 
and 
 

 

2
2 ( 1)

2
V VE A

V
λ λ −

=              (49) 

 
according to the assumed constitutive law. 
 
The instability criterion requires the determinant of this matrix to be zero. The first condition, corresponds to the 
lateral buckling of the structure and leads to the buckling load 
 

 
3

22 cos tanbP E A α ϕ= .             (50) 
 
The second condition corresponds to a null value of the stiffness coefficient related to the vertical displacement 
of the upper node. However, this is not an indication of a genuine snap snap-through phenomenon, but is a 
consequence of the material instability inextricably present in the constitutive law. 
This assertion can be easily proven from Eqs. 13 and 21 and 
 

 
22

2 2 2 ( 1)
2
EEσ λ ε λ λ= = −             (51) 

 
The zero value of its derivative is 
 
 

23 1 0λ − =               (52) 
 
which gives the limit value 
 

 

3
3lλ = .              (53) 

 
This is the very value that is obtained combining the definition of given by Eq. 46 with the condition of Eq. 53 
 

 3
3

tan
tan

==
α
φ

λV
             (54) 

 
In Fig. 7, both bucking and limit loads are plotted for the full range of possible initial inclination angles of the 
bars. It is important to see that limit point and buckling curves tou Vλ ch each other in two points. One should 
note that for α < 10o bifurcation instability (lateral buckling) will prevail with bucking loads given by the left 
branch of the respective curve. For 10o<α<50othe structure may undergo snap through instability. For larger 
values of α the structure may experience bifurcation (lateral buckling) instability, with buckling loads given by 
the right branch of the respective curve. 
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Figure 7: Instability loads, Second Example, Green's Strain 
 
5 Conclusions 
 
In this paper, the influence of several elastic constitutive laws upon the stability analyses of plane trusses is 
discussed. The chosen laws are connected to the engineering strain, Green’s strain and logarithmic strain 
concepts. A geometrically exact nonlinear formulation for a truss bar element is developed for each of them and 
the correspondent tangent stiffness matrices are obtained. 
 
The stability analyses of some sample plane trusses are performed by finding the conditions when the 
determinant of their respective global tangent stiffness matrices is found to be zero. The first example is a 
symmetric two-bar structure and both limit loads and buckling loads are plotted for the full range of possible 
initial inclination angles of the bars, for the three chosen constitutive laws. A similar truss with an extra vertical 
bar is studied to discuss possible material instability if Green’s strain concept is adopted. 
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