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On the Influence of Ferroelectric Polarization States on the
Magneto-electric Coupling in Two-phase Composites

M. Labusch, M.-A. Keip, V.V. Shvartsman, D.C. Lupascu, J. Schröder

Of particular attention in a variety of novel technical applications is the coupling between magnetic and electric
field quantities. Materials that show magneto-electric (ME) coupling could enable new smart devices in the area
of electric-field-controlled magnetic-data storage or highly sensitive magnetic-field sensors. In general, ME ma-
terials exhibit both a spontaneous magnetization and a spontaneous polarization. In this respect, they feature two
ferroic states at the same time and are thus termed magneto-electric multiferroics. However, all natural and most
of the synthesized ME multiferroics do not show an interaction between magnetization and electric polarization
in the technically relevant temperature range. Thus, thereis need for alternative realizations for ME coupling
materials. A promising idea lies in the design and manufacturing of ME composites. These materials consist of
a magnetostrictive and a piezoelectric phase and generate the ME coupling as a strain-induced product property.
Since there exists a wealth of stable magnetostrictive and piezoelectric materials at ambient temperature, such
composites yield the desired ME coupling also in a technically useful temperature range. In any case, the effec-
tive ME coupling is driven by microscopic interactions between the individual phases and thus highly depends on
the microstructure of the composite. This calls for powerful homogenization methods that are able to predict the
effective coupling for arbitrary microstructural morphologies. Motivated by that, we apply a two-scale compu-
tational homogenization framework for magneto-electro-mechanically coupled boundary value problems, which
allows us to analyze the ME composite structures and calculate the effective ME-coefficient. Furthermore, by us-
ing a non-linear ferroelectric material model on the micro-level, we are able to simulate the polarization process
of the ferroelectric phase. We show that this has a significant impact on the obtainable ME-coefficient.

1 Introduction

Materials with ferroelectric or ferromagnetic propertiesare used in many fields of technology. A combination of
both properties in a single material, enable new applications such as electrical magnetic-field sensors or electric-
write/magnetic-read memories, see for example Eerensteinet al. (2006), Spaldin and Fiebig (2005) and Bibes
and Barth́elémy (2008). Such materials, which combine polarization andmagnetization, are known asmagneto-
electric (ME) multiferroics. However, all natural and most of the synthetic single-phase ME multiferroics show
ME coupling only outside a technical useful temperature range, see Table 1 for an overview of measured ME
coefficients.

Table 1: Measured ME coefficients of single-phase materials.

Material ME coefficient Temperature Reference

LiCoPO4 30.60·10−12 s/m 4.2 K Rivera (1994)
Cr2O3 4.17·10−12 s/m 270.0 K Vaz et al. (2010)
Cr2O3 4.13·10−12 s/m 263.0 K Rivera (1994)
Cr2O3 1.43·10−12 s/m 293.2 K Astrov (1961)
BiFeO3 0.52·10−12 s/m 18.0 K Rivera and Schmid (1997)
Mn3B7O13I 9.50·10−14 s/m 4.2 K Crottaz et al. (1997)

The disadvantage of a vanishing ME coupling coefficient at room temperature, which is not feasible for technical
applications, could be circumvented by manufacturing magneto-electric composites, which consist of a piezoelec-
tric and a magnetostrictive phase, see Nan (1994); Fiebig (2005) and Hill (2000). In such composites, the individual
phases interact with one another mechanically, so that astrain-inducedME coupling (even at ambient tempera-
ture) can be produced. The resulting effective ME couplings, which are not present in each of the constituents,
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are classified asproduct properties. We distinguish between the direct and the inverse ME effect. The direct cou-
pling effect characterizes magnetically induced polarization: an applied magnetic field yields a deformation of the
magneto-active phase which is transferred to the electro-active phase. As a result, a strain-induced polarization in
the electro-active phase is observed, see Figure 1. The converse effect is characterized by an electric-field induced
magnetization. Several experiments on ME composites showed remarkable ME coefficients, which are orders of
magnitudes higher than those of single-phase multiferroics, see, for example, Fiebig (2005).
Due to the microscopic interactions between the individualphases, the arising ME coefficient strongly depends on
the microstructure of the composite. Motivated by that, we recapitulate a two-scale finite element homogenization
framework (FE2-method) for magneto-electro-mechanically coupled boundary value problems, see Schröder et al.
(2015a). This allows for the consideration of microscopic morphologies in a macroscopic simulation. In the con-
text of multiscale homogenization we refer to Miehe and Koch(2002), Miehe and Bayreuther (2007), Geers et al.
(2010) as well as to recent extensions to coupled material response Miehe et al. (2011), Schröder and Keip (2012),
Zäh and Miehe (2013), Labusch et al. (2014), Keip et al. (2014)or Schr̈oder et al. (2015b).
Obviously, the polarization state of the ferroelectric phase strongly influences the ME coupling. The reason for that
is that in a bulk composite the electro-mechanical couplingof the ferroelectric phase has to be poled in order to
allow for significant strain-induced interactions. The pre-polarization is thus crucial in the manufacturing and the
design of ME composites. At this point we want to refer to Avakian et al. (2015), where the authors used a nonlin-
ear ferroelectric model to simulate the magneto-electric coupling in composite materials regarding the polarization
of the electric matrix. In order to map this in our simulations, we consider a non-linear hysteretic material model
for the ferroelectric phase on the microscopic level. This non-linear model is based on a microscopic switching
criterion for the spontaneous polarization based on the work of Hwang et al. (1995). The material model will be
combined with a magneto-electric enthalpy function which reflects the tetragonal symmetry of a barium titanate
unit cell, compare to Keip and Schröder (2011); Keip and Schröder (2011) or Keip (2012).
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Figure 1: a) Direct coupling effect and b) inverse coupling effect, see Schr̈oder et al. (2015a).

The outline of this contribution is as follows. In the secondsection, the main ingredients of the coupled finite
element homogenization approach will be discussed briefly.We further describe the used non-linear material
model reflecting the ferroelectric switching behavior. Section three then gives a numerical example, in which the
influence of the microscopic switching behavior on obtainable ME-coefficients is analyzed. The results will be
compared to experimental measurements. In section four a conclusion is given.

2 Multiscale Homogenization of ME Composites

In this section the two-scale homogenization framework formagneto-electro-mechanically coupled boundary value
problems will be described briefly. We start with the definition of the kinematic quantities and the fundamental
balance equations on the macroscale. The connection to the microscale is established by a localization step. The
subsequent homogenization step yields the effective properties including the desired ME coefficient. After that,
the used material models on the microscopic level will be described. We employ a linear and transversely isotropic
material model for the magneto-active phase and a non-linear hysteretic model for the electro-active phase. In
order to simplify the readability of this section we summarize the basic magneto-electro-mechanical quantities in
Table 2. All macroscopic quantities are denoted by an overline.
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Table 2: Magneto-electro-mechanical quantities and theirunits.

micro- and macro-Symbol Continuum mechanical description SI-Unit

u, u displacement vector m
ε, ε linear strain tensor 1
σ , σ Cauchy strain tensor kg/s2 m (N/m2)
t, t traction vector kg/s2 m (N/m2)
f , f mechanical body forces kg/s2 m2 (N/m3)

φ , φ electric potential kg m2/A s3 (V)
E, E electric field vector kg m/A s3 (V/m)
D, D electric displacement vector A s/m2 (C/m2)
Q, Q electric surface flux density A s/m2 (C/m2)
q, q density of free charge carriers A s/m3 (C/m3)

ϕ, ϕ magnetic potential A
H, H magnetic field A/m
B, B magnetic flux density kg/A s2 (T)
ζ , ζ magnetic surface flux density kg/A s2 (Vs/m2)

2.1 Boundary Value Problems and Scale Transition

The macroscopic bodyB ⊂ R
3 is parameterized in the Cartesian coordinatesx. The macroscopic fundamental

balance laws are given by the balance of momentum as well as Gauß’s laws of electro- and magneto-statics

divx[σ ]+ f = 0, divx[D] = q and divx[B] = 0 in B . (1)

The macroscopic gradient fields, i.e. the strain as well as the electric and magnetic field are defined as

ε(x) := sym[∇u(x)] , E(x) :=−∇φ(x) and H(x) :=−∇ϕ(x) , (2)

with the macroscopic gradient operator∇ with respect tox. The boundary conditions prescribed through the
displacement and the surface traction

u= u0 on∂Bu and t0 = σ ·n on∂Bσ with ∂Bu∪∂Bσ = ∂B and ∂Bu∩∂Bσ = /0 (3)

the electric potential and the electric surface flux density

φ = φ0 on∂Bφ and −Q0 = D ·n on∂BD with ∂Bφ ∪∂BD = ∂B and ∂Bφ ∩∂BD = /0 (4)

as well as through the magnetic potential and the magnetic surface flux density

ϕ = ϕ0 on∂Bϕ and −ζ 0 = B·n on∂BB with ∂Bϕ ∪∂BB = ∂B and ∂Bϕ ∩∂BB = /0 . (5)

In a two-scale simulation, we attach a representative volume elementRV E ⊂ R
3 at each macroscopic point. As

a consequence, all the above quantities are defined through an averaging process over the volume of theRV E .
Assuming continuity of the displacements as well as the electric and magnetic potential, we can express the macro-
scopic variables in terms of simple volume integrals as

ξ = 〈ξ 〉V :=
1

VRV E

∫

RV E

ξ dv with ξ := {ε ,σ ,E,D,H,B} , (6)

see, for example, Schröder et al. (2015a).
The microscopic boundary value problem is defined as follows. The balance of momentum as well as Gauß’s law
of electro- and magneto-statics are given by

divx[σ ] = 0 , divx[D] = q and divx[B] = 0 in RV E . (7)

The linear strains as well as the microscopic electric and magnetic fields are defined by

ε(x) := sym[∇u(x)] , E(x) :=−∇φ(x) and H(x) :=−∇ϕ(x) . (8)
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For the complete definition of the microscopic boundary value problem, we need to prescribe suitable boundary
conditions on theRV E . Starting from the fundamental works of Hill (1963) and Mandel and Dantu (1963) we
assume that the individual parts of a generalized magneto-electro-mechanical Hill-Mandel condition of the form

σ : ε̇ = 〈σ : ε̇〉V , D · Ė = 〈D · Ė〉V and B· Ḣ = 〈B· Ḣ〉V (9)

have to be fulfilled independently, see Schröder (2009) for the electro-mechanical case and Schröder et al. (2015a)
for the magneto-electro-mechanical case. In order to satisfy these conditions, we employ periodic boundary condi-
tions in such a way that we assume a decomposition of the microscopic strains as well as the electric and magnetic
field into a macroscopic part and a fluctuation part, satisfying 〈ξ 〉V = ξ and〈ξ̃ 〉V = 0, as

ε = ε + ε̃ , E = E+ Ẽ and H = H + H̃ . (10)

The associated periodic boundary conditions for the mechanical, electrical and magnetical part are then given by

ũ(x+) = ũ(x−) and t(x+) = −t(x−) ,

φ̃(x+) = φ̃(x−) and Q(x+) = −Q(x−) ,

ϕ̃(x+) = ϕ̃(x−) and ζ (x+) = −ζ (x−) ,

(11)

respectively.

2.2 Consistent Linearization

In order to obtain a quadratic convergence in a Newton-Raphson iteration scheme on both scales, a consistent
linearization of the macroscopic constitutive quantitiesis required. The incremental constitutive equations on the
macroscopic and microscopic level can be written down as
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 (12)

with the macroscopic and microscopic elasticity tangent modulusC andC, the piezoelectric tangent modulieande,
the piezomagnetic tangent moduliq andq, the electric permittivitiesǫ andǫ, the magnetic permeabilitiesµ andµ,
as well as the magneto-electric tangent moduliα andα . The microscopic constitutive moduli are defined as partial
derivatives of the stresses, the electric displacement andthe magnetic induction with respect to the microscopic
strains as well as electric and magnetic field as

C= ∂ε σ , ǫ= ∂ED , µ = ∂HB , e= ∂εD =−(∂Eσ)T , q= ∂εB=−(∂Hσ)T and α = ∂EB= (∂HD)T

(13)
For the determination of the macroscopic constitutive tangent moduli the macroscopic stresses, electric displace-
ment and magnetic induction are expressed by the volume averages of the corresponding microscopic variables

C=
∂ 〈σ〉V

∂ε
, ǫ=

∂ 〈D〉V

∂E
, µ =

∂ 〈B〉V
∂H

,

e=
∂ 〈D〉V

∂ε
=

[
−

∂ 〈σ〉V

∂E

]T

, q=
∂ 〈B〉V

∂ε
=

[
−

∂ 〈σ〉V

∂H

]T

,

α =
∂ 〈B〉V

∂E
=

[
∂ 〈D〉V

∂H

]T

.

(14)

For a detailed derivative of the effective tangent moduli for magneto-electro-mechanically coupled material re-
sponse we refer to Schröder et al. (2015a). Although the ME coefficientsα of the microscopic constituents are
zero, the macroscopic coefficients inα are generally non-zero.

2.3 Transversely Isotropic Material Model

On the microscopic level we describe the behavior of a piezomagnetic and a non-linear ferroelectric phase. The
piezomagnetic phase is modeled with a transversely isotropic material law in terms of a coordinate-invariant
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magneto-electro-mechanical enthalpy function adopted from the work of Schr̈oder and Gross (2004). It is given
by

ψ1 = ψmech
1 +ψ pe

1 +ψ pm
1 +ψdiel

1 +ψmagn
1 (15)

where the individual parts represent the mechanical, piezoelectric, piezomagnetic, dielectric and magnetic behav-
ior. They are defined as

ψmech
1 = 1

2λ I2
1 +µ I2+ω1I5+ω2I2

4 +ω3I1I4 ,

ψ pe
1 = β1I1Je

2 +β2I4Je
2 +β3Ke

1 ,

ψ pm
1 = κ1I1Jm

2 +κ2I4Jm
2 +κ3Km

1 ,

ψdiel
1 = γ1Je

1 + γ2(Je
2)

2 ,

ψmagn
1 = ξ1Jm

1 +ξ2(Jm
2 )

2 ,

(16)

with the material parametersλ , µ , ω1−3, β1−3, κ1−3, γ1−2, andξ1−2. Above, we used the invariants

I1 := tr[ε ] , I2 := tr[ε2] , I4 := tr[εm] , I5 := tr[ε2m] ,

Je
1 := tr[E⊗E] , Je

2 := tr[E⊗a] , Ke
1 := tr[ε · (E⊗a)] ,

Jm
1 := tr[H ⊗H] . Jm

2 := tr[H ⊗a] , Km
1 := tr[ε · (H ⊗a)] ,

(17)

defined in terms of the preferred directiona, which characterizes the axis normal to the plane of isotropy, and the
associated material tensorm = a ⊗ a with || a || = 1. The preferred direction is associated with the directionof
remanent magnetization of the piezomagnetic phase. Note that for the description of the piezomagnetic phase, we
neglected the piezoelectric partψ pe

1 and for the description of the piezoelectric phase in chapter 3.4 we neglected
the piezomagnetic partψ pm

1 .

2.4 Ferroelectric/-elastic switching Behavior

The non-linear hysteretic response of the ferroelectric phase will be modeled through a microscopic switching
criterion for the remanent polarization based on the work ofHwang et al. (1995). A wealth of models has
been developed, which range from approaches on the basis of classical plasticity theory (McMeeking and Landis
(2002); Kamlah et al. (2005); Miehe and Rosato (2011)), models inspired by crystal plasticity (Huber et al. (1999);
Schr̈oder and Romanowski (2005); Klinkel (2006)), phase-field models (Zhang and Bhattacharya (2005); Schrade
et al. (2007, 2014)) and purely microscopic approaches (Hwang et al. (1995); McMeeking and Hwang (1997);
Kessler and Balke (2001); Li et al. (2010)). The used material model for the electro-active phase is adopted from
the work of Hwang et al. (1995) and reflects the hysteretic ferroelectric response of tetragonal Barium Titanate.
We start with writing down the magneto-electro-mechanicalenthalpy function, based on the works of Keip and
Schr̈oder (2011) and Keip and Schröder (2011)

ψ2 = ψmech
2 +ψ pe

2 +ψdiel
2 +ψmagn

2 (18)

with the individual parts, whereas(•̂) denotes the property on barium titanate unit cell level,

ψmech
2 = 1

2 λ Î2
1 +µ Î2+ 1

2 ω1 Î2
5 +ω2 Î1 Î5+

1
2 ω3 (Î2

6 + Î2
7)+

1
2 ω4 (Î2

3 + Î2
4 + Î2

5) ,

ψ pe
2 = β1 K̂1+β2 Î1 Ĵe

2 +β3 Î5 Ĵe
2 ,

ψdiel
2 = 1

2 γ1 Ĵe
1 +

1
2 (γ2− γ1)(Ĵe

2)
2− Ĵe

2 P̂1 ,

ψmagn
2 = 1

2ξ1Ĵm
1 + 1

2(ξ2−ξ1)(Ĵm
2 )

2 .

(19)

The above parts of the enthalpy function are described with the invariants

Î1 = tr[ε̂e] , Î2 = tr[(ε̂e)2] , Î3 = tr[ε̂eM̂11] , Î4 = tr[ε̂eM̂22] , Î5 = tr[ε̂eM̂33] ,

Î6 = tr[ε̂eΞ̂1] , Î7 = tr[ε̂eΞ̂2] , Ĵe
1 = tr[E⊗E] , Ĵm

1 = tr[H ⊗H] ,

Ĵe
2 = tr[E⊗ ĉ] , Ĵm

2 = tr[H ⊗ ĉ] , K̂1 = tr[E⊗ (Ξ̂3 : ε̂e)] , P̂1 = tr[P̂
r
⊗ ĉ] .

(20)

Here, we have introduced a set of structural tensors based onthe crystallographic axes ˆa1, â2, andâ3 given by

M̂i j = âi ⊗ â j , Ξ̂1 = (M̂13+ M̂31), Ξ̂2 = (M̂23+ M̂32), and Ξ̂3 =
3

∑
i=1

(âi ⊗ âi ⊗ ĉ+ âi ⊗ ĉ⊗ âi) . (21)
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In contrast to the piezomagnetic model the invariants ofψ2 depend on the elastic strains, where we assume an
additive decomposition of the total strains into a reversible (elastic) and an irreversible (remanent) part. In the
same way, we subdivide the electric displacement, see for example Kamlah (2001), and obtain

ε̂ = ε̂e+ ε̂ r and D̂ = D̂
e
+ P̂

r
. (22)

The remanent strain̂ε r and the remanent polarization̂P
r

are defined as functions of the preferred direction of a
Barium Titanate unit cell ˆc= â3 as

ε̂ r =
3
2

ε̂sdev(ĉ⊗ ĉ) and P̂
r
= P̂s ĉ. (23)

where ε̂s and P̂s are the spontaneous strain and spontaneous polarization. Each of these unit cells is allowed
to perform 90◦ and 180◦ switching, see Figure 2, which illustrates possible 90◦ and 180◦ ferroelectric/-elastic
switching options.

P̂
r

â1
â2

â3 = ĉ

∆P̂
r
1

∆P̂
r
2 ∆P̂

r
3

∆P̂
r
4

∆P̂
r
5

180◦ switching option:

∆P̂
r
1 =−2P̂s ĉ

90◦ switching options:

∆P̂
r
2 = P̂s( â1− ĉ), ∆P̂

r
3 = P̂s( â2− ĉ),

∆P̂
r
4 = P̂s(−â1− ĉ), ∆P̂

r
5 = P̂s(−â2− ĉ).

∆ε̂ r
2,4 =

3
2 ε̂sdev(â1⊗ â1− ĉ⊗ ĉ)

∆ε̂ r
3,5 =

3
2 ε̂sdev(â2⊗ â2− ĉ⊗ ĉ)

Figure 2: 180◦ and 90◦ switching options in tetragonal unit cell. The spontaneouspolarization of the unit cell is
given byP̂

r
= P̂sĉ.

In order to represent the non-linear hysteretic behavior ofa ferroelectric polycrystal, we assume a specific number
of unit cell orientations in each microscopic integration point. This distribution should in simplified terms represent
orientation directions of the unit cells in different domains, whereas concrete domain structures and domain wall
movements as well as grain boundary effects are not taken into account. For a consideration of grain boundary
conditions we want to refer to Arockiarajan et al. (2010). Atthe beginning of the simulation, we arrange them
uniformly in the three-dimensional space. For the ferroelectric switching a corresponding criterion is adopted
from the fundamental work of Hwang et al. (1995). Similarly,a criterion for the ferroelastic switching can be
derived, which depends on the change of the spontaneous strains caused by an applied mechanical load, see Keip
(2012). Due to different switching thresholds, the combined criterion for ferroelectric/-elastic switching is defined
as

E ·∆P̂
r
1

W diss
e,180◦

≥ 1 and
E ·∆P̂

r
i

W diss
e,90◦

+
σ : ∆ε̂ r

i

W diss
m,90◦

≥ 1 for i = 2, ...,5 . (24)

with the work dissipated during a discrete switching process

W
diss

e,180◦ = 2P̂sÊc, W
diss

e,90◦ = P̂sÊc and W
diss

m,90◦ =
3
2

ε̂sσ̂c . (25)

Here,Êc andσ̂c are the coercive electric field and stress, respectively. The switching process implicates a reorien-
tation of the crystallographic lattice, such that a homogenization approach over the unit cell distributions in each
microscopic integration point is necessary. The resultingmicroscopic quantitiesσ , D, C, e andǫ are based onn
orientations and determined as

(•) =
1
n

n

∑
i=1

(•̂)i , (26)

After the homogenization process over the unit cells, the switching criterion is verified in each microscopic inte-
gration point and the algorithm is repeated until the unit cell orientations have adjusted without further fulfillment
of the switching criterion.
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3 Numerical Examples

In the following section we discuss numerical simulations of the applied homogenization method. First, we con-
sider the macroscopic response of a ferroelectric bulk material by using different numbers of orientations, rep-
resenting single barium titanate unit cells, in each microscopic gauss point. Then, a mechanical force is applied
in the same direction as the alternating electric field to demonstrate the pressure dependence of the ferroelectric
model and the enhancement of the electro-mechanical coupling. Both investigations are used to perform pressure
dependent simulations on a magneto-electric composite, where a specific number of orientations is chosen for
the ferroelectric matrix. The resulting ME-coefficients are discussed with respect to the ferroelectric polarization
state and the applied compressive stresses. Next to the pre-polarization state, the microscopic morphology of the
composite plays a prominent role for the ME-coefficient. To show such an influence we finally performed mul-
tiple simulations with different inclusion geometries andvolume fractions. In these simulations we restrict the
calculations to two-dimensional microstructures and purely linear material models for both constituents.

3.1 Ferroelectric Response of Different Orientation Distributions

In order to investigate the material response of a ferroelectric single-phase material, we performed simulations
with different numbers of attached orientations in each microscopic gauss point, which represent barium titanate
unit cells. The set of material parameters used to describe tetragonal barium titanate is listed in Table 3. Depending
on the permittivity as well as permeability of free spaceǫ0 ≈ 8.854·10−12 As/Vmandµ0 = 4π ·10−7 N/A2 we
determined the relative electric permittivityǫr = ǫ/ǫ0 and relative magnetic permeabilityµ r = µ/µ0, respectively.

Table 3: Material parameters used for the simulations of single crystal BaTiO3, [Ĉ] = [σ̂c] =
N

mm2 , [ê] = [P̂s] =
C

m2 ,

[ǫ̂] = mC
kVm , [ε̂s] = [µ̂ r ] = [ǫ̂r ] = 1, [Êc] =

kV
mm, [µ̂] = N

kA2 , see Zgonik et al. (1994). We roughly assumed the value
of the coercive stressσc.

Ĉ1111 Ĉ1122 Ĉ1133 Ĉ3333 Ĉ1212 Ĉ1313 ǫ̂11 (ǫ̂
r
11) ǫ̂33 (ǫ̂

r
33)

222000 108000 111000 151000 134000 61000 0.019 (2146) 0.000496 (56)

ê311 ê333 ê131 µ̂11 (µ̂ r
11) µ̂33 (µ̂ r

33) Êc σ̂c ε̂s

-0.7 6.7 34.2 1.26 (1) 1.26 (1) 1.0 100 0.00834

In the initial state the orientations are distributed uniformly in the three-dimensional space to obtain an unpoled
ferroelectric bulk material, in order to approximate a realmaterial without a pre-polarization.
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Figure 3: Macroscopic butterfly hysteresis loop using 15, 42, 92, 162 and 1002 orientations and a dielectric
hysteresis loop for 1002 orientations.
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Therefore, we make use of the construction of a geodesic dome(Fuller (1965)), whose surface is uniformly subdi-
vided into multiple triangles, see for example Schröder et al. (2015a). Subsequently, the orientations, characterized
by arrows, then point from the center of the geodesic sphere into the direction of a corresponding corner point of
the surface triangles. By subdividing each triangular edgeinto multiple subsections, which is denoted by frequen-
cies, the number of orientations can be increased. Typically, this construction principle yields 42, 92, 162 or 1002
orientations for a frequency of 2, 3, 4 or 10. Figures 3 shows the resulting butterfly hysteresis curves for an ap-
plied alternating vertical electric fieldE3, with 15, 42, 92, 162 and 1002 orientations. Additionally, adielectric
hysteresis loop using 1002 orientations is depicted. The maximum applied electric field is increased to 10 kV/mm
to ensure that each orientation is switched to its most efficient direction as well as to obtain a perfect symmetry of
the hysteresis loops. As shown in Figure 3 the macroscopic response tends to smoother results for a larger number
of orientations. Due to the application of an orientation distribution function for the spontaneous polarization di-
rections and the accompanying spontaneous strains, we obtain an initial contraction of the material. This behavior
is caused by the fact that the remanent strains of all orientations do not exacly cancel each other.

3.2 Ferroelectric Pressure Dependence

Based on the previous study of different numbers of orientations, we use 92 unit cells for the simulations in
this section. To increase the electro-mechanical couplinga compressive stress is applied in the direction along
the alternating electric field, see Figure 4. This is due to anenhancement of the stress-activated 90◦ ferroelastic
switching, see e.g. Yen et al. (2008).

−

+

2

−2

E3 kv/mm

σ33 MPa

time
E3

σ33

Figure 4: Macroscopic boundary value problem with applied electric field and compressive stresses.

The pressure dependence of a ferroelectric bulk material can be seen in the resulting hysteresis loops in Figure 5.
Due to the applied stresses the material is compressed in thevertical direction and the remanent strains are shifted
into a negative data region.

Comparing the different butterfly hysteresis loops, we observe a larger absolute value of the total strains, which can
be achieved especially in low electric field ranges, where a distinct switching behavior occurs. On the other hand,
the amplitudes of the dielectric hysteresis loop is narrowed for higher compressive stresses. Such a ferroelectric
hysteretic response for applied uniaxial prestresses is also observed for soft PZT in Zhou et al. (2005).

3.3 Magneto-electric Coupling of Two-phase Composites

In this section we focus on the magneto-electric coupling oftwo-phase composites and take a closer look at
the polarization state as well as the pressure dependence, which was in the previous sections investigated for
a single-phase ferroelectric material. The magneto-electric coupling in composite materials is a strain-induced
property and requires a distinct electro-mechanical coupling of the ferroelectric phase. Thus, the ME coupling
can be increased by an improved electro-mechanical response of the electro-active phase, which can be achieved
by poling of the ferroelectric matrix as well as by an appliedcompressive stress. To give an impression of the
microscopic switching behavior, we consider a periodicRV E on the microstructure, consisting of a ferroelectric
matrix with a spherical piezomagnetic inclusion with 25% volume fraction, see Figure 6, which is driven by an
alternating electric field in vertical direction. We assume42 barium titanate unit cells at each integration point of
the piezoelectric matrix, which are uniformly distributedin three dimensional space. In the following numerical
example an applied alternating electric field yields alternating reorientations of the microscopic barium titanate
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Figure 5: a) Butterfly hysteresis and b) dielectric hysteresis curves over an electric fieldE3 for different applied
compressive stresses.

unit cells, which result in a non-linear behavior of the ME-coefficient depending on the polarization state of the
ferroelectric matrix. To give an impression of the simulated microscopic switching behavior we apply a cycling
electric field in vertical direction on theRV E , see Figure 6a. In Figure 6b we show the distribution ofE3 andB3

for a macroscopic loadingE3 = 2 kV/mm at timet4. In order to demonstrate the polarization switching insidethe
RV E , we have chosen two Gauss points, of which we illustrate the orientation distributions of the barium titanate
unit cells for a sequence of macroscopic electric fieldsE3 for two distinguished points (1) and (2), see Figure 6c.

a) b)

c)
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E3 = 0.5 E3 = 1.0 E3 = 1.5 E3 = 2.0 E3 = 0.0 E3 =−0.625 E3 =−1.25 E3 =−2.0

Figure 6: a) Cyclic loading of an alternating macroscopic electric field, b)RV E and c) orientation distributions
with distinguished points (1) and (2) at specific time steps.

The first point(1) is located above the magnetic inclusion, where the local electric field is smaller than the applied
macroscopic field. The second point(2) is located at the right side of the inclusion, where a microscopic electric
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field concentration (E3) is observed in a horizontal area around the magnetic inclusion. For imaging the switching
behavior the orientation distributions in both integration points are depicted at the eight points of timet1 to t8,
which focus on the loading process of the electric field in positive and negative direction. During the first 4 time
stepst1 to t4 for an increased electric field we observe a switching of the orientations which then point into the
direction of the applied field. When the electric field decreases to the maximum negative value, during the time
stepst5 to t8, a stepwise reorientation of the unit cells takes place. By comparing the behavior in both points we
clearly see a different switching response due to the different local electric fields.
For a more precise prediction of the ME-coefficient we performed simulations with a refined finite element mesh
of theRV E s. Furthermore, we applied compressive stresses on the composite to investigate their influences on
the ME-coefficient. The resulting hysteresis loops and the non-linear behavior of the ME-coefficients are depicted
in Figure 7.
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Figure 7: a) Effective response of the butterfly hysteresis loops, b) dielectric hysteresis, c) ME coefficient for
applied stresses from 0 MPa to 200 MPa and d) ME coefficient forapplied stresses of 200 MPa.

We observe a strong dependency of the transferred strains from the electric matrix to the magnetic inclusion
on the ME coefficient. The magnitude of the magneto-electriccoupling is based on the incremental change of
the electric butterfly hysteresis curve. Here we observe a saturation of the ME-coefficient under high electric
fields. When the electric field loading is removed, a remanent ME-coefficient remains, which is in the case of no
compressive stresses approximately half to the one predicted with purely linear piezoelectric and piezomagnetic
material models with assumed idealized polarization and magnetization. The modified electro-mechanical be-
havior in case of applied compressive stresses affects the magneto-electric coupling in a positive manner, see
Figure 7c. At a compressive stress of 200 MPa the ME-coefficient at remanent polarization is raised up to
α33(σ33 = 200MPa) = 1.423 · 10−10 s/m and is 304.1 % larger than the coupling coefficient at an unstressed
state (α33(σ33 = 0 MPa) = 0.4709 · 10−11 s/m). The performed simulations of the ME coefficients are not
adjusted to experimental measurements and are purely predictions of the used material models. However, the au-
thors would assume a decrease of the ME coefficient for increasing applied compressive stresses. This material
behavior is due to the complexity of the microscopic interactions an open question, which will be investigated in a
future work, where we will compare the simulated results with experimental measurements.
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3.4 Influence of the Microscopic Morphology on ME Coefficients

As already demonstrated in Figure 6 the heterogeneous microstructure and the resulting inhomogeneous distribu-
tion of the local electric fields play a significant role on thelocal polarization states. Regions inside the microstruc-
ture with low electric field distributions show accordinglysmall electro-mechanical properties, which decreases
the strain-induced magneto-electric coupling. To investigate the influence of the microscopic morphology on the
ME-coefficient we performed 25 simulations with composites, consisting of a piezoelectric matrix and different
ellipsoidal piezomagnetic inclusions with varying volumefractions. Here, we restricted the simulations to two-
dimensional boundary value problems and purely transversely isotropic linear material models. The used material
parameters for polycrystalline barium titanate and cobaltferrite are listed in Table 4. Here it has to be emphasized,
that we consider non-conductive magnetic inclusion. In allsimulations a macroscopic electric field of 2 kV/mm in
vertical direction is applied and periodic boundary conditions are used on theRV E .

Table 4: Material parameters for polycrystal barium titanate and cobalt ferrite, see Bechmann (1956); Stevens et al.
(1956); Murthy (1983); Lee et al. (2005); Labusch et al. (2014); Schr̈oder et al. (2015a).

Modulus Unit BaTiO3 CoFe2O4 Modulus Unit BaTiO3 CoFe2O4

C11
N

mm2 16.6·104 21.21·104
ǫ11 (ǫ

r
11)

mC
kVm 112·10−4 (1265) 0.80·10−4 (9)

C12
N

mm2 7.7·104 7.45·104
ǫ33 (ǫ

r
33)

mC
kVm 126·10−4 (1423) 0.93·10−4 (11)

C13
N

mm2 7.8·104 7.45·104 q31
N

kAmm 0.0 580.3

C33
N

mm2 16.2·104 21.21·104 q33
N

kAmm 0.0 −699.7

C44
N

mm2 4.3·104 6.88·104 q15
N

kAmm 0.0 550.0

e31
C
m2 −4.4 0.0 µ11 (µ r

11)
N

kA2 1.26 (1.003) 157.0 (124.9)

e33
C
m2 18.6 0.0 µ33 (µ r

33)
N

kA2 1.26 (1.003) 157.0 (124.9)

e15
C
m2 11.6 0.0

Figure 8 shows three example microstructures with different inclusion geometries but equal volume fractions. The
longitudinal expansions of the ellipsoids with varying volume fractions is kept constant to enable a comparison
with the different microstructures. Figure 8 also depicts the electric field distributionE2 of the composites.

a)

kV
mm

α22 = 1.1465·10−10 s/m b)

kV
mm

α22 = 1.6517·10−10 s/m c)

kV
mm

α22 = 2.1963·10−10 s/m

Figure 8: Electric field distributionE2 for three example microstructures with 30 % inclusion volume fraction.

We can clearly observe, that due to the different electric permittivity of the magnetic inclusion concentrations of
the electric fields occur at the left and right boundary of theinclusions. Simultaneously, very low microscopic
electric fields, in comparison with the applied macroscopicfield, are present at the vertical boundaries. For a
high magneto-electric coupling the electro-mechanical properties of the matrix in the regions of the interphase
between both constituents should also be enhanced, which isthe case for ellipsoidal inclusions aligned along the
direction of the applied electric field. As a consequence theME-coefficient for the three composites raised from
α22 = 1.1465·10−10 s/m for a) overα22 = 1.6517·10−10 s/m for b) to α22 = 2.1963·10−10 s/m for c).
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Figure 9: Three-dimensional visualization of the ME-coefficients for different inclusion geometries and volume
fractions.

A visualization of the ME-coefficients of all considered microstructures is given in Figure 9. The resulting ME-
coefficients are plotted against the inclusion volume fraction and the ratio between the horizontal and vertical
radius of the ellipsoidal inclusion, which yield a three-dimensional plot, where the highest point of the surface
describes the maximum ME-coefficient. Taking a closer look at Figure 9 we observe, that for a circular inclusion
the best ME value is obtained for 50 % volume fraction of both phases. As demonstrated in Figure 8 the ME
coupling can be increased by changing the inclusion shape toellipsoid aligned along the direction of the applied
field. Thus, the highest ME-coefficientα22 = 3.3739·10−10 s/m is obtained for a microstructure with a vertical
ellipsoidal inclusion with 40 % volume fraction.

4 Conclusion

In this contribution, we proposed a two-scale homogenization approach for magneto-electro-mechanically coupled
boundary value problems. The procedure was implemented into the FE2-method, which allows for the considera-
tion of attached microscopic representative volume elements to compute the macroscopic boundary value problem.
The main focus is on the determination of the magneto-electric coefficient and consideration of the influences of
applied stresses and microscopic morphologies on the ME coupling. Numerical simulations demonstrate the en-
hancement of the ME-coefficient under compressive stressesand for specific shapes of the magnetic inclusions.
To further improve the prediction of the effective properties, we inspected a ferroelectric pre-polarization pro-
cess by considering the microscopic ferroelectroelastic switching behavior. In this contribution we have neglected
any conductivity of the magnetic inclusion considering only the net (= high frequency) dielectric constant. The
more realistic case of low but finite conductivity is plannedfor future work. In future developments we will more
precisely simulate the magnetostrictive response by implementing a non-linear dissipative material model.
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