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Modelling the Microstructure and the Viscoelastic Behaviour of Carbon
Black Filled Rubber Materials from 3D Simulations

B. Figliuzzi, D. Jeulin, M. Faessel, F. Willot, M. Koishi, N. Kowatari

Volume fraction and spatial repartition of fillers impact the physical properties of rubber. Extended percolating
networks of nano-sized fillers significantly modify the macroscopic mechanical properties of rubbers. Random
models that describe the multiscale microstructure of rubber and efficient Fourier-based numerical algorithms are
combined to predict the material’s mechanical properties. From TEM image analysis, various types of multiscale
models were proposed and validated, accounting for the non-homogeneous distribution of fillers: in the present
work, aggregates are located outside of an exclusion polymer simulated by two families of random models. The
first model generates the exclusion polymer by a Boolean model of spheres. In the second model, the exclusion
polymer is a mosaic model built from a Johnson-Mehl tessellation. Here the exclusion polymer and the polymer
containing the filler show a similar morphology, contrary to the Boolean model. Aggregates are then described
as the intersection of a Boolean model of spheres and of the complementary of the exclusion polymer. Carbon
black particles are simulated by a Cox model of spheres in the aggregates. The models rely on a limited num-
ber of parameters fitted from experimental covariance and cumulative granulometry. The influence of the model
parameters on percolation properties of the models is studied numerically from 3D simulations. Finally, a novel
Fourier-based algorithm is proposed to estimate the viscoelastic properties of linear heterogeneous media, in the
harmonic regime. The method is compared to analytical results and to a different, time-discretized FFT scheme.
As shown in this work, the proposed numerical method is efficient for computing the viscoelastic response of
microstructures containing rubbers and fillers.

1 Introduction

Mechanical properties of rubbers are often improved by including nanoscopic fillers in their composition. Usually,
silica and carbon black materials are used for this purpose. The geometrical properties of the fillers are an impor-
tant feature of the global material. In particular, their volume fraction and spatial distribution largely determine the
physical properties of the rubber. Extended percolating networks of fillers can for instance significantly enhance
the mechanical properties of rubbers on macroscopic scales.

This work investigates the influence of the fillers geometry on the viscoelastic properties of rubber. An important
step toward the completion of this research is the development of random models describing their complex mi-
crostructure. Following a now well-established method in material science as in Jeulin (1991), random realizations
of these models can in turn be used to perform an extensive study of the mechanical properties of the rubber.

As reviewed by Jean et al. (2011a), several models have been developed in the past 20 years to describe the
microstructure of rubbers. Bergström (1998) developed a model describing the carbon aggregates as squares or
dodecahedra in an elastomeric volume. Even if their model only accounts for the scale of aggregates, they were
able to conduct extensive finite elements calculations aimed at describing the large deformation behavior of the
rubber. Relying on a similar approach, Jha et al. (2007) developed a cuberbille model to describe carbon aggre-
gates in a rubber matrix. In their model, they notably added a third phase accounting for a layer of bound rubber
surrounding the aggregates. Naito et al. (2007) improved the microstructure description by considering that ag-
gregates can be represented as the union of carbon black spherical-shaped particles, eventually opening the way
to the development of more accurate models. Carbon black composites have finally been widely investigated at
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the Center for Mathematical Morphology by Jeulin and Le Cöent (1996), Savary et al. (1999), Delarue and Jeulin
(2003) and Moreaud and Jeulin (2005).

In this paper, we first introduce the studied material nanostructure from TEM micrographs. After a morphological
segmentation of images, measurements are performed to quantitatively characterize the microstructure. Then, two
random set models to reproduce the multiscale microstructure of rubbers are developed. They are identified from
the available experimental data obtained on TEM images and on simulations. In Section 4, we focus on the issue of
percolation, which is of particular interest regarding the microstructure optimization. In the last part, viscoelastic
properties of the material are predicted by means of Fast Fourier Transforms performed on simulated 3D images
generated from the random model.

2 TEM Images Analysis

2.1 Material

This work concerns a rubber material reinforced by carbon black particles as fillers, that are embedded in a matrix
of rubber and can be geometrically well-approximated by spheres of diameterD ' 30 − 40 nm, as illustrated in
Figure1 a. The volume fraction of the fillers is around14 percents in the rubber. A key feature of the material
is that the rubber matrix is constituted of two distinct polymers: an exclusion polymer, which cannot contain any
filler, and its complementary polymer, which can contain fillers. Fillers tend to agglomerate together within the
rubber matrix. The filler particles indeed exhibit a turbostratic structure which enable them to merge and create
aggregates (Jean et al. (2011a)).

2.2 TEM images Segmentation

To analyze the rubbers microstructure, we dispose of a set of 50 TEM micrographs of size 1024 by 1024 pixels
with resolution2.13 nm per pixel. These images were obtained in theYokohama Rubber Research Center. The
slices of material probed by the microscope have a thickness around40 nm. The first task is to segment these
images, in order to identify the spatial distribution of the fillers. The segmentation procedure and its results are
presented in the first two paragraphs of this section. The next step is to extract morphological characteristics from
the segmented TEM images, as described in the third paragraph.

Algorithm The segmentation process aims at extracting the carbon black phase from the 8 bits TEM images.
White regions can be observed in the images, which correspond to aggregates prints that have been taken off by
the blade of the microtome during the samples preparation. These prints have to be included in the set of regions
to be extracted. The main difficulty here is the presence of an illumination gradient and of contrast difference.
Therefore, a simple thresholding is not sufficient to discriminate the black visible aggregates from the rubber
matrix.

The first step of the segmentation consists in denoising the TEM images. The denoising is performed using an
alternate sequential filter, a classical filter in mathematical morphology (Serra (1982)).

The second step of the segmentation process is the extraction of the white aggregates prints. This task is easily
performed by thresholding the filtered image with a grey level higher than 170. Finally, the prints with area smaller
than 3 pixels are removed from the thresholded image.

The third step of the segmentation process is the extraction of the visible black carbon aggregates. First, the white
prints of aggregates are extracted by an opening with a disc of radius 50 pixels to the filtered image, followed by
a geodesic reconstruction. Once the white prints have been removed, a black top hat is performed, to account for
contrast difference in the image and to detect the darkest zones. A closing of size 20 pixels is used in this purpose.
The top hat introduced by Meyer (1979) is a morphological operator which returns the difference between an
original image and that same image after opening by some structuring element. This operator is classically used
to remove the large scale contrast in an image. A black top hat is simply a top hat operator applied on the inverse
image. At this point, a threshold on the resulting image extracts the visible black aggregates, with a grey level
around 15. This threshold level is specified to recover an average apparent area fraction of fillers close to 28
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percents for the available TEM images. This apparent area fraction results from the projection of the particles
on the image during the acquisition by TEM on slices with a thickness approximately twice the radius of a black
carbon particle. Finally, the aggregates with area lower than 3 pixels are removed by an area opening applied to
the thresholded image.

The results of the segmentation procedure are shown step by step for an initial TEM image in Figure1.

(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) TEM Image of rubber matrices filled with carbon black, obtained in the Yokohama Rubber Research
Center. Different steps of the segmentation (see text): (b) Filtered TEM Image; (c) Extracted white prints; (d)

Dual Top-hat; (e) extracted aggregates; (f) segmented image.

Morphological analysis An efficient way to keep track of the information embedded in the segmented images is
to rely on a morphological characterization of the material. In this work, use is made of the covariance, to measure
scales in the images, and of size distributions of the filler by opening transformations.
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The covariance of a random setA is the probability thatx andx + h both belong toA:

C(x, x + h) = P{x ∈ A, x + h ∈ A}, (1)

whereh is some vector ofRn. For a stationary random set, the covariance is a function of the distanceh only:

C(x, x + h) = C(h). (2)

The covarianceC(h) provides useful information about the spatial arrangement of the random setA and can ac-
count for the presence of several scales in the studied set or for periodicity. By definition,C(0) simply corresponds
to the volume fractionp of the setA. In addition, the covarianceC(h) reaches a sill at the distance or ranged. At
this distance, we have

CA(d) = p2. (3)

The average covariance measured on segmented binary images is given in Figure 2.

Figure 2: Experimental covariance measured on segmented images

Another important statistical characteristic is the granulometry of the material. The axiomatic of granulometries
was first formulated in Matheron (1975). In this work, we will consider a granulometry relying on a family of
openings by disks. LetK be a convex set. We consider the family{Kλ, λ > 0}, whereKλ = λK. The opening
operator (the symbols	 and⊕ representing the morphological erosion and dilation)

Φλ(A) = (A 	 Ǩλ) ⊕ Kλ, (4)

defined for all closed setA, is a granulometry. Therefore, the granulometry by openings provides a convenient
way to characterize the size distribution of the aggregates in the material. The cumulative granulometry curve of
the carbon black filler, deduced from the changes of volume fraction measurement with the sizeλ, is shown in
Figure 3.

Using the covariance and the granulometry curves, we can select a proper set of parameters for the identification
of random sets models and control their validity, as explained in the next section.
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Figure 3: Experimental cumulative size distribution of the carbon black filler obtained by openings by discs.

3 Random Models of Multiscale Microstructures

As suggested by the intrinsic nature of the material and as observed after the segmentation, the fillers tend to re-
group in the material to create aggregates. As a consequence, we have to rely on a two-scale model to properly
describe the microstructure (Jeulin (2010, 2012)). The first scale corresponds to the aggregates, while the second
one describes more specifically the single particles inside the aggregates.

In addition, several alternatives can be considered to locate the aggregates outside of the exclusion polymer. scale.
In this work, two distinct models are used in this purpose. The first one relies on a Boolean model of spheres
of constant radius to model the exclusion polymer distribution, the second one on Johnson-Mehl tesselations. In
both cases, the location of the centers of carbon black spheres are located according to a Poisson point process
restricted to the permitted zones, namely outside of the exclusion polymer and inside the aggregates, generating a
Cox Boolean model of spheres (Jeulin (2010, 2012)). Both models are presented and discussed in this section.
All simulations presented here are realized using the software VtkSim, developed in Faessel (2012); Faessel and
Jeulin (2011) at the Center for Mathematical Morphology. The method used for the implementation is briefly
introduced later in this section.

3.1 Exclusion Polymer based on a Boolean Model of Spheres

3.1.1 Theoretical Model

The first model relies on the Boolean model (Matheron (1975)). As eluded to earlier, the studied material contains
two kinds of polymers:

• an exclusion polymerPe with volume fractionve

• a second polymerPi with volume fractionvi that can contain fillers.

The exclusion polymer is modelled by a Boolean model of spheres of constant radiusRe (Figure 4 a) The model
depends on two parameters: the intensityθe of the underlying Poisson point process and the exclusion radiusRe.
These two parameters can be related to the volume fraction of exclusion polymer to yield

1 − ve = exp(−θe
4π

3
R3

e). (5)

Therefore, if the volume fraction of the exclusion polymer is known, the exclusion polymer modelling is controlled
by one single parameter. The second polymer is obtained as the complementary of the exclusion polymer. At this
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point, the spatial distribution of aggregates still has to be simulated. Aggregates are modelled as the intersection of
the polymerPi and of a Boolean model of spheres with radiusRa, independent from the model used to simulate the
exclusion polymer (Figure 4 b). Again, the model is described by two parameters: the intensityθi of the underlying
Poisson point process, and the radiusRi of the implanted spheres. The volume fractionva of the aggregates is
given by

va = (1 − ve)

(

1 − exp(−θi
4π

3
R3

i )

)

. (6)

The second scale of the material is made of the carbon black particles themselves. These particles are simulated
using a Boolean model of spheres of constant radiusRcb implanted on the realization of a Cox point process
driven by the aggregates. Since the carbon black particles exhibit a turbostratic structure, these particles can
interpenetrate. Therefore, in the model, the particles can partially overlap by introduction of a hard-core distance
equal to the radius of the particle (Figure4c).

(a) (b)

(c)

Figure 4: The three steps of the construction of the model: (a) exclusion polymer (Boolean model of spheres); (b)
aggregates; (c) carbon black particles network (ve = 0.2; Re = 30 nm;Ra = 60 nm;Rcb = 20 nm; simulated

volume: (500 nm)3)
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Figure 5: Scheme of the multiscale random model (exclusion zones made of a Boolean model of spheres)

The intensity of this Cox process is the random measure defined by

θcb(x) =

{
θ if x ∈ Aaggr

0 otherwise
(7)

The overall construction of the model is summarized in Figure 5. A vectorial simulation of a domain with a1μm3

volume is generated in 2 minutes.

Concerning the parameters of the model, the radius of the spheres can be measured experimentally. Therefore, the
modelling of the second scale is entirely controlled by the single parameterθcb. Overall, if the volume fractionve

of exclusion polymer and if the radiusRcb of the carbon black particles are known, the global model is controlled
by the following set of parameters:

• the intensityθe of the Poisson point process aimed at describing the exclusion polymer,

• the intensityθa of the Poisson point process on which the modelling of the aggregates relies,

• the radiusRa of the Boolean spheres used to model the aggregates,

• the intensityθcb of the Cox point process on which relies the modelling of the spatial distribution of the
black carbon particles.

• the hard-core distance for the Cox point process, which is equal to the radius of the particle.

Finally, note that a bound rubber of constant thicknesst surrounds the carbon black particles. In the model, the
bound rubber is obtained by considering the Boolean difference of a boolean model of sphere of constant radius
Rcb + t implanted on the centers of the black carbon particles and of the Boolean spheres describing the black
carbon particles.

This version of the model is close to the version given in (Jean et al. (2011a)). However in the previous work,
aggregates were obtained from a Boolean model of spheroids, instead of spheres, and no hard-core process was
introduced for the location of carbon black particles. Furthermore, the identification process of the parameters of
the model was completely different.

3.1.2 Model Fitting from Experimental Data

The model can be identified and validated with the available experimental data. The four free parametersRe, Ra,
θa andRcb are estimated by fitting the covariance and the granulometry curves of the simulated images to the
corresponding experimental curves.
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Optimization algorithm The procedure to fit the model parameters is as follows. First, we start from the exper-
imental covariancẽC(h) for all distances0 ≤ h ≤ N and the experimental granulometry curveG̃(s) for all sizes
1 ≤ s ≤ K. Then, for each realization of the model the least square function is computed

F(Re, θa, Ra) =
N∑

n=0

(C[Re, θa, Ra, n] − C̃[n])2 +
K∑

k=1

(G[Re, θa, Ra, k] − G̃[k])2, (8)

whereC (resp.G) is the covariance function (resp. granulometry curve) measured at all distances{0 ≤ n ≤ N}
(resp. for all sizes{0 ≤ k ≤ K}) on the realization. The optimization problem is thus the determination of the
parameters that minimize the functionalF .

Considering the lack of analytical formulae for the covariance in the model, we have to rely on numerical proce-
dures to perform the optimization. Most numerical optimization algorithms rely on steepest-descent or on Gauss
procedures. A popular method in numerical optimization is thus the Levenberg-Marcquardt algorithm (Leven-
berg (1944)), which combines these two approaches. This algorithm has been successfully used in (Jean et al.
(2011a)) to optimize a similar model for the microstructure of carbon black particles embedded in rubbers. The
main issue with the Levenberg-Marcquardt algorithm is that it relies on a gradient calculation. Estimating the
gradient of the covariance with respect to the simulation parameters is a difficult task here, since a small variability
cannot be avoided due to the intrinsic probabilistic nature of the model. As a consequence, in the present work
another classical optimization algorithm is implemented to perform the optimization, namely the Nelder-Mead
procedure (Nelder and Mead (1965)) . The advantage of this algorithm is that it does not rely on the gradients of
the functional with respect to the parameters.

Results and discussion The values of the parameters obtained after optimization are given in the Table 1. Note
that a particular emphasis was given to the covariance fitting, as evidenced in Figure 6. A simulated image is shown
in Figure 7 and compared to a segmented TEM image.

It is clear from Figure 6 that the model accurately reproduces the reference covariance curve for the studied mate-
rial. However, a small but still significant discrepancy can be observed between the reference granulometry and the
simulations. This is a direct consequence of the model chosen to describe the microstructure. By using a Boolean
model to describe the exclusion polymer, strict limitations are imposed on the aggregates geometry. In addition,
the model does not preserve the geometrical symmetry between the exclusion polymer and its complementary.
As a consequence, the model fails to properly simulate the smallest aggregates, which explains the discrepancy
between the granulometry curves. This discrepancy can also result from the aggregate prints removed during the
sample preparation: they were considered to be originally mostly constituted of black carbon particles, but this
remains an approximation. Hence, the granulometry of the larger grains is largely overestimated, which strongly
impacts the granulometry features.

It is finally interesting to take a closer look at the optimal parameters, and in particular at the intensity of the Cox
model for the carbon black particles. One can note that the intensity of the Cox model yields a significantly high
value. This is explained by the high density of carbon black particles in the aggregates.

ve Re (nm) θa (nm−3) Ra (nm) θcb (nm−3) Rcb (nm)
0.2 30 4.0 × 10−7 60 3.0 × 10−5 18

Table 1: Optimized parameters for the Boolean model of exclusion polymer
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(a) (b)

Figure 6: Covariance (a) and granulometry (b) of the simulated material. The simulated curves are represented by
the discontinuous lines, the experimental curves by the continuouslines.

(a) (b)

Figure 7: Comparison between an experimental (a) and a simulated TEM image (b) for the Boolean model of
exclusion polymer.

3.2 Exclusion Polymer based on a Johnson-Mehl Mosaic Model

As indicated previously, a major issue regarding the Boolean model is that it does not preserve the geometrical
symmetry between the exclusion polymer and its complementary. It is therefore of interest to consider other models
to describe the exclusion polymer. For this purpose, a model for the exclusion polymer based upon Johnson-Mehl
tesselations is introduced in this section.

3.2.1 Theory

Let Ω denote a given volume inR3. A tessellation inΩ is a subdivision ofΩ into three dimensional subsets re-
ferred to ascells. A general theory of random tessellation has been established over the years, notably by Matheron
(1969)), Stoyan et al. (1995), Zähle (1988) and Møller (1989). Another useful reference on this topic is the book of
Schneider and Weil (2008). Finally, note that the paper of Møller (1992) provides a unified exposition of random
Johnson-Mehl tessellations

The Johnson-Mehl tessellation model was introduced by Johnson and Mehl, mainly to describe crystallization pro-
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cesses in metallography. Their model can be seen as a variation of the Voronoı̈ model. A Voronöı tessellation is a
tessellation built from a Poisson point processP in the spaceR3. Every pointx of R3 is associated to the classCi

containing all points ofR3 closer from the pointxi of P than from any other point ofP . Johnson-Mehl tesselations
can be seen as a sequential version of the Voronoı̈ model, where the Poisson points are implanted sequentially with
time. All classes grow then isotropically with the same rate, and the growth of crystal boundaries is stopped when
they meet. All Poisson points falling in an existing crystal are removed.

From a mathematical viewpoint, a Johnson-Mehl tessellation is constructed from a sequential Poisson point process
where the pointsxi, i = 1, .., N are implanted sequentially at a timeti, i = 1, .., N . The classesCi, i = 1, .., N
corresponding to the pointsxi, i = 1, .., N are defined by

Ci =

{

y ∈ R3, ∀j 6= i, ti +
‖xi − y‖

v
≤ tj +

‖xj − y‖
v

}

. (9)

3.2.2 Exclusion Model

In our multiscale model, we rely now on a Johnson-Mehl tesselation to describe the exclusion polymer and its
complementary: each classCi is attributed to the exclusion polymer with the probabilityve (= 0.2 in the present
case) and to the other polymer with the probability1− ve, generating a binary Johnson-Mehl mosaic (Figure 8 a),
that allows us to preserve the symmetry between the geometry of the exclusion polymer and its complementary.
Here, the two previous parameters of exclusion zone model (Re andθe) are replaced by a single one, namely the
intensityθe of the Poisson point process associated to the Johnson-Mehl tesselation. The remaining parts of the
model are the same as previously. Simulation parameters are the intensity of the Poisson point processes attached
to each polymer.

A realization of the Johnson-Mehl based model is displayed in Figure 8, as an illustrative example. A vectorial
simulation of a domain with a1μm3 volume is generated in 10 minutes.

The overall construction of the model is summarized in Figure 9.

If the volume fractionve of exclusion polymer and the radiusRcb of the carbon black particles are known, the
global model is controlled by the following set of parameters:

• the intensityθe of the Poisson point process associated to the Johnson-Mehl tesselation

• the intensityθa of the Poisson point process on which relies the modelling of the aggregates,

• the radiusRa of the boolean spheres used to model the aggregates,

• the intensityθcb of the Cox point process on which relies the modelling of the spatial distribution of the
black carbon particles.

Finally, the bound rubber is obtained as before by considering the Boolean difference of a Boolean model of
sphere of constant radiusRcb + t implanted on the centers of the black carbon particles and of the Boolean spheres
describing the black carbon particles.
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(a) (b)

(c)

Figure 8: The three steps of the construction of the model: (a) exclusion polymer (Johnson-Mehl mosaic); (b)
aggregates; (c) carbon black particles network (ve = 0.2; θe = 4.10−7 nm−3; Ra = 60 nm;Rcb = 20 nm;

simulated volume: (500 nm)3)

Figure 9: Scheme of the multiscale random model (exclusion polymer made of a Johnson-Mehl mosaic)
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3.2.3 Model Ffitting from Experimental Data

As previously, the parameters of the Johnson-Mehl exclusion model are estimated to match the morphological
descriptors obtained on the experimental TEM images. The values of the parameters obtained after optimization
are given in the Table 2. The experimental covariance and granulometry are compared with the corresponding
curves obtained by the simulations with fitted parameters on Figure 10. It turns out that the agreement between
experimental data and measurements made on simulations is better than in the previous version of the model. A
simulated image is shown in Figure 11 and compared to a TEMimage.

ve θe (nm=3) θa (nm−3) Ra (nm) θcb (nm−3) Rcb (nm)
0.2 4.0 × 10−7 4.0 × 10−7 60 3.5 × 10−5 18

Table 2: Optimized parameters for the Johnson-Mehl model of exclusion polymer

(a) (b)

Figure 10: Covariance (a) and granulometry (b) of the simulated material (Johnson-Mehl mosaic for the exclusion
polymer). The simulated curves are represented by the discontinuous lines, the experimental curves by the

continuouslines.

(a) (b)

Figure 11: Comparison between an experimental (a) and a simulated TEM image (b) for the Johnson-Mehl
mosaic model of exclusion polymer.
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3.3 Implementation of the Models

Simulations of random structures are generally performed on a grid of points (i.e. 2D or 3D images), using primary
grains based on combination of pixels. The implementation in the software VtkSim relies on a completely different
approach based upon level sets and implicit functions. In this approach, primary grains are described by implicit
functions (Faessel and Jeulin (2011); Faessel (2012)), which are real valued functions defined in the 3D space. The
level sets of an implicit functionΦ are described by an equation of the formΦ(x, y, z) = c, for some constantc.
A surface is described as a level set of the functionΦ, most commonly the set of points for whichΦ(x, y, z) = 0.
In this case, the points for whichΦ(x, y, z) < 0 correspond to the interior of the primary grain associated to the
implicit function, the points for whichΦ(x, y, z) > 0 to its complementary and the level setΦ(x, y, z) = 0 to the
boundary of the primary grain. Any primary grain can be implemented, whatever its shape, as long as it can be
represented using an implicit function.

In the implicit function approach, complete simulations are generated, using Boolean combinations of primary
implicit functions: the union and the intersection of two objectsA1 andA2 are defined to yield the minimum and
the maximum, respectively, of their corresponding implicit functions. Thus, we have

Φ(A1 ∪ A2) = min{Φ(A1), Φ(A2)} (10)

and

Φ(A1 ∩ A2) = max{Φ(A1), Φ(A2)}. (11)

Similarly, the complementaryAc of setA is defined to be the opposite function

Φ(Ac) = −Φ(A). (12)

Several classical random models can be generated using this method, including among others soft-core or hard-core
Boolean models of spheres. Interestingly, since a combination of implicit functions is itself an implicit function,
the realization of a first random simulation enables us to generate multiscale simulations. An interesting feature
of the software is that it allows to directly export the simulated microstructures as a mesh for further use, like
finite elements based computations. Overall, using implicit functions to perform the simulation allows us to build
complex combinations of simulations that we could not process with a pixel based method. Furthermore, vectorial
simulations do not require a large amount of computer resources, which allows us to obtain fast generations of
microstructures with very large sizes and numbers of primary grains.

4 Percolation of the Carbon Black Network

It is known that there is a large impact of the connectivity of elements in a random system on its macroscopic
behavior. Controlling the percolation of a network is of major interest in the optimization of the microstructure. In
this section, we focus on the percolation of the clusters constituted by the filler particles. Percolating networks of
filler can indeed significantly change the mechanical properties of the material. It is therefore of interest to be able
to select simulation parameters that will (or not) create percolating paths in the material.

4.1 General Approach

A simulation is said to percolate when a continuous path can be drawn in the filler phase that connects two opposite
faces of the simulation window (a cube in the 3D space). Our aim is to determine the probabilityp that a simulation
in a cubic window of lengthL percolates. To estimatep, N simulations of the random model are performed, and
the number of simulations that percolate is recorded. A set of parameters leads to a percolating medium when
more than 50 percents of the simulations percolate. In this approach,p is estimated by

p̂N =
1
N

N∑

n=1

Pk, (13)
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wherePk is the random variable equal to1 when the simulation percolates and0 otherwise. The estimator̂pN is
without bias. We denote byσ2 = p(1 − p) the variance of the random variables{Pi, i = 0, .., N}. The variance
of p̂N is then given by

Var(p̂N ) =
σ2

N
. (14)

Hence, Var(p̂N ) → 0 whenN → +∞ and the estimator̂p converges. ForN large enough, according to the
Central Limit Theorem, we have

p̂N ∼ N (p, σ2/N), (15)

whereN (p, σ2/N) denotes the normally distributed law with meanp and standard deviationσ/
√

N . Therefore,
it can be show that, forN = 100, with confidence95%,

p − 1.96

√
p(1 − p)

N
≤ p̂ ≤ p + 1.96

√
p(1 − p)

N
. (16)

Since the quantityp(1 − p) is maximal forp = 1/2, yieldingp(1 − p) = 1/4, we have, in the worst case,

p − 0.098 ≤ p̂ ≤ p + 0.098. (17)

In mathematical terms, we have

P

{

p − 0.098 ≤ p̂ ≤ p + 0.098

}

≥ 0.95. (18)

This result provides an estimation of the precision of the results obtained in the percolation study.

4.2 Percolation Algorithm

The aim of the percolation algorithm is to label the connected clusters of filler particles. For each connected cluster,
it is then determined if it is percolating. The percolation algorithm proceeds as follows:

1. A realization of the model is simulated in a volume of fixed size. At the end of the simulation, the algorithm
returns a list of the coordinates of the filler particles centers.

2. Following the approach of Moreaud and Jeulin (2005), the volume is subdivided into cubes of sizeR, R
being the radius of the filler particle. The coordinates of the filler particles centers are then sorted according
to the subvolumes.

3. The classical two-pass algorithm is used to label all clusters of filler particles. For a given particle, the
number of test of intersection is restricted to the adjacent cubes, thus yielding a fast method of construction.

4. For each labelled cluster, the algorithm checks if the cluster is percolating.

4.3 Results

The effect of various morphological parameters on the proportion of percolating simulations, estimated on 100
realizations for each set of parameters, was investigated for the two previous models of multiscale random mi-
crostructures: volume fraction of filler, size of aggregates, size of the exclusion polymer clusters. Two sizes of
simulations were used, namely (400 nm)3 and (800 nm)3. We report here results obtained on the largest simula-
tions.
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Volume fraction of fillers The volume fraction of fillers is controlled in the simulations by means of the intensity
θcb for the centers of the carbon black spheres. The remaining parameters of the simulations are as follows:
ve = 0.2; Re = 30 nm (Boolean model for the exclusion polymer),θe = 4.0× 10−7nm−3 (Johson-Mehl mosaic);
va = 0.47; Ra = 60 nm; Rcb = 18 nm; simulated volume: (800 nm)3. The effect ofθcb is illustrated by Figure
12. From these results, it turns out that the percolation thresholdpc (i.e. the lowest value ofp for which more than
50% of realizations percolate) is given byvcb = 0.15 for the Boolean model of exclusion and byvcb = 0.16 for
the Johnson-Mehl mosaic. Therefore, the second model shows a slightly higher percolation threshold. Since the
nominal carbon black volume fraction of the real material isvcb = 0.14, it is expected that its filler network does
not percolate, which prevent the material to show a rigid macroscopic behavior.

(a) (b)

Figure 12: Influence of the densityθcb of filler (for Ve andVa fixed) on the proportion of percolating simulations
for the two models of exclusion zones: (a) Boolean model of spheres; (b) Johnson-Mehl mosaic. Simulated

volume: (800 nm)3

Aggregates size The effect of the sizeRaggr of the filler aggregates of the material was studied, while keeping
constant the volume fraction of aggregates. We remind that the volume fraction of aggregates is given by

va = (1 − ve)

(

1 − exp(−θi
4π

3
R3

i )

)

. (19)

By properly varying the intensityθaggr, the volume fraction of aggregates remains constant. The simulation pa-
rameters areve = 0.2, Re = 30 nm (Boolean model), ,θe = 4.0×10−7nm−3 (Johnson-Mehl mosaic);va = 0.47;
θcb = 3.5 × 10−5 nm−3, vcb = 0.14 andRcb = 18 nm.

The results are displayed in Figure 13. Interestingly, we note that, all things otherwise equal, increasing the size
of the aggregates results in a monotonous increase of the percentages of simulations that percolate. For instance
the percentage of percolating simulations climbs from 40 percents whenRaggr = 55 nm to 60 percents when
Raggr = 70 nm for the two types of models, so that percolation in enhanced for larger aggregates.
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(a) (b)

Figure 13: Influence of the aggregates size (withVe, Va andvcb fixed) on the proportion of percolating
simulations for the two models of exclusion zones: (a) Boolean model of spheres; (b) Johnson-Mehl mosaic.

Simulated volume: (800 nm)3

Exclusion polymer clusters size From simulations generated by variations of the intensityθe of the Poisson
point process, the number of exclusion polymer clusters increases (and thus their size is reduced since the volume
fraction of exclusion polymer is kept constant). It results in a very slight decrease of the number of percolating
simulations for both models. Overall, the effect of the exclusion polymer clusters size on percolation properties
remains rather small.

5 Prediction of Viscoelastic Properties of simulated 3D Microstructures by Fast Fourier Transform (FFT)

5.1 Introduction

In this section a preliminary study of the viscoelastic behavior of the models of random microstructure is presented.
For simplicity, the approach is restricted to the case of two-components media, namely a viscoelastic matrix and
an elastic filler. In the present, accordingly, the mechanical behavior of the various polymers (exclusion polymer,
polymer containing the filler, thin layer around carbon-black particles) is supposed to be the same. In addition,
only small deformations of the polymer are considered.

Using a Fourier decomposition in time, strain and stresses are specified as a series of harmonics. This is commonly
accounted for by the introduction of complex elastic moduli. A Fourier decomposition in space is introduced,
making use of FFT methods to compute the elastic response of highly-contrasted composites. This method is first
validated using analytical results for periodic media and compared with explicit time-discretization. It is efficiently
applied to arbitrarily complex microstructures provided by a regular grid of voxels, such as images of real or of
simulated microstructures, and does not require any further meshing of images. Extended to the viscoelastic case,
it provides full-field reconstructions in time-space, from which the effective viscoelastic properties of a composite
medium are estimated.

In what follows, a complex FFT scheme for viscoelastic composites is introduced and applied to 3D simulations
of the two previously introduced versions of the multiscale model.This section presents a complex Fourier (FFT)
scheme for computing the viscoelastic response of composites. Linear strain-stress relations with elastic and visco-
elastic phases are considered. The problem to solve is presented in Section (5.2). The FFT method used to solve
the problem is described in Section (5.3). It is validated in Section (5.4) and used to predict the properties of rubber
containing fillers in Section (5.5).
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5.2 Problem Setup

Consider a domainV representing a heterogeneous material subject to steady-state oscillatory conditions. In the
harmonic regime, the time-dependence of the strainε̃ and stress fields̃σ at pointx is given by the complex fields:

ε̃(x; t) = ε(x) eiωt, σ̃(x; t) = σ(x) eiωt, (20)

where the amplitudesε andσ are second-rank tensor fields, andω is the frequency applied to the system. In the
above,ε(x) andσ(x) are complex and do not depend on the timet. The physical strain and stress fields are the
real parts of̃ε andσ̃:

ε̂(x; t) = R [ε̃(x; t)] , σ̂(x; t) = R [σ̃(x; t)] . (21)

For simplicity, it is assumed that the material contains elastic inclusions (phaseα = 2) embedded in a viscoelastic
matrix (phaseα = 1). Referring toC2 as the inclusions’s isotropic elastic stiffness tensor, we have, in phase2

σ̃(x; t) = C2 : ε̃(x; t), σ(x) = C2 : ε(x), (22)

or equivalently,

σkk(x) = 3κ2εkk(x), σ′(x) = 2μ2ε
′(x). (23)

whereμ2 is the inclusion’s shear modulus,κ2 its bulk modulus, and where the strain and stress deviatoric parts are
defined as:

ε′ij = εij − (εkk/3)δij , σ′
ij = σij − (σkk/3)δij , (24)

δ being the Kronecker symbol. Inclusions are embedded in a viscoelastic matrix, where the local strain-stress
relation is written generally as

σ̃(x; t) =
∫ t

−∞
dτ C1(t − τ) :

dε̃(x; τ)
dτ

. (25)

In the above,C1(t) designates a time-dependant fourth-order isotropic tensor with shear and bulk (strain-rate)
moduliμ1(t) andκ1(t). Following Christensen (2012) the time-dependence is removed using Eq. (20)

σkk(x) = 3κ∗
1(iω)εkk(x), σ′(x) = 2μ∗

1(iω)ε′(x), (26)

for x in the matrix. The complex elastic moduliκ∗
1(iω) andμ∗

1(iω) are

κ∗
1(iω) = κ1 + iω

∫ ∞

0

dη [κ1(η) − κ1] e−iωη, (27a)

μ∗
1(iω) = μ1 + iω

∫ ∞

0

dη [μ1(η) − μ1] e−iωη, (27b)

with

κ = lim
t→∞

κ1(t) ≥ 0, μ = lim
t→∞

μ1(t) ≥ 0. (28)

The local response of the material is given by Eqs. (23) and (26). Viscous effects are taken into account by the
imaginary parts of the elastic moduliμ1(iω) andκ1(iω). When the latter are positive, the stress fields’s oscillations
are advanced by an amount of

Δt =
arg [σ(x)] − arg [ε(x)]

ω
, (29)

compared to that of the strain field. For instance, ifε(x) is real

σ̃(x; t) = R [σ(x)] eiω(t−Δt). (30)
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Such effects are absent in the purely elastic case (23).The material equations above are completed by admissibility
equations for the strain and stress fields. Assuming first that the displacement fieldu(x; t) is infinitesimal compared
to the microstructure characteristic sizes, we have

ε̃ij(x; t) =
∂j ũi(x; t) + ∂iũj(x; t)

2
. (31)

Second, stress equilibrium is met at every point

∂iσ̃ij(x; t) = 0. (32)

We define the complex displacement amplitudeu(x) by

ũ(x; t) = u(x) eiωt (33)

so that Eqs. (31) and (32) become

εij(x) =
∂jui(x) + ∂iuj(x)

2
, ∂iσij(x) = 0. (34)

Applying periodic boundary conditions with time-harmonic macroscopic strain loading as

〈ε̃(x; t)〉 = ε eiωt, ε̃(x; t)#, σ̃(x; t)#, (35)

whereε is a constant,〈∙〉 designates a spatial average over the domainV and# denotes a periodic field in space
with elementary cellV . The above is indifferently written as

〈ε(x)〉 = ε, ε(x)#, σ(x)#. (36)

Hereafter it is assumed, without loss of generality, that all componentsof ε are real. The composite’s effective
response is given by the stiffness tensorCeff

σ = 〈σ(x)〉 = Ceff : ε. (37)

When the composite is isotropic andV is large enough, the tensorCeff is isotropic as well. Its shear and bulk
moduli are notedμeff andκeff .

Eqs. (23), (26), (34) and (36) define the response of the material to a harmonic solicitation. In theory, these
solutions allow one to reconstruct the local and macroscopic responses of the material subjected to non-harmonic
(arbitrary) strain loading, in the steady-state regime (Christensen (2012)). The first equation in (35) can be replaced
by

α(t) = 〈ε̃(x; t)〉, (38)

so that a time-varying macroscopic strain loadingα(t) is applied. Taking the Fourier transform of the latter

α(t) =
1
2π

∫ ∞

−∞
dω α(ω) eiωt. (39)

The strain field acting in the material is the superposition of the following harmonic responses

ε̃(x; t) =
1
2π

∫ ∞

−∞
dω εω(x) eiωt, (40)

whereεω(x) is the complex field solution of Eqs. (23), (26), (34) and (36)with ε = α(ω).

5.3 FFT Methods

The purpose of this section is to solve numerically Eqs. (23), (26), (34) and (36) on a grid of voxels, using “Fourier
methods” as developed by Moulinec and Suquet (1994); Eyre and Milton (1999); Michel et al. (2001). The “direct
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scheme” (Moulinec and Suquet (1994)) and “augmented Lagrangean” (Michel et al. (2001)) Fourier methods
apply to linear elasticity. The “accelerated scheme” (Eyre and Milton (1999)), originally given in the context of
conductivity, has been extended to linear elasticity by Michel et al. (2001) . We remark that the problem (23), (26),
(34) and (36) is mathematically identical to that of linear elasticity, except that complex instead of real fields are
concerned. Thus, FFT methods apply to the viscoelastic problem considered here, as will be seen later. This is
true of other more recent FFT methods like the “rotated” scheme (Willot (2015)) and “variational FFT”( Brisard
and Dormieux (2010)) schemes. Accordingly, any of these schemes can be implemented for this purpose.

Hereafter, the “discrete” scheme proposed by Willot and Pellegrini (2008), coupled with the algorithm of Moulinec
and Suquet (1994), is used. A similar scheme has already been investigated in the context of conductivity by Willot
et al. (2014) leading to much improved convergence properties, especially for highly-contrasted composites. The
scheme gives for thekth-iteration

εk+1(q) = ε −G0(q) :
[
σ(q) − C0 : εk(q)

]
, (41)

whereq is the Fourier wave vector,C0 is a reference elastic tensor andG0(q) its associated Green operator,
discretized using a forward and backward finite difference scheme on the rotated grid. The stress field is computed
at each step in the direct space using the material’s constitutive law, and the strain field is initialized byεk=0 ≡ ε.
Convergence strongly depends onC0, an arbitrary (complex) reference tensor, which has to be optimized. An
absolute convergence criterion is defined on stress equilibrium as

max
x

|divσ(x)| ≤ η (42)

whereη is the required precision. Care is needed when choosingC0. To ensure that the physical strain and stress
fields are symmetric, i.e.

ε̂kl(x; t) = ε̂lk(x; t), σ̂kl(x; t) = ε̂lk(x; t), (43)

it is necessary to enforce:

εkl(x) = εlk(x), σkl(x) = σlk(x). (44)

Hence, the tensorsε andσ are not symmetric in the complex sense. To enforce this, the Green tensor must satisfy

G0
ij,kl(q) = G0

ji,kl(q) = G0
ij,lk(q) =

[
G0

kl,ij(q)
]∗

. (45)

In turn, this implies

C0
ij,kl = C0

ji,kl = C0
ij,lk =

(
C0

kl,ij

)∗
= C0

kl,ij , (46)

so thatC0 must be real. This is in contrast with optics where we are free to choose complex references (see Azzi-
monti et al. (2013)). In the rest of this work, we chooseκ0 = 0.51 [Re(κ∗

1) + Re(κ∗
2)], μ

0 = 0.51 [Re(μ∗
1) + Re(μ∗

2)],
for the bulk and shear moduli of the reference tensor, respectively, whereμ∗

1,2, κ∗
1,2 are the complex elastic moduli

in phases1 and2.

5.4 Validation and Comparison with an Explicit Time-discretized FFT Scheme

In this section, a periodic array of spheres with cubic symmetry is considered. The spheres are purely elastic
with shear and bulk moduliμ2 = κ2 = 1000 GPa, and, for simplicity, the embeding medium is supposed to be
Maxwellian. Outside the spheres, the stressσ(t) and strain fieldsε(t) satisfy

σ̃′(t)dt

t1
+ dσ̃′(t) = 2μ0dε̃′(t),

σ̃kk(t)dt

t1
+ dσ̃kk(t) = 3κ0dε̃kk(t) (47)

with μ0 = κ0 = 1 GPa,t1 = 1 s. This is equivalent to Christensen (2012)

σ̃′(t) =
∫ t

−∞
dτ 2μ1(t − τ)

dε̃′(τ)
dτ

, σ̃kk(t) =
∫ t

−∞
dτ 3κ1(t − τ)

dε̃kk(τ)
dτ

, (48)
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with

μ1(t) = μ0e
−t/t1H(t), κ1(t) = κ0e

−t/t1H(t), H(t) =

{
0 if t < 0,
1 if t > 0.

(49)

In the above,H(t) is the Heaviside step function. Using (25) the complex elastic moduli in the embedding medium
read, as functions of the angular frequencyω

μ∗
1(ω) =

μ0

1 + 1/(ωt1)
, κ∗

1(ω) =
κ0

1 + 1/(ωt1)
. (50)

Heareafter the frequency is set toω = 1[rad/s]. A sphere is discretized in a cubic domain of size64 × 64 × 64
voxels. The FFT method described in Sec. (5.3) is then used to solve the viscoelastic problem in the complex
domain. The spheres composite has a macroscopic response with cubic symmetry of bulk moduliκs and shear
moduliμp, μs

C =











κs + 4
3μp κs − 2

3μp κs − 2
3μp 0 0 0

κs + 4
3μp κs − 2

3μp 0 0 0
κs + 4

3μp 0 0 0
μs 0 0

sym μs 0
μs











(51)

in Voigt notation whereε = (εxx, εyy, εzz, 2εyz, 2εxz, 2εxy) andσ = (σxx, σyy, σzz, σyz, σxz, σxy). FFT Results
are compared to the analytical estimates in Cohen (2004) (Figure14).

(a) (b)

Figure 14: Comparison between analytical estimates given by Cohen (2004) (solid and dashed lines) and FFT
results (symbols) for the effective elastic response of a periodic array of spheres with varying volume fraction:

imaginary part of the effective shear moduliμp,s (a) and ratioIm(μp,s)/Re(μp,s).

Excellent agreement between the FFT results and analytical estimates is found for the complex shear moduliμp,s

when the volume fraction of spheres is less than20%. For the ratioIm(μp,s)/Re(μp,s), good agreement is
obtained for quite smaller volume fractions (not larger than10%).

Finally, the Fourier method developed in Sec. (5.3) is compared to an explicit time-discretized scheme. Assume
that

ε̂(x; t) = 0, σ̂(x; t) = 0 (52)

for t < t0. For t ≥ t0, the material is subject to harmonic strain loading

〈ε̂(x; t)〉 = cos(ωt)ε (53)
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Hereafter we taket0 = π/(2ω) and againω = 1 [rad/s] for simplicity. The stress fieldσ at timet + dt is then
computed by discretizing Eq. (47). For instance, for the deviatoric parts

Δσ̂′(x, t) = 2μ0Δε̂′(x, t) −
σ̂′(x, t)Δt

t1
, Δσ̂′(x, t) = σ̂′(x, t + Δt) − σ̂′(x, t), (54)

Δε̂′(x, t) = ε̂′(x, t + Δt) − ε̂′(x, t).

The above is mathematicaly equivalent to a thermoelastic stress-strain relation with unknownΔε̂ andΔσ̂ and with
applied strain loading given by (53)

〈Δε̂′(x, t)〉 = −ω sin(ωt)Δtε (55)

In the inclusions, the fieldsΔσ̂(x; t) andΔε̂(x; t) are related by Hooke’s law. The FFT method for thermoelasticity
proposed by Vinogradov and Milton (2008), Ambos et al. (2015) is then applied at each time step. We setΔt =
0.01 and apply shear loadingwith ε12 = ε21 = 1 andεij = 0 for (i, j) 6= (1, 2), (2, 1). A comparison between
the FFT scheme with time-discretized strain-stress relation and that with complex elastic moduli, is represented
in Figure 15 for the macroscopic response. The macroscopicstressσ12 = 〈σ12〉 is given as a function of timet.
It is emphasized that, for the time-discretizedsheme,σ12(t) (top dashed line) is computed at many loading step
whereas, for the FFT method involving complex moduli one computation is carried out which gives the harmonic
response att → ∞ (bottom dashed line). As expected, beyond an intermediary regime, the time-explicit scheme
converges to a harmonic response identical to that predicted by the complex FFTscheme.

Figure 15: Macroscopicstrainε12 = 〈ε̂12(x; t)〉 and resulting stresscomponentσ12 = 〈σ̂12(x; t)〉 vs. timet, for
the time-discretized scheme. The macroscopic strain is0 for t < π/(2ω). In violet: comparison with the

harmonic regime as predicted by the complex Fourier scheme.

5.5 Computations on Random Two-scales Media

To illustrate the efficiency of the method, viscoelastic computations are performed on the Boolean and Johnson-
Mehl two-scales models. The local properties are set to 78 400 and 30 000 MPa for the bulk and shear moduli,
resp., in the filler. In the polymer, a viscoelastic law with Prony series given by Laiarinandrasana et al. (2012) is
used. Complex elastic moduli are used for 23 frequencies. Each 3D computation required about 3 hours on a
12-cores computer and 800 iterations withη = 3.10−5. No time discretization is used. Domains with size (0.8
μm)3 discretized over (400)3 voxels are simulated.

FFT maps of the mean stress field (opposite of pressure) are shown in Figure 16, showing a 2D section for the
exclusion zones modelled by a Boolean model. The material is submitted to a hydrostatic strain loading, the
frequency beingω = 117 Hz. Strong internal stresses in the polymer appear in regions surrounded by fillers. Maps
of the shear stress component with shear strain loading are shown in Figure 17.
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(a) (b)

Figure 16: Real and imaginary parts of the mean stress fieldσm for a hydrostatic strain loading (εm = 1%) at a
frequencyω = 117 Hz. The minimal and maximal values are -47 and 140 Gpa (real part (a)) and -1.0 and 6.2

GPa (imaginary part (b)). The stress values are thresholded between 8.68 and 8.73 GPa (real part) and 1.5 and 1.6
(imaginary part) to highlight the field patterns in the polymer.

(a) (b)

Figure 17: Real and imaginary parts of the shear stress fieldσ12 for a shear strain loading (εxy = 1%) at a
frequencyω = 117 Hz. The minimal and maximal values are -17 and 44 GPa (real part (a)) and -1.2 and 0.7 GPa
(imaginary part (b)). The stress values are thresholded between 0 and 6 MPa (real part) and 0 and 1 (imaginary

part) to highlight the field patterns in the polymer.

The effective moduli are obtained by averaging the fields calculated by FFT, using a standard homogenization
approach. The relative precision of the estimated moduli is calculated from the variance of the fields at different
scales, as developed in the statistical RVE approach of Kanit et al. (2003). At a frequencyω = 117 Hz, the relative
precision for the real part and the imaginary part of the bulk modulus is equal to0.2% and to0.3%. For the the
real part and the imaginary parts of the shear modulus, it is equal to17% and3.8% respectively.

The frequency dependence of the effective complex bulk modulus and of the effective shear modulus are illustrated
in Figures 18 and 19. FFT data for the Boolean and Johnson-Mehl models are compared to the viscoelastic response
of the Hashin sphere assemblage (Hashin (1970)). The inner spheres and outer layers in the Hashin coating have
the same properties as the fillers and polymer respectively, and the volume fraction are the same as in the model
(about10.6%). It has been shown that the bulk and shear moduli of isotropic two-phases viscoelastic composites
are constrained to a region in the complex plane (Gibiansky and Milton (1993), Milton and Berryman (1997)) that
generalizes the Hashin and Shtrikman bounds. The Hashin coating has extremal properties for the bulk modulus
in the sense that its bulk modulus lies on the frontier of the region. For the material considered here, the contrast
of properties in terms of bulk moduli is moderate (about25), and so the Hashin coating is very close to that of the
Boolean and Johnson-Mehl models, as computed using FFT (Figure 18). The situation is sensibly different for the
real part of the shear modulus, which is3.104 higher in the filler than in the polymer (Fig. 19 a). The real part of
the shear modulus of the Johnson-Mehl model is higher than that of the Boolean model.
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We note that the viscoelastic response of the models is much softer than that of the Hashin assemblage with stiff
outer coating, which is not represented in Figs. 18 and 19. Our results are also consistent with that obtained by
(Jean et al. (2011b)) in the context of elasticity, where elastic moduli close to the Hashin and Shtrikman lower
bounds werepredicted.

(a) (b)

Figure 18: Comparison between the Johnson-Mehl and Boolean sphere models for the exclusion polymer and
Hashin sphere assemblage: frequency dependence of the effective real part (a) and imaginary part (b) of the

complex bulkmodulus.

(a) (b)

Figure 19: Continuation of Figure 18: frequency dependence of the effective real part (a) and imaginary part (b)
of the complex shear modulus.

6 Conclusion

Multiscale morphological models of random 3D microstructures were developed to simulate the distribution of
fillers in rubber materials, accounting for the presence of aggregates and of an exclusion polymer. These models
enable us to study the percolation of carbon black filler as a function of its multiscale distribution. It was proved
that the two models involving a different morphology for the exclusion polymer do not percolate for the volume
fraction of carbon black contained in the material.

The effective viscoelastic moduli are predicted by Fast Fourier Transforms on 3D simulated images of the mi-
crostructure. The simple method proposed in this work predicts the harmonic response of composites with arbi-
trary microstructures, frequency per frequency and is restricted to linear materials. The effective bulk modulus and
shear modulus are predicted in a large frequency range (about from 10−1 to 104 rad/s).

Further studies will involve a systematic change of the microstructures by means of the parameters of the model,
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and its impact on the effective properties, to find optimal microstructures with respect to the macroscopic behavior.

Acknowledgements:F. Willot is indebted to S. Forest for helpful suggestions regarding the FFT-based computa-
tions.
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