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Stochastic Multiscale Characterization of Short-Fiber Reinforced
Composites

M.A. Hickman, P.K. Basu

A framework for stochastic modelling and optimization of materials with engineered microstructures is presented.
Numerical methods for solving problems with short-fiber inclusions are discussed. Addition of fiber reinforcement
has been shown to improve the performance of various materials in a number of applications. The response of fiber
reinforced concrete under tensile stress is dependent upon several properties, including fiber geometry, fiber ma-
terial properties, fiber length, and orientation of the fibers with respect to the applied load. In a real-world system
the distribution of the fibers may be random, with orientation angle and configuration varying locally. Stochastic
multiscale methods enable the connection of the scales to analyze the effect of randomly distributed short-fiber
inclusions on the global response of the system. Randomly generated characteristic volume elements (CVE) are
analyzed using the extended finite element method (XFEM) to capture local material response without the need
for a mesh that conforms to the material morphology, ideal for situations with arbitrary fiber distributions. The
variation observed in statistically equivalent CVE models is quantified. Correlation is determined between FRC
descriptor variables and the tensile response of the composite. It is demonstrated that machine learning can be
used to predict composite material properties of FRC to a reasonable degree of accuracy using information about
the material microstructure.

1 Introduction

All physical systems, natural and engineered, are characterized by some degree of inherent uncertainty. Uncertainty
is present on all scales, from the atomic arrangement of a material microstructure, to the demand imposed on the
system at the macroscale. Design of materials with engineered microstructures requires characterization of this
uncertainty to assess the reliability of the material performance in expected scenarios so that the design life of
the structure can be predicted. Multiscale modelling allows for the bridging of uncertainty across spatial and
temporal scales and has become a useful tool in several engineering and science disciplines where materials with
heterogeneous microstructures are commonly used. The purpose of this research is to develop a computational
framework for the design of composite material microstructures to optimize the desired structural performance of
a fiber reinforced composite (FRC). This will enable intelligent tailoring of a mix of material phases of different
types, shapes, and sizes satisfying the needs of a particular application in terms of performance, cost, and ease of
manufacture.

The current emphasis on rational performance driven design approaches (Li and Fischer, 2002) requires a more
critical look towards realizing the desired material performance by closer link of material constituents with struc-
tural performance. For instance, in the case of short-fiber reinforced composites, apart from the strength of the
matrix material, its ductile performance can be a factor of volume percentage, diameter, strength, length, distribu-
tion, elastic modulus, and, most importantly, the interfacial mechanical and chemical bond characteristics of the
two. Li (1992) proposes a hierarchical design method in which optimal microstructure processing techniques and
characteristics are identified to achieve a target structural response. Fundamental to the approach is identification
of a quantitative relationship between microstructure composition and material response. At the microstructure
level, we are concerned with how morphology, processing, and optimization techniques influence material prop-
erties. The large-scale performance is dependent on the interaction between material properties, the environment,
and the geometry of the structural element.

In order to accurately predict the response of an object at the macroscale, it is necessary to consider the localized
behavior of component phases and interactions between them in the meso- or smaller scale. In the case of hetero-
geneous materials like ceramics and concrete, there is a significant degree of uncertainty in connecting the scales,
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creating complexities in the characterization of the material at all the scales of interest. The physical response of
such materials is controlled by the mechanical characteristics of the constituent phases. Historically these materials
have been characterized on the basis of strength tests, resulting in a number of empirical relationships that have
been used by engineers. Such test-based empirical characterization methods may be a viable option for relatively
inexpensive materials but the design of new-age composites can be time consuming and expensive tests may not
be an acceptable option.

This paper aims to draw a connection between characteristics of FRC on the mesoscale and material properties that
govern performance at the structural scale. In addition to morphological heterogeneity, the effect of interaction
between constituent materials is considered. Section 2 reviews approaches to multiscale modelling of FRC and
proposes a sequential multiscale modelling framework. Section 3 describes the large-scale, homogenized behavior
of a brittle-matrix composite reinforced by ductile fibers and the manner in which a plasticity model is capable of
computationally modelling the associated physical phenomena. Section 4 provides a brief overview of the extended
finite element method (XFEM) and its ability to efficiently model the interaction between the matrix and fibers at
the mesoscale. Section 5 overviews the exploration of design space and numerical model parameters. Sections 6
and 7 consider the model results and comment on the viability.

2 Stochastic Multiscale Modelling Approach

The inelastic response of FRC is controlled primarily by interaction between fiber and matrix, leading to post-
peak strain-softening when the matrix cracks. The material properties of each phase, aspect ratio of inclusions, and
volume content have all been shown to influence the behavior of the composite, among other factors. An engineered
FRC at the structural scale (10−1-100 m) may contain thousands of short fibers (∼10−3 m in length). As it is
impractical to explicitly discretize every single fiber in the problem domain, homogenized strength properties are
often used for the macroscale model, under the assumption that fibers are uniformly distributed. However, in an
engineered composite with randomly distributed fibers, their orientation angle and distribution vary with location.
In a large problem domain, local heterogeneity may be observed, introducing uncertainty in the performance of the
system across scales. Figure 1 shows a domain containing randomly distributed fibers with a prescribed volume
fraction of 0.1%. A division of this domain into four subdomains shows that the volume fraction observed in each
subdomain appears to differ significantly from the average for the global domain with a minimum of 0.047% and
a maximum value of 0.141%. This study proposes a stochastic multiscale method to connect the scales such that
the effect of randomly distributed inclusions on the global response of the system can be accounted for. At the
macro level a plasticity model of the composite is considered, neglecting the presence of individual fibers due to
their small length with respect to the size of the global problem domain. The presence of fibers is accounted for by
analyzing random realizations of mesoscale composites using XFEM and characterizing the nonlinear relationship
between morphology and material properties.

Representative volume elements (RVE) are used extensively in structural mechanics in the context of multiscale
modelling of composite materials. A RVE is defined as, “a volume of heterogeneous material that is sufficiently
large to be statistically representative of the composite” (Kanit et al., 2003). The RVE approach sometimes assumes
periodicity in the material composition at a small scale, which can be coupled with a homogenization tool. Yuan
et al. (1997) assessed the effect of fiber-matrix interfacial debonding and fiber orientation on elastic response of
a composite using a finite element model for the RVE. Kabele (2007) analyzed RVE response in the context of
integrated structures and material design using the finite element method and spatial averaging to connect scales
in a sequential approach. The finite element method (FEM) is commonly used to model fiber-matrix debonding at
the mesoscale using cohesive elements at the interfacial phase boundary. However, conventional FEM is ill-suited
to handle complex microstructure geometries due to the need to explicitly mesh the domain (a problem discussed
further in Section 4). XFEM has emerged as an efficient alternative to cohesive zone modelling, and its usefulness
has been demonstrated for woven reinforcement (Kastner et al., 2013) and random short-fiber reinforcement (Pike
and Oskay, 2015b).

Unique challenges arise in identifying the RVE of a material with randomly distributed inclusions, requiring special
treatment from a multiscale modelling perspective. Previous studies have used a descriptor-based approach to
characterize the behavior of heterogeneous cementitious materials containing voids on the microscale (Xu et al.,
2014). In the descriptor-based approach, a correlation is assumed between variables that describe the material
on the microscale, called descriptors, and measurable material parameters. The descriptors detail the shapes and
spatial alignment of inclusions, aspect ratios, and volume fractions of each material phase in the matrix, and are
mapped to material parameters by Kriging. Identification of descriptors provides a challenge in reducing the design
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Figure 1. Local variation of fiber volume content

space into a finite number of dimensions. Use of too many dimensions creates a complex regression problem.
Clement et al. (2013) demonstrated the use of polynomial chaos expansion to account for a high number of random
variables inherent in the characterization of randomly heterogeneous media. Xu et al. (2013) decomposed random
RVEs containing elliptical inclusions into smaller statistical volume elements (SVE) whose response was analyzed
and quantified for upscaling. The approach is similar to that used by Ghosh et al. (2007), who uses a statistically
equivalent RVE (seRVE) to model FRC at the microscale within the context of a concurrent multiscale model using
Voronoi cell FEM. Greene et al. (2013) identifies scenarios where uncertainties significantly affect macroscale
behavior using a statistical description of microstructure for three benchmark problems. Clement et al. (2012)
developed a database of elementary cells of fiber reinforced polymers containing arbitrary heterogeneities within
the stochastic dimension. One useful aspect of the research is that different microstructures may continue to be
modelled and added to the database, which can be used within a hierarchical multiscale framework. In general,
multiscale methods are classified as hierarchical or concurrent. Concurrent models solve systems of different scales
in parallel, passing information between the models used at each scale. In the process, the macroscale response
is influenced by the microscale response, and vice-versa. In a hierarchical model, however, averaging is used to
connect the scales, and simulations at each scale are performed sequentially.

In this work a hierarchical multiscale modelling approach is presented for random FRC so that the effects of
interaction of individual fibers may be analyzed at the mesoscale using a suitable modelling tool (XFEM). A
database relating material composition to composite response is developed. The observed composite properties
may then be passed to the macroscale, where a homogenized plasticity model can be used with stochastic finite
elements to assess the large-scale performance of the random composite in an efficient and convenient manner.
A schematic of the approach is shown in Figure 2. The method consists of four steps: (1) stochastic sample
generation, (2) mesoscale modelling and characterization, (3) homogenization, and (4) design sensitivity analysis
(macroscale modelling). In step 1, descriptor variables are selected to quantify microstructure characteristics that
are assumed to influence material properties. Points in descriptor space are sampled and used to generate random
microstructures with a range of design values. The selection of descriptors and sampling technique are discussed
in Section 5. The random samples are analyzed using XFEM in step 2. Gaussian process (GP) regression is used
to quantify the multivariate nonlinear relationship between descriptors and measured material properties. Optimal
microstructure designs can be selected based on their measured performance. In step 3, the GP is used to predict
properties of subdomains in a macroscale model that correspond to unknown points in the descriptor space. At
the macroscale, the material is modelled as homogeneous with each subdomain described by unique material
properties. Fiber randomness effects are accounted for by locally prescribed variations in composite material
response rather than modelling fiber-matrix interaction effects. This enables the reliability of a macro structure to
be assessed, taking into account the local randomness of design variables (step 4). This work focuses primarily on
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steps 1-2. Future work will address homogenization and design reliability assessment at the macroscale.

Figure 2. Sequential multiscale modelling framework for FRC

3 Mechanical Behavior of FRC

In a cementitious FRC, the matrix material is characterized by high compressive strength and relatively low tensile
strength, which is often compensated for in the design through the addition of suitable reinforcement. In tradi-
tional design, such reinforcement is typically aligned to withstand a load with some prescribed orientation. More
recently, short fibers have been used to provide improvement in the tensile response and ductility in a number of
applications. The reinforcement provides crack bridging, extra ductility, and energy absorption capability without
significantly increasing the weight of the composite (Bentur and Mindess, 1990). In cases where the orientation
of the load with respect to the reinforcement is variable, randomly distributed fiber reinforcement can be used to
enable effectively isotropic material behavior. The behavior of FRC under tensile stress is dependent on several
properties, including fiber aspect ratio, fiber and matrix stiffnesses, and inclusion volume content. Random FRC
can be fabricated more easily than composites with aligned reinforcement, but poses challenges in property char-
acterization. Figure 3 depicts 6 FRC microstructures randomly generated using the same input parameters for fiber
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Figure 3. Random microstructure realizations with volume fraction = 0.1%, Fiber Length = 3.27 mm

Figure 4. Common FRC behavior in uniaxial compression (a) and tension (b)

length and volume fraction. It can be clearly observed that significant variation in the fiber concentration exists
despite using equivalent design values.

Figure 4 shows typical stress-strain curves for a brittle matrix FRC under uniaxial compression and tension. The
compressive response of FRC does not differ significantly from the unreinforced matrix. The matrix carries the
bulk of the imposed load and the inelastic response is dictated by crushing and filling of voids in the microstructure.
This study focuses primarily on the tensile response of the composite, which is influenced largely by the fibers in
the matrix. Following an initial linear elastic range, the brittle matrix cracks and the load is transmitted to fibers
through cohesive bonds, which results in post-peak softening, as shown.

3.1 Macroscale Damage-Plasticity Model for Homogenized FRC

A number of approaches exist for modelling the homogenized behavior of FRC. Lubliner et al. (1989) presented a
constitutive model capable of accurately predicting the nonlinear, multiaxial behavior of concrete using plasticity
theory. The model is commonly known today as the Concrete Damage Plasticity (CDP) model, and can be easily
and efficiently implemented using commercial finite element analysis software such as Abaqus. The model consists
of a yield criterion, a hardening rule, and a flow rule that can be fully defined by four parameters calibrated to
uniaxial tension, uniaxial compression, biaxial compression, and triaxial compression tests. The CDP model is
an attractive macroscale model for FRC due to its independent definition of tensile and compressive stiffness
degradation. For a given state of strain, the resulting tensile stress is interpolated from the data.

Jankowiak and Lodygowski (2005) provides a detailed description of the parameter calibration process using ex-
perimental results. A brief overview of the CDP model is given here for the sake of completeness. The CDP
constitutive equation is given by equation (1).

σ̄ = Del
0 (ε − εpl) ∈ {σ̄|F (σ̄, ε̃pl, f,Kc) ≤ 0} (1)

whereσ̄ is the effective stress, defined in terms of total strainε, plastic strainεpl, and initial elasticity matrixDel
0 .

F is the yield surface with parametersf , the ratio of the biaxial compressive strength to the uniaxial compressive
strength, andKc, the ratio of the second stress invariant on the tensile meridian to the second stress invariant on
the compressive meridian, which shapes the deviatoric load surface. The effective stress is related to the Cauchy
stress tensorσ by equation (2).

σ = [1 − d(ε̃pl)]σ̄ (2)

whered(ε̃pl) is the scalar damage variable.̃εpl = [ε̃pl
c ε̃pl

t ]T is the hardening variable, with components cor-
responding to compression and tension. The value of the hardening variable is non-decreasing and taken as
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Figure 5. Effect of stiffness recovery factors on load-reversal response

ε̃pl =
∫ t

0
˙̃εpldt. The evolution of the hardening variable is given by equation (3).

˙̃εpl =

[
˙̃εpl
t
˙̃εpl
c

]

=

[
r( ˆ̄σ)ˆ̇εpl

max

−[1 − r( ˆ̄σ)]ˆ̇εpl
min

]

(3)

herer( ˆ̄σ) is a stress weight factor for the multiaxial case that is dependent upon the principal effective stresses,ˆ̄σ.
ˆ̇εpl
max and ˆ̇εpl

min are the maximum and minimum eigenvalues of the plastic strain rate tensor. Equation (4) defines
the stress weight factor.

r( ˆ̄σ) =

∑3
i=1〈ˆ̄σi〉

∑3
i=1 |ˆ̄σi|

(4)

〈∙〉 = ((∙) + | ∙ |)/2 represents the Macaulay brackets. The stress weight factor is equal to 1 for pure tension
and 0 for pure compression. The scalar damage variabled(ε̃pl) is a function of the user-defined uniaxial damage
variablesdt(ε̃

pl
t ) anddc(ε̃pl

c ). For multiaxial stress it is assumed that the damage variable can be calculated using
equation (5).

d = 1 − (1 − stdc)(1 − scdt) (5)

Computed parametersst andsc are introduced to incorporate stiffness recovery effects into the model. Equation
(6) gives the expression for the stiffness recovery parameters.

[
st

sc

]

=

[
1 − wtr( ˆ̄σ)

1 − wc[1 − r( ˆ̄σ)]

]

(6)

The parameterswt andwc dictate whether stiffness is recovered when loading changes from tension to compres-
sion. In general, quasi-brittle materials show compressive stiffness recovery when cracks open in tension and close
in compression, but no stiffness is recovered in tension following initiation of cracking. This effect is captured by
settingwt = 0 andwc = 1. The influence of the damage variables and recovery parameters on material stiffness
are summarized in Figure 5. The non-associative flow rule is given by equation (7).

ε̇pl = λ̇
∂G(σ̄, ψ, ε)

∂σ̄
(7)

Here λ̇ is the non-negative plastic multiplier andψ andε are parameters that shape the flow surface, referred to
as the dilation angle and eccentricity, respectively.G is the scalar-valued flow potential function, given by the

18



Figure 6. Homogenization approach for capturing local variation in tensile response

Drucker-Prager hyperbolic function in equation (8).

G(σ̄, ψ, ε) =
√

(ε tan ψ)2 + q̄2 − p̄ tan ψ (8)

p̄ = − 1
3I1 is the effective hydrostatic pressure withI1 representing the first invariant of the effective stress tensor

and q̄ =
√

3
2 S̄ : S̄ is the Mises equivalent effective stress, defined in terms of the deviatoric effective stress

S̄ = p̄I + σ̄. Sinceλ̇ = 0 whenF < 0 andλ̇ > 0 whenF = 0, the Kuhn-Tucker condition is given bẏλF = 0.
The consistency conditioṅF = 0 follows from the assumption that when plastic slip is occurring the state of stress
remains on the yield surface.

3.2 Accounting for Local Fiber Randomness at the Macroscale

The effect of reinforcement on the tensile response of the composite is included directly into the model using
data from the uniaxial tension test. Due to random local variation of fiber content within a structure, it is not
convenient to use the same strain softening curve to define tensile behavior throughout the global problem domain.
Figure 6 illustrates an alternative approach to homogenization. Here, a domain of length scaleΛ is discretized into
subdomains of scaleλ, called characteristic volume elements (CVE). Each CVE is assigned a unique tensile stress-
strain relationship based on its morphology. CVEs with statistically equivalent properties (say, volume fraction,
fiber length, etc.) can be characterized by similar material properties. Statistically equivalent CVEs are identified
by identical shades, as shown in Figure 6. It should be noted that there is no pattern to the occurrence of statistically
equivalent CVEs, which follows from the lack of periodicity in the material. The determination of parameters for
each CVE is carried out using XFEM, as detailed in Section 4.

For characterization of the composite response, the behavior of FRC in tension is idealized by the following 4-
parameter piecewise equation.

σt(εt) =

{
(σi

εi
)εt ∀ εt ∈ [0, εi]

σie−α(εt−εi) ∀ εt ∈ [εi, εf ]
(9)

The equation consists of an initial elastic region followed by an exponentially decaying post-peak softening region.
Here σi is the peak stress at which the concrete matrix cracks and the fibers are engaged andεi is the strain
corresponding toσi. εf is the strain at which the composite fails.α is an exponential decay parameter that controls
the shape of the post peak softening region, as depicted in Figure 4a.εt andσt are the experimentally determined
stress vs. strain data to which the equation must be fit. The failure strain of the composite,εf , is defined as
the strain at which the tensile stress has degraded to 10% of the peak value. Fiber plasticity and fracture are not
considered here but may be included in future studies. The area under the stress-strain curve represents the total
strain energy capacity of the material in tension, known as the modulus of toughness,Gt. The area under the linear
elastic region of the curve is known as the modulus of resilience, denoted byGr, defined as the amount of energy
that can be absorbed by the material prior to inelastic deformation. The modulus of resilience is calculated using
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equation (10).

Gr =
∫ εi

0

(
σi

εi
)εtdεt =

1
2
σiεi (10)

The modulus of toughness is obtained by summing the modulus of resilience with the area under the post-peak
region of the stress-strain curve as given by equation (11).

Gt = Gr +
∫ εf

εi

σie
−α(εt−εi)dεt (11)

For homogenization, the measured strain energy is converted to strain energy density by normalizing over the CVE
volume. By equating the energy density across scales, the Hill-Mandel macrohomogeneity condition is satisfied.
CVE size effect is for now being deferred to future effort.

4 XFEM Approach to Mesoscale Modelling

XFEM has been tailored for a variety of problems in material analysis and design. The approach can be used
to model fracture, dislocations, grain boundaries, and phase interfaces. Belytschko and Gracie (2009) provided
a comprehensive review of the constantly evolving state-of-the-art of XFEM. The method has been extensively
used to model cracks and inclusions within multiphase materials. Recently, Kastner et al. (2013) used XFEM
to capture the inelastic response of textile-reinforced polymers. Savvas et al. (2014) stochastically analyzed the
effect of elliptical inclusion aspect ratio on elastic behavior. Daux et al. (2000) proposed a method for handling
multiple discontinuities within an element, where cracks propagate and eventually form a junction. Zi et al.
(2004) demonstrate that the junction of two cracks can be handled more easily by combining two step enrichments
rather than using a special enrichment function for the junction. Modelling multiple fibers in an element requires
superposition of enrichment functions, and characterization of interaction effects. Hiriyur et al. (2011) proposed
a displacement approximation for elements containing multiple inclusions.

XFEM uses standard finite element shape functions to approximate the displacement field, along with enrichment
functions to capture the local variation of the displacement field due to the presence of discontinuities in the
material. The local enrichment functions are selected a priori according to the nature of the problem and satisfy the
partition of unity, so that the local enrichment does not affect the global solution. The general form of the XFEM
approximation field is given as

u(x) =
nn∑

a=1

Na(x)ua +
∑

b∈I

Nb(x)ψb(x)vb (12)

u is the displacement;Na(x) the shape function of nodea; ψb(x) is the enrichment function for the inclusion at
nodeb in setI, the index set of enriched nodes;ua andvb are the nodal coefficients of the standard nodes and
the fiber enrichment shape functions.nn is the number of nodes in the problem domain. Level-set methods make
it possible to determine unique enrichment functions for an arbitrarily oriented inclusion within a finite element.
Weakly discontinuous enrichment functions can capture the strain discontinuity in an element, whereas a strongly
discontinuous function can capture discontinuity in the displacement field.

4.1 XFEM for Random FRC with Cohesive Debonding

Pike and Oskay (2015a) presented an approach for modelling the behavior of a matrix containing stretchable short-
fiber inclusions using XFEM. The enrichment functions were derived to model the strain discontinuity resulting
in an element due to an arbitrarily placed high aspect ratio fiber. More recently, the XFEM model was improved
to include the effect of cohesive debonding between the matrix and inclusions. An additional enrichment function
was derived to model the displacement discontinuity in an element as a result of debonding (Pike and Oskay,
2015b). A nonlocal damage model was used to capture the stiffness degradation of the matrix material. The
authors demonstrated that with sufficient mesh refinement XFEM is capable of accurately reproducing the local
mechanical response observed in a reference FEM model. The primary advantage of using XFEM for random
FRC modelling is that the mesh does not need to conform to the morphology of the problem domain. Depending
upon the arrangement of the inclusions, the standard FEM mesh may be geometrically complex and require an
unreasonably large number of elements to accurately solve the problem. The XFEM problem formulation and
enrichment function derivation is outside the scope of this paper, but is discussed briefly in this section to provide
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Figure 7. Visualization of enrichment functions for an arbitrarily placed fiber in a 5x5 element domain: (a)
strain discontinuity enrichment function; and (b) debonding enrichment function

a broad overview of the numerical method used for mesoscale analysis in the proposed multiscale modelling
approach. The approximation of the displacement field is given by equation (13).

u(x) =
nn∑

a=1

Na(x)ua +
n∑

α=1




nα

en∑

b=1

NIα
b
(x)ψα(x)vbα



+
n∑

α=1




nα

en∑

c=1

NIα
c
(x)Υα(x)wcα



 (13)

The formulation is similar to equation (12) but contains an additional enrichment functionΥ(x) to capture the
debonding along the fiber-matrix interface, whileψ(x) captures the discontinuity in the strain field. The enrichment
functions depend on the location of fiberα within the domain.n is the number of fibers in the domain, andnα

en is
the number of nodes enriched by fiberα. ua, vbα, andwcα are the nodal coefficients of the standard nodes, fiber
motion enrichment, and debonding enrichment shape functions.

The fibers are assumed lie entirely within the domain of the composite. The high aspect ratio fiber is idealized as
a line segment within the domain and is defined using the level set functionsφc andφλ.

φc (x) = ‖x − P (x)‖ (14)

φλ (x) = (x − xλ) ∙ tλ; λ = 1, 2 (15)

φc is equal to 0 along the fiber line segment and takes positive values on either side of the fiber.φλ is the level set
function for the two fiber tips (λ = 1, 2). P (x) is the projection ofx onto the fiber.xλ is the position of the fiber
tip andtλ denotes the tangent at the fiber tip.

The enrichment function for the strain discontinuity across the fiber is expressed in terms of the level set func-
tions by equation (16). The function is smooth and nonzero everywhere in the domain except along the fiber, as
illustrated in Figure 7a.

ψα(x) =

[
2∏

λ=1

H(−φλ)

]

φc(x) +
2∑

λ=1

H(φλ)dλ(x) (16)

H is the Heaviside function anddλ(x) = ‖x − xλ‖ is the distance betweenx and the fiber tip.

The debonding enrichment was derived using the same level set functions but introduces a displacement disconti-
nuity rather than a strain discontinuity along the fiber. The debonding enrichment function is given as

Υα(x) = φp H(r(φc))

(
2∏

λ=1

H(−φλ)

)

(17)

r = ±φc is the signed distance function, defined as positive on one side of the fiber level setφc and negative on
the opposite side. The shape of the debonding enrichment is controlled byφp. Pike and Oskay (2015b) derived an
expression forφp as a fourth order polynomial subject to constraints that the maximum debonding along the fiber
occurs at the center of the fiber and the ends of the fiber remain embedded in the matrix, i.e. complete fiber pullout
does not occur. The resulting enrichment function is illustrated in Figure 7b.
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Figure 8. Surface deformities can be introduced into fibers during manufacturing to improve bond perfor-
mance between the fiber and matrix. Common methods include crimping (top) and twisting (bottom)

4.2 Governing Equations

The governing equations for equilibrium in the model domainΩ are given by equations (18) and (19).

∇ ∙ σ(x) = 0; x ∈ Ω (18)

σ = L : ε (x) (19)

In the above equationsσ is the stress tensor and∇(∙) is the divergence operator. The stress is related to the strain
(ε = ∇su) by the elastic moduli tensorL. The displacement and traction boundary conditions are defined by
equations (20) and (21), respectively.

u(x) = ũ (x) ; x ∈ Γu (20)

σ ∙ n = t̃ (x) ; x ∈ ∂Γt (21)

The boundariesΓu andΓt denote non-overlapping regions of the domain on whichũ and t̃ are prescribed, with
∂Ω = Γu ∪ Γt. The stress in each fiberα is assumed to be axial and proportional to the axial strain by the relation
σα

f = Efεα
f , whereEf is the elastic modulus of the fiber. For a fiber of lengthlα and diameterdα, with tα/lα → 0,

the weak form of equations (18)-(21) is expressed as

∫

Ω

σ : δε dΩ +
n∑

α=1

tαEf

∫

Ωα

εα
f δεα

f dΩ +
n∑

α=1

∫

Γα

T ∙ δJuK dΓ −
∫

Γt

t̃ ∙ δu dΓ = 0 (22)

Ωα denotes the domain of fiberα andΩm represents the domain of the matrix.Γα is the interface between the
matrix and fiberα. δu andδε represent the test function and the gradient of the test function, respectively.T is
the traction resulting at the interface due to the displacement jump across the fiber,JuK. The traction separation
relationship is included in the model using an intrinsic cohesive law with uncoupled normal and shear components.
In this approach pullout test data is fit to an appropriate cohesive model. The pullout test measures the reaction
force at a fiber-matrix interface as a fiber is pulled out of the matrix. Cohesive properties can be manipulated
in design by coating fibers and/or introducing deformities for mechanical bonding, as shown in Figure 8. Figure
9 illustrates the effect of fiber crimping on the bond behavior for a polymeric fiber embedded in a cementitious
matrix. In this work a bilinear cohesive law was used to characterize the interfacial bond. Three parameters
define the idealized curve shown in Figure 9: peak cohesive strength (Tn), characteristic displacement at the peak
cohesive strength (δn) and displacement at bond failure (δmax). n denotes the normal component of the traction
T . For the sake of simplicity, the shear parameters are assumed to be proportional to the normal components in the
initial study. A range of values are used for the cohesive parameters in the numerical studies detailed in Section
5, in order to assess the influence of the bond characteristics on the response of the composite material. Pike and
Oskay (2015b) provides a complete derivation of the XFEM model used herein to measure composite response of
a random FRC microstructure.

4.3 Nonlocal Damage Model

A nonlocal continuum damage model is used to capture the progressive degradation of matrix stiffness. A damage
parameterw that varies between 0 (undamaged) and 1 (fully damaged) is calculated based on the weighted average
of the principal strains within a radial basis. As the damage parameter increases, the stiffness of the material
progressively decreases until failure. An alternative continuum damage law may be easily used if deemed suitable
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Figure 9. Example pullout test data for a ductile fiber in a cementitious matrix. The idealized bilinear
cohesive law used in this manuscript is superimposed

for the matrix material of interest. At an arbitrary material pointx̂ the evolution of the damage variable follows
the arctangent function of equation (23).

w(x̂, t) =
arctan(a k(x̂, t) − b) + arctan(b)

π

2
+ arctan(b)

(23)

In equation (23),a andb are parameters fit to data from tests on the unreinforced matrix material.k(x̂, t) is an
increasing non-negative history dependent variable defined by equation (24).

k(x̂, t) = max
τ∈[0,t]

(〈v̂(x̂, τ ) − vini〉) (24)

v̂ is the nonlocal equivalent strain obtained from weighting the local equivalent strainsv within a radial basis
defined bŷλ(x, x̂). vini is a threshold value of equivalent strain below which damage is assumed not to progress.
Equation (25) defines the local equivalent strain in two dimensions as the norm of the positive principle strainsε̂i,
which is intended to simulate stiffness degradation as cracks form in the matrix under tensile loads.

v(x̂, t) =

√√
√
√

2∑

i=1

〈ε̂i(x̂, t)〉2 (25)

The nonlocal equivalent strains are then computed using equation (26).

v̂(x̂) =

∫

Ω

λ̂(x, x̂)v(x, t)dx
∫

Ω

λ̂(x, x̂)dx
(26)

The weights are determined using the Wendland Radial Basis Function (Wendland, 1995) given by equation (27),
wherelc defines the span of the radial basis.

λ̂(x, x̂) =

(

1 −
‖x − x̂‖

lc

)4(

4
‖x − x̂‖

lc
+ 1

)

(27)

5 Numerical Models

The XFEM code developed by Pike et al. (2015) deals with a 2D square matrix reinforced by 1D fibers subject to
uniaxial tension. A CVE domain of 50x50 mm is considered (λ = 50 mm). Square elements of 0.5 mm dimension
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are used, resulting in a 10,000 element mesh. Figure 10 depicts the problem domain for a random sample. The
left and bottom boundaries of the matrix are constrained against displacement in their normal directions. The right
end of the domain is assigned a displacement of magnitudeu0 = 0.1 mm. The problem is solved using 250 fixed
strain increments. Table 1 gives the properties of the matrix and fiber used in the models. While the fiber length,
diameter, and cohesive properties are sampled from random distributions, as discussed later in this section, the
phase material properties are assumed constant. The numerical values used are typical for a cementitious matrix
material and a steel fiber.

Figure 10. XFEM problem domain and boundary conditions

Table 1. Phase MaterialProperties

Property Matrix Fiber
Young’s Modulus,E 14,000 MPa 207,000 MPa
Poisson’s Ratio,ν 0.3 0.3

Nonlocal Damage Radius,lc 0.75mm -
Nonlocal Damage Parameter,a 49,000 -
Nonlocal Damage Parameter,b 19.5 -

5.1 Sampling of Descriptor Space

Descriptors are in essence the design variables for the engineered composite material. Given some matrix and fiber
material, it is necessary to identify the ideal combination of fiber length, diameter, volume content, and interfacial
cohesive properties to achieve desirable inelastic response. The descriptors act as inputs to the XFEM model from
which corresponding material properties are extracted. Stress vs. strain data is recorded at each increment of the
analysis. Processing of the data is discussed in Section 6. Here,n = 6 descriptors are considered, as listed in
Table 2. A pointX in descriptor space is defined asX = [X1, X2, ..., Xn−1, Xn]. X is a row vector with each
component representing some value of descriptorXj , j = 1...n. Let Y denote a measured output material to be
optimized, such as strain energy capacity. The constrained optimization problem is then expressed as

maximize Y = H(X)
subject to Xj ≥ aj j = 1...n

Xj ≤ bj j = 1...n
(28)

Here [aj , bj ] is the range of feasible design values for descriptorXj . H is the mapping from a point in input
space to composite response in output space. The feasible region is defined independently in each dimension of
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descriptor space by the bounds listed in Table 2. In practical applications, the feasible region of values for fiber
length may be defined as the range of fiber lengths available from a manufacturer, for example. In practice, cohesive
properties may be customized by applying coating to fibers or introducing deformities for improved anchorage.
The process for solving the optimization problem is as follows: (1) randomly generatem samples,Xi, i = 1...m
in n-dimensional descriptor space; (2) analyze random realizations of microstructureXi using the XFEM model
discussed in this section to obtain material property outputs,Yi; (3) implement Gaussian Process regression to
obtainH(X) from the data; (4) identify optimal pointsX∗ that maximize the objective function.

Table 2. Descriptor VariableRanges

Descriptor Lower Bound (aj) Upper Bound (bj)
df , Fiber diameter (X1) 0.005mm 0.1mm
lf , Fiber length (X2) 5 mm 15mm

VF, Fiber volume fraction (X3) .01% 1.5%
Tn, Peak normal cohesive strength (X4) 5 MPa 15 MPa

δn, Characteristic normal cohesive separation (X5) 0.000005mm 0.0001mm
δmax, Maximum cohesive separation (X6) 0.0002mm 0.0005mm

For random sampling, a probability distribution type must be selected for each input descriptor. Descriptors may
be continuous or discrete, bounded or unbounded based on the physical property they represent. In this work,
continuous, bounded descriptors are considered. WithfXj

(x) representing the probability density function (PDF)
for the assumed distribution of descriptorXj , for a general continuous random variableXj with lower boundaj

and upper boundbj

fXj
(x) = P (Xj = x) ∀ x ∈ [aj , bj ] (29)

P (Xj = x) represents the probability thatXj is equal tox. The corresponding cumulative distribution function
(CDF) is then defined as

FXj (x) =
∫ x

aj

fXj (x)dx ∀ x ∈ [aj , bj ] (30)

The CDF is non-decreasing and varies between 0 and 1 over the domainx ∈ [aj , bj ]. To generate random descriptor
values for sampleXi, a vector of independently generated random numbers,ri is constructed in the form of
equation (31).

ri = [r1, r2, ..., rn−1, rn], rj ∈ (0, 1), j = 1...n (31)

Using the inverse CDF of eachXj , entries ofri are converted into components of the random sample point by
equation (32).

Xi = [F−1
X1

(r1), F
−1
X2

(r2), ...F
−1
Xn−1

(rn−1), F
−1
Xn

(rn)] (32)

In this work a uniform distribution is used for each descriptor so that the entire range of the feasible region for a
descriptor can be considered with equal bias. Using a uniform distribution, the components ofXi in equation (32)
can be calculated as

F−1
Xj

(rj) = aj + rj(bj − aj) (33)

In order to determine a meaningful relationship betweenX and Y, it is important that the feasible region is
appropriately sampled in each dimension of the descriptor space. If components ofri are obtained independently
for each of them samples, it is possible for multiple random samples to contain similar values in some dimensions.
As a result, some regions of design space may be insufficiently sampled. To avoid this issue, Latin Hypercube
Sampling (LHS) is implemented. LHS is a type of stratified sampling technique in which each dimension of
descriptor space is subdivided intom equal intervals. Samples are generated such that only one sample will be
drawn from each interval in each dimension. Figure 11 shows 10 sample points plotted in 2 dimensions to illustrate
the the concept of LHS. It can be seen that no interval on either axis of any of the three plots contains multiple
samples. In this study, no correlation between parameters is used in sampling the descriptor space, i.e. each
descriptor is treated as an independent design variable. For this study, 50 samples were used to discretize the
feasible region defined in Table 2. For eachXi, p random realizations of the microstructure are tested, denoted by
X̃(k)

i , k = 1...p, to obtain the mean and variance of each output parameter at the sample point. For initial study, a
value ofp = 3 was used. Future studies will assess the statistical significance of the sample size. More realizations
of each sample point should be used to reduce the observed uncertainty.
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Figure 11. 2D visualization of LHS in example descriptor space withm = 10

Figure 12. Sample tensile stress-strain curves for two random points in descriptor space:X1 (a) andX20

(b)

6 Discussion of Results

Random CVE realizations̃X(k)
i , k = 1...3, at each pointXi, i = 1...50 in descriptor space were modelled in

tension using XFEM. Stress vs. strain data was obtained from each analysis. Figure 12 illustrates the curves
obtained for each random realization at two points,X1 andX20. Five quantities used to characterize the material,
denotedYq, q = 1...5, were measured for each sampleX̃(k)

i . Table 3 identifies the measured properties. Damage in
the matrix material is initiated at the fiber tips and propagates through the material to the edges of the CVE domain.
As a result, higher concentrations of fibers provide additional potential damage paths, reducing the peak strength of
the composite and producing more uncertainty in the post-peak response. At first glance, it can be clearly seen that
X1 exhibits lower peak tensile strength and a smaller strain to failure thanX20. The response of each realization of
X1 appears nearly identical in the elastic range, with slightly increased variation being observed in the post-peak
response. In contrast, realizations ofX20 show greater uncertainty in both pre- and post-peak response.

In order to quantify the uncertainty at each pointXi, second order statistical information for eachYq was obtained
at each sample point in the descriptor space. The coefficient of variation (CV) of propertyYq at sample pointXi

observed from random realizations̃X(k)
i is defined as

CVXi
(Yq) =

σ̄
(i)
Yq

μ̄
(i)
Yq

(34)

μ̄
(i)
Yq

andσ̄
(i)
Yq

represent the sample mean and standard deviation ofYq observed at pointXi in population{X̃(k)
i }3

k=1.
The CV compares the variability of the property to the magnitude of the expected value of the property, providing
a normalized, dimensionless measure of uncertainty. Figure 13 shows the averages of computed within-cluster CV
values for each material property. The average measured CV of peak tensile stress was 0.049. The lowest average
CV was observed inεi, with a value of 0.047. The properties corresponding to the elastic region of the response
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Table 3. Composite parameters measured in each numericalsimulation

Identifier (Yq) Material Pr operty Description
Y1 σi Peak tensilestress
Y2 εi Tensile strain at peakstress
Y3 εf Strain at failure ofcomposite
Y4 Gr Modulus ofresilience
Y5 Gt Modulus oftoughness

Figure 13. Average coefficient of variation for measured composite response parameters

exhibit very low uncertainty, while the highest uncertainty is observed in the modulus of toughness (0.115) and
failure strain (0.164). The elastic response of the composite is largely controlled by the matrix material, while
inelastic response depends on the interaction of fibers. It follows that more uncertainty arises in characterizing the
post-peak response due to the randomness of the fiber locations within the problem domain.

6.1 Characterization and Prediction of Composite Properties

While clear differences may be observed in the curves obtained forX1 andX20 (Figure 12), the complex rela-
tionship between descriptor variables and composite properties cannot be obtained by directly comparing output
quantities, because each sample is characterized by a point in the six-dimensional space. Each of the six com-
ponents is assumed to have some influence on the measured material properties. Gaussian process regression is
implemented in order to model the functionY = H(X) presented in Section 5. Rasmussen and Williams (2006)
explains GP in detail and provides algorithmic approaches to regression and prediction using the method. GP can
be easily implemented in Matlab and Octave using the freely available GPML Toolbox developed by Rasmussen.
This section provides a brief overview of GP, focusing primarily on how the concepts can be applied to FRC
characterization and property prediction.

A GP is a collection of random variables with joint Gaussian distributions defined by its mean and covariance
functions, similar to a multivariate Gaussian distribution. The expression for the random functionH(X) assumed
to relate descriptor variables to output quantities is given in equation (35).

H(X, ω)∼GP
(
m(X, ωm), k(X,X′, ωk)

)
(35)

Here,m(X, ωm) andk(X,X′, ωk) represent the prior mean and covariance functions with parametersωm and
ωk, respectively. Information about the expected value ofH(X) is unknown, so a zero-mean function is assumed
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Table 4. Descriptor values of four random testpoints

Point df (mm) lf (mm) VF (%) Tn (MPa) δn (mm) δmax (mm)
X1 0.079 7.167 0.975 9.402 0.00007 0.00024
X2 0.043 7.667 1.281 7.187 0.00002 0.00050
X3 0.094 5.421 0.695 14.812 0.00008 0.00030
X4 0.065 11.697 0.838 8.796 0.00001 0.00033

Table 5. Error magnitude for eachYq at testpoints

Point σi Error (%) εi Error (%) εf Error (%) Gr Error (%) Gt Error (%)
X1 1.90 1.28 0.22 1.11 0.61
X2 4.55 4.91 3.37 8.68 1.53
X3 4.64 6.99 1.42 10.63 4.05
X4 4.32 1.36 5.60 4.46 5.35

Average 3.85 3.64 2.65 6.22 2.89

for the prior value allowing the function to be defined entirely by second-order statistics. The covariance function
governs the manner in which the value ofH(X, ω) changes throughout descriptor space. The squared exponential
covariance function is commonly used in GP regression for its simplicity and flexibility. The function takes the
form

k(X,X′) = σ2
fexp

(
−

1
2l2

(X − X′)T (X − X′)
)

(36)

whereσf is a scaling parameter andl is the characteristic length scale parameter. The squared exponential co-
variance function provides that for two pointsX andX′ close together in space there is a high likelihood that the
function will return similar output values at each point, with the likelihood decreasing exponentially as the distance
between the points increases. The characteristic length influences the rate of the exponential decay. However, the
descriptor variables differ significantly in magnitude, so it is not reasonable to assume a common characteristic
length scale for all dimensions. In this work, the following anisotropic equivalent of the squared exponential
covariance function is preferred

k(X,X′) = σ2
fexp

(
−

1
2
(X − X′)T Λ−2(X − X′)

)
(37)

whereΛ is annxn diagonal matrix of characteristic correlation length values in each dimension of descriptor
space. The parameters of the covariance function are determined such that the marginal likelihood is maximized,
that is, the probability of obtaining dataY from inputX using modelH(X, ω) is optimal. In this work GP is used
to regress eachYq independently. Future studies will address the correlation of output variables.

To determine the accuracy of the GP in predicting eachYq, 10 training points and 4 test points were randomly
selected from the 50 points tested. Table 4 lists the descriptor values characterizing each test point. The training
points were used to determine the model parametersωk. Using the trained GP, output values were predicted for
each test point. The error calculated between the GP predictions and the measured outputs from the XFEM models
at the test points is given in Table 5. The largest error was observed in predicting the modulus of resilience at point
X3, with a value of 10.63%. AtX1, however, the modulus of resilience was predicted with only 1.11% error. With
the exception ofGr, the GP predicted each output within 7% error at each of the four test points, with an average
error of less than 4% for each output.

Figure 14 illustrates the accuracy of the GP in predicting the composite properties at the test points. It can be
seen that there is only oneYq associated with eachXi, which follows from the choice of LHS as the sampling
method. LHS was used in this study to cover the extent of descriptor space in the most efficient manner possible.
Future studies will assess the sensitivity of the model with respect to each descriptor variable by using additional
sample points, as well as testing of additional realizations of each sample point to reduce the variance of the output
quantities. As mentioned in Section 2, the use of a sequential multiscale modelling framework allows for the
continuous development of a mesoscale model database. The GP may be easily retrained as data from additional
samples is made available.
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Figure 14. GP prediction accuracy at test points visualized with respect to descriptor variables: (a)σi vs.
volume fraction; (b)Gr vs. Tn; (c) εf vs. δmax; and (d)Gt vs. df

7 Conclusion

A sequential multiscale model for random short-fiber reinforced composites is presented. The presence of ran-
dom fibers in the matrix significantly influences the tensile response of the composite material. For certain design
applications, it is desirable to optimize tensile response parameters such as strain energy capacity and ductility.
In Performance Based Optimal Design, microstructure characteristics including fiber dimensions, volume content,
and fiber-matrix interfacial bond properties are selected as design variables influencing the response of the compos-
ite at the structural scale. The Concrete Damage Plasticity model is identified as a suitable material model for the
homogenized inelastic response of FRC. In order to determine composite material properties for the CDP model,
a series of analyses are performed on the mesoscale to quantify the effect of random fiber distributions. Latin
Hypercube Sampling is used to draw random sample points from the feasible region of a 6-dimensional descriptor
space. XFEM is used for the mesoscale simulations due to its ability to efficiently model random fiber response.
The variation observed in inelastic composite properties among random realizations of each sample point is rela-
tively large compared to the elastic properties and should be improved upon using additional samples for improved
accuracy in characterization. The relationship between descriptors and composite material properties is modelled
as a stochastic process. The GP model performs well in predicting composite properties.

Future work will focus on homogenization and reliability studies of macroscale composite designs using the CDP
model. The mesoscale database will continue to be expanded using additional sample points in descriptor space.
The effect of sample size on convergence of measured properties at a point in descriptor space will be assessed,
as well as the effect of CVE size. In this work, the effect of changing fiber geometry, composition, and interface
properties for a given matrix and fiber material is considered. It may be of interest to consider different fiber
and matrix materials, depending on application. Failure of the composite was defined by degradation of the load-
carrying capacity in this work. Fiber plasticity and fracture should also be considered as failure modes. The
definition of an optimal design is dependent upon the application of interest. For some applications it may be
desirable to maximize the failure strain of the composite, whereas other applications may emphasize optimization
of strain energy capacity. Future studies will address specific design problems using the method discussed herein.
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