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On the Influence of Ferroelectric Polarization States on the
Magneto-electric Coupling in Two-phase Composites

M. Labusch, M.-A. Keip, V.V. Shvartsman, D.C. Lupascu, hi®sder

Of particular attention in a variety of novel technical ajaitions is the coupling between magnetic and electric
field quantities. Materials that show magneto-electric (MBupling could enable new smart devices in the area
of electric-field-controlled magnetic-data storage or tligsensitive magnetic-field sensors. In general, ME ma-
terials exhibit both a spontaneous magnetization and a tsp@ous polarization. In this respect, they feature two
ferroic states at the same time and are thus termed magmettrie multiferroics. However, all natural and most
of the synthesized ME multiferroics do not show an intecsichetween magnetization and electric polarization
in the technically relevant temperature range. Thus, themeeed for alternative realizations for ME coupling
materials. A promising idea lies in the design and manufé@otuof ME composites. These materials consist of
a magnetostrictive and a piezoelectric phase and genengt®ME coupling as a strain-induced product property.
Since there exists a wealth of stable magnetostrictive aarbplectric materials at ambient temperature, such
composites yield the desired ME coupling also in a techhjasdeful temperature range. In any case, the effec-
tive ME coupling is driven by microscopic interactions beén the individual phases and thus highly depends on
the microstructure of the composite. This calls for powldnfimogenization methods that are able to predict the
effective coupling for arbitrary microstructural morploglies. Motivated by that, we apply a two-scale compu-
tational homogenization framework for magneto-electechanically coupled boundary value problems, which
allows us to analyze the ME composite structures and caleulee effective ME-coefficient. Furthermore, by us-
ing a non-linear ferroelectric material model on the midexel, we are able to simulate the polarization process
of the ferroelectric phase. We show that this has a significapact on the obtainable ME-coefficient.

1 Introduction

Materials with ferroelectric or ferromagnetic propertés used in many fields of technology. A combination of
both properties in a single material, enable new applinatguch as electrical magnetic-field sensors or electric-
write/magnetic-read memories, see for example Eerenstedh. (2006), Spaldin and Fiebig (2005) and Bibes
and Bartfelemy (2008). Such materials, which combine polarization magnetization, are known asagneto-
electric (ME) multiferroics However, all natural and most of the synthetic single-pHd& multiferroics show
ME coupling only outside a technical useful temperatureyearsee Table 1 for an overview of measured ME
coefficients.

Table 1: Measured ME coefficients of single-phase materials

Material ME coefficient Temperature Reference

LiCoPOy 30.60-10~%?s/m 42K Rivera (1994)

Cr,03 4.17-10?s/m 2700 K Vaz et al. (2010)

Cr0O3 4.13-10712s/m 2630 K Rivera (1994)

Cr,03 1.43-10 2 s/m 2932 K Astrov (1961)

BiFeO; 0.52-107'2s/m 180K Rivera and Schmid (1997)
Mn3B7013l 9.50-10~*s/m 42 K Crottaz et al. (1997)

The disadvantage of a vanishing ME coupling coefficient abrdemperature, which is not feasible for technical
applications, could be circumvented by manufacturing reémpelectric composites, which consist of a piezoelec-
tric and a magnetostrictive phase, see Nan (1994); Fiebigg?and Hill (2000). In such composites, the individual
phases interact with one another mechanically, so tsitaén-inducedME coupling (even at ambient tempera-
ture) can be produced. The resulting effective ME couplingsich are not present in each of the constituents,
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are classified aproduct propertiesWe distinguish between the direct and the inverse ME effBaé direct cou-
pling effect characterizes magnetically induced polaidra an applied magnetic field yields a deformation of the
magneto-active phase which is transferred to the electigesphase. As a result, a strain-induced polarization in
the electro-active phase is observed, see Figure 1. Thersmeffect is characterized by an electric-field induced
magnetization. Several experiments on ME composites sthograarkable ME coefficients, which are orders of
magnitudes higher than those of single-phase multifesraiee, for example, Fiebig (2005).

Due to the microscopic interactions between the indivightralses, the arising ME coefficient strongly depends on
the microstructure of the composite. Motivated by that, eeapitulate a two-scale finite element homogenization
framework (FE-method) for magneto-electro-mechanically coupled bampdalue problems, see Séuer et al.
(2015a). This allows for the consideration of microscopmrpinologies in a macroscopic simulation. In the con-
text of multiscale homogenization we refer to Miehe and K&902), Miehe and Bayreuther (2007), Geers et al.
(2010) as well as to recent extensions to coupled matespbrese Miehe et al. (2011), Séder and Keip (2012),
Zah and Miehe (2013), Labusch et al. (2014), Keip et al. (2@t&chibder et al. (2015b).

Obviously, the polarization state of the ferroelectric gatrongly influences the ME coupling. The reason for that
is that in a bulk composite the electro-mechanical couptihthe ferroelectric phase has to be poled in order to
allow for significant strain-induced interactions. The-parization is thus crucial in the manufacturing and the
design of ME composites. At this point we want to refer to Aaaket al. (2015), where the authors used a nonlin-
ear ferroelectric model to simulate the magneto-electriigoting in composite materials regarding the polarization
of the electric matrix. In order to map this in our simulagomwe consider a non-linear hysteretic material model
for the ferroelectric phase on the microscopic level. Thie-finear model is based on a microscopic switching
criterion for the spontaneous polarization based on th&wbHwang et al. (1995). The material model will be
combined with a magneto-electric enthalpy function whieftects the tetragonal symmetry of a barium titanate
unit cell, compare to Keip and Sdider (2011); Keip and Sctder (2011) or Keip (2012).

Figure 1: a) Direct coupling effect and b) inverse coupliffg&, see Sclirder et al. (2015a).

The outline of this contribution is as follows. In the seca®ttion, the main ingredients of the coupled finite
element homogenization approach will be discussed briafg further describe the used non-linear material
model reflecting the ferroelectric switching behavior. tietthree then gives a numerical example, in which the
influence of the microscopic switching behavior on obtaled¥iE-coefficients is analyzed. The results will be
compared to experimental measurements. In section founeusion is given.

2 Multiscale Homogenization of ME Composites

In this section the two-scale homogenization frameworkifagneto-electro-mechanically coupled boundary value
problems will be described briefly. We start with the defanitiof the kinematic quantities and the fundamental
balance equations on the macroscale. The connection toitnestale is established by a localization step. The
subsequent homogenization step yields the effective piepencluding the desired ME coefficient. After that,
the used material models on the microscopic level will bedesd. We employ a linear and transversely isotropic
material model for the magneto-active phase and a nontlimgsteretic model for the electro-active phase. In
order to simplify the readability of this section we summarihe basic magneto-electro-mechanical quantities in
Table 2. All macroscopic quantities are denoted by an awerli
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Table 2: Magneto-electro-mechanical quantities and thats.

micro- and macro-Symbol Continuum mechanical description SI-Unit

u,u displacement vector m

&€ linear strain tensor 1

0,0 Cauchy strain tensor kd/sn (N/m?R)
t, traction vector kglm (N/mP)
f, f mechanical body forces kg/sn? (N/m?3)
0 Q electric potential kg MA s° (V)
E.E electric field vector kg m/A% (VIm)
D,D electric displacement vector A sfm (CI?)
Q0 electric surface flux density A sfm (CIm?)
a.q density of free charge carriers Asim (C/md)
0,0 magnetic potential A

H,H magnetic field Alm

B,B magnetic flux density kg/A% (M
2,7 magnetic surface flux density kg/& s (Vs/mP)

2.1 Boundary Value Problems and Scale Transition

The macroscopic body? ¢ R3 is parameterized in the Cartesian coordinaedhe macroscopic fundamental
balance laws are given by the balance of momentum as well aB'&laws of electro- and magneto-statics

divg[G]+ f=0, divxD]=g and digB]=0 in %. (1)
The macroscopic gradient fields, i.e. the strain as well aglictric and magnetic field are defined as
£(X):=sym0u(x)], E(X) :=-0¢(X) and H(X):=-09(X), )

with the macroscopic gradient operatorwith respect tox. The boundary conditions prescribed through the
displacement and the surface traction

U=0p ond%h, and fp=0-n ondAB, with 0B,UIAB;=0% and 0B,NIHB;=0 (3)
the electric potential and the electric surface flux density
®=¢y, ond#B, and —Qy=D-n ond%p with 08B,U0%p=0%# and 0%B,N0%p=0 (4)
as well as through the magnetic potential and the magnatiacgiflux density
®=¢, ond#By and —fo =B-n ond%g with 0B,U0Bg=0% and 0B;NIdABg=0. (5)

In a two-scale simulation, we attach a representative velalamentz? & c R? at each macroscopic point. As

a consequence, all the above quantities are defined thraugliesmaging process over the volume of ¢ & .
Assuming continuity of the displacements as well as thetgtegnd magnetic potential, we can express the macro-
scopic variables in terms of simple volume integrals as

B 1
Voy &

E— () /Edv with & :={e,0,E,D,H,B}, 6)

RV E

see, for example, Schder et al. (2015a).
The microscopic boundary value problem is defined as folldve balance of momentum as well as Gaul3’s law
of electro- and magneto-statics are given by

divk[o] =0, divwwD]=q and dikB]=0 inZYé&. @)
The linear strains as well as the microscopic electric angmetic fields are defined by

(x):=symOu(x)], E(X):=-0¢(x) and H(x):=-0¢(x). (8)
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For the complete definition of the microscopic boundary &glwoblem, we need to prescribe suitable boundary

conditions on thez¥ &. Starting from the fundamental works of Hill (1963) and Mahdnd Dantu (1963) we

assume that the individual parts of a generalized magrettre-mechanical Hill-Mandel condition of the form
T:t=(0:&y, D-E=(D-Ely and B-H=(B-H (9)

have to be fulfilled independently, see Sather (2009) for the electro-mechanical case and&itdhret al. (2015a)
for the magneto-electro-mechanical case. In order tofgatisse conditions, we employ periodic boundary condi-
tions in such a way that we assume a decomposition of the stiopic strains as well as the electric and magnetic

field into a macroscopic part and a fluctuation part, satigfy€ )y = & and(&)y =0, as
E=t+&, E=E+E and H=H+H. (10)

The associated periodic boundary conditions for the mdachhrlectrical and magnetical part are then given by

ixt) = Ux) and t(x") = —t(x),
e(x") = ¢(x) and Q') = —Qx), (1)
¢(x7) = ¢(x7) and {(x7) = —{(x7),

respectively.

2.2 Consistent Linearization

In order to obtain a quadratic convergence in a Newton-Rapliteration scheme on both scales, a consistent
linearization of the macroscopic constitutive quantiteesequired. The incremental constitutive equations on the
macroscopic and microscopic level can be written down as

IiYej c - g AE Ao c —-e - Ae
-AD | =| -8 —€ -a' AE and | -AD | =| —e —e -aT AE | (12)
—AB -q -a -H AH —AB -9 —-a —u AH

with the macroscopic and microscopic elasticity tangenduhasC andC, the piezoelectric tangent modelande,

the piezomagnetic tangent modglandg, the electric permittivitieg ande, the magnetic permeabilitigsandy,

as well as the magneto-electric tangent modudinda. The microscopic constitutive moduli are defined as partial
derivatives of the stresses, the electric displacementladhagnetic induction with respect to the microscopic
strains as well as electric and magnetic field as

C=0.0, e=0eD, pu=04B, e=0.D=—(60)", q=0.B=—(640)" and a=deB= (D)’

(13)
For the determination of the macroscopic constitutive éamgnoduli the macroscopic stresses, electric displace-
ment and magnetic induction are expressed by the volumagesiof the corresponding microscopic variables

~_ 9ol __ 9Dy 9By
C="% T P am
(D) d(an1T d(B) da]’
e agvz{‘ aEV] C9=Tg | aHV} ’ 4
0By [aDW]T
T _{ OH] '

For a detailed derivative of the effective tangent moduti ftagneto-electro-mechanically coupled material re-
sponse we refer to Sabder et al. (2015a). Although the ME coefficiermtsof the microscopic constituents are
zero, the macroscopic coefficientsanare generally non-zero.

2.3 Transversely Isotropic Material Model

On the microscopic level we describe the behavior of a piezpratic and a non-linear ferroelectric phase. The
piezomagnetic phase is modeled with a transversely isotm@aterial law in terms of a coordinate-invariant
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magneto-electro-mechanical enthalpy function adoptexh fthe work of Schisder and Gross (2004). It is given
by _

Yn = g PP " g g (15)
where the individual parts represent the mechanical, pleztric, piezomagnetic, dielectric and magnetic behav-
ior. They are defined as

greeh = IX1Z+ plo+ wils + wol 2+ wslals,

Wr® = Pili3S+ Bolads+ BaK§,

PP = Kl + Kol ad + kK], (16)
gl = I+ (3)?,

Pt = &I+ &2,
with the material parameteds u, w3, B1-3, K13, Y12, andé;_». Above, we used the invariants

Iy :=trle], lp:=tr[e?], lq:=trem], ls:=tr[e’m],
X =t[ExE], X:=tExad, K =tre (Exa), (17)
J=trfH®H]. J:=trfH®a, K :=tre-(H®a)],

defined in terms of the preferred directiapwhich characterizes the axis normal to the plane of isgtrapd the
associated material tensor= a ® awith || a|| = 1. The preferred direction is associated with the directibn
remanent magnetization of the piezomagnetic phase. Natddhthe description of the piezomagnetic phase, we
neglected the piezoelectric pa(vfe and for the description of the piezoelectric phase in chightewe neglected
the piezomagnetic pagi|™.

2.4 Ferroelectric/-elastic switching Behavior

The non-linear hysteretic response of the ferroelectrizsphwill be modeled through a microscopic switching
criterion for the remanent polarization based on the worlHefang et al. (1995). A wealth of models has
been developed, which range from approaches on the badesssfaal plasticity theory (McMeeking and Landis
(2002); Kamlah et al. (2005); Miehe and Rosato (2011)), nsidepired by crystal plasticity (Huber et al. (1999);
Schibder and Romanowski (2005); Klinkel (2006)), phase-fieldlgls (Zhang and Bhattacharya (2005); Schrade
et al. (2007, 2014)) and purely microscopic approaches @dgwet al. (1995); McMeeking and Hwang (1997);
Kessler and Balke (2001); Li et al. (2010)). The used madter@del for the electro-active phase is adopted from
the work of Hwang et al. (1995) and reflects the hysteretimédectric response of tetragonal Barium Titanate.
We start with writing down the magneto-electro-mechana#halpy function, based on the works of Keip and
Schidder (2011) and Keip and Sdider (2011)

Yo = YFeM P+ 5+ g (18)

with the individual parts, whereds) denotes the property on barium titanate unit cell level,

e = 3N+l Y oo s (B )+ dan B+ F+).

W = BRi+BhE+ B, (19)
ws = Bnlttile-w 5P -BA

" = &I+ 1(& - &) ()32,

The above parts of the enthalpy function are described Wwéhrvariants

tl’[ée] , I} = tl’[(ée)z] , I} = tl’[éel\hll] , I} = tr[éel\7|22} , I}, = tr[éel\hgg} ,

tr[g®=y), 7=t[g%=,), F=t[ExE, J"=tHoH], (20)
rEd, M=trHo¢, Ki=tE®(Z3:8%], P=t[P @f.

V3

Here, we have introduced a set of structural tensors bas#tkamnystallographic axes ,"d,, andas given by

3
Mij =& ®4&;, =1=(M13+Mz1), =2=(Mx3+Ms3p), and 53=Z(&®&®C+&®C®éi)- (21)
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In contrast to the piezomagnetic model the invariantgypfdepend on the elastic strains, where we assume an
additive decomposition of the total strains into a revdes{elastic) and an irreversible (remanent) part. In the
same way, we subdivide the electric displacement, see fample Kamlah (2001), and obtain

§=28°+8 and D=D°+F. (22)

The remanent straig’ and the remanent polarizati(fﬁ are defined as functions of the preferred direction of a
Barium Titanate unit celt = &3 as

o

g = §§sdev(é® ¢ and P =PRé (23)

2
where & and P are the spontaneous strain and spontaneous polarizatiach & these unit cells is allowed
to perform 90 and 180 switching, see Figure 2, which illustrates possiblé @0d 180 ferroelectric/-elastic
switching options.

A3 = ¢ 180° switching option:

90° switching options:

AP, =Py & —¢), AP3 =Py &—0),
AP, = Ps(—& — &), APg=Ps(—&,—¢).

sdev(d ®8; —€®C)

=
APy

3
2
A&, = 3&sdev(d @8 — E® Q)

Figure 2: 180 and 90 switching options in tetragonal unit cell. The spontanepoisrization of the unit cell is
given byP' = B¢,

In order to represent the non-linear hysteretic behaviarfefroelectric polycrystal, we assume a specific number
of unit cell orientations in each microscopic integratiain. This distribution should in simplified terms repressen
orientation directions of the unit cells in different domsj whereas concrete domain structures and domain wall
movements as well as grain boundary effects are not takeracttount. For a consideration of grain boundary
conditions we want to refer to Arockiarajan et al. (2010). tii¢ beginning of the simulation, we arrange them
uniformly in the three-dimensional space. For the ferrctele switching a corresponding criterion is adopted
from the fundamental work of Hwang et al. (1995). Similadygriterion for the ferroelastic switching can be
derived, which depends on the change of the spontaneoirsssteaused by an applied mechanical load, see Keip
(2012). Due to different switching thresholds, the comdingterion for ferroelectric/-elastic switching is defthe

as

E-AP E-AP  0:A _
S1>1 and — oty T8 S for =25, (24)
W/e,lsov We,goo Wm,goo
with the work dissipated during a discrete switching preces
. . . A a ; 3. .
Py =2RE., #&E =RE. and 75 = S&s0c. (25)

Here,E. andé; are the coercive electric field and stress, respectivelg. Stvitching process implicates a reorien-
tation of the crystallographic lattice, such that a homagggion approach over the unit cell distributions in each
microscopic integration point is necessary. The resultimgroscopic quantities, D, C, e ande are based on

orientations and determined as L0
= - (;>| ) (26)
2,

n.&

(o)
After the homogenization process over the unit cells, thisckimg criterion is verified in each microscopic inte-

gration point and the algorithm is repeated until the unlitaéentations have adjusted without further fulfillment
of the switching criterion.
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3 Numerical Examples

In the following section we discuss numerical simulatiohthe applied homogenization method. First, we con-
sider the macroscopic response of a ferroelectric bulk riahtey using different numbers of orientations, rep-
resenting single barium titanate unit cells, in each mipopsc gauss point. Then, a mechanical force is applied
in the same direction as the alternating electric field to alestrate the pressure dependence of the ferroelectric
model and the enhancement of the electro-mechanical cguioth investigations are used to perform pressure
dependent simulations on a magneto-electric compositereva specific number of orientations is chosen for
the ferroelectric matrix. The resulting ME-coefficients aliscussed with respect to the ferroelectric polarization
state and the applied compressive stresses. Next to thgofagzation state, the microscopic morphology of the
composite plays a prominent role for the ME-coefficient. fiow such an influence we finally performed mul-
tiple simulations with different inclusion geometries aralume fractions. In these simulations we restrict the
calculations to two-dimensional microstructures and lydneear material models for both constituents.

3.1 Ferroelectric Response of Different Orientation Distibutions

In order to investigate the material response of a ferrtetesingle-phase material, we performed simulations
with different numbers of attached orientations in eachrasicopic gauss point, which represent barium titanate
unit cells. The set of material parameters used to desathegonal barium titanate is listed in Table 3. Depending
on the permittivity as well as permeability of free spage~ 8.854- 10712 As/Vmand g = 4m- 10" N/A? we
determined the relative electric permittivity = € /eg and relative magnetic permeabiligy = 11/ Lo, respectively.

C

Table 3: Material parameters used for the simulations afisiorystal BaTiQ, [C] = [6c] = % [ =[P = =T

(€] = @ (& =[] = [&"] = 1, [Ed] = &5, [1] = 2, see Zgonik et al. (1994). We roughly assumed the value
of the coercive stress:.
Cin Cuzz  Cuss Caa3s Ciziz  Ciaiz &11 (&} €33 (€53)
222000 108000 111000 151000 134000 61000 0.019(2146) 4060B6)
&11 &33 &1 [a1 () fes(fy)  Ec Oc &s
-0.7 6.7 34.2 1.26 (1) 1.26 (1) 1.0 100 0.00834

In the initial state the orientations are distributed uniity in the three-dimensional space to obtain an unpoled
ferroelectric bulk material, in order to approximate a meaterial without a pre-polarization.

06 = T 06 o 06 —
33/¢s 33/¢s
04 \\\ %7/ 04 \ // 04 _~ -
0.2 Kﬂf: 0.2 4 0.2
4, » g
< ‘, v :""%‘E‘,:‘
0 [N = N 0
/ANN _ LN _ =
’rN u EskV/mn LAY N EskV/mn EskV/mn
8 4 0 4 8 8 4 0 4 8 8 4 0 4 8
06 — 72 15 =5
€33/&s 3/Fs —
| o4 | oz 7
/ /
0.2 0 /
@V . L L
— — / —
EskV/mn 2t Eskv/mm — EskV/mn
4 8 -8 -4 0 4 8 ' -8 -4 0 4 8

Figure 3: Macroscopic butterfly hysteresis loop using 15, 92 162 and 1002 orientations and a dielectric
hysteresis loop for 1002 orientations.
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Therefore, we make use of the construction of a geodesic deuailer (1965)), whose surface is uniformly subdi-
vided into multiple triangles, see for example Sater et al. (2015a). Subsequently, the orientations, cteiaed

by arrows, then point from the center of the geodesic spimoetiie direction of a corresponding corner point of
the surface triangles. By subdividing each triangular édtgemultiple subsections, which is denoted by frequen-
cies, the number of orientations can be increased. Typidhls construction principle yields 42, 92, 162 or 1002
orientations for a frequency of 2, 3, 4 or 10. Figures 3 shdwesrésulting butterfly hysteresis curves for an ap-
plied alternating vertical electric fiells, with 15, 42, 92, 162 and 1002 orientations. Additionallgialectric
hysteresis loop using 1002 orientations is depicted. Thdémam applied electric field is increased to 10 kV/mm
to ensure that each orientation is switched to its most efftailirection as well as to obtain a perfect symmetry of
the hysteresis loops. As shown in Figure 3 the macroscopporese tends to smoother results for a larger number
of orientations. Due to the application of an orientatiostiifbution function for the spontaneous polarization di-
rections and the accompanying spontaneous strains, wig alotanitial contraction of the material. This behavior
is caused by the fact that the remanent strains of all oientado not exacly cancel each other.

3.2 Ferroelectric Pressure Dependence

Based on the previous study of different numbers of orietat we use 92 unit cells for the simulations in
this section. To increase the electro-mechanical cougimgmpressive stress is applied in the direction along
the alternating electric field, see Figure 4. This is due temmancement of the stress-activated #0roelastic
switching, see e.g. Yen et al. (2008).

033

Ez kv/mm

2T /\ 033 MPa /\

time

L~

Figure 4: Macroscopic boundary value problem with appliedteic field and compressive stresses.

The pressure dependence of a ferroelectric bulk matenabeaeen in the resulting hysteresis loops in Figure 5.
Due to the applied stresses the material is compressed Wrettieal direction and the remanent strains are shifted
into a negative data region.

Comparing the different butterfly hysteresis loops, we olesa larger absolute value of the total strains, which can
be achieved especially in low electric field ranges, wherstindt switching behavior occurs. On the other hand,
the amplitudes of the dielectric hysteresis loop is narabfee higher compressive stresses. Such a ferroelectric
hysteretic response for applied uniaxial prestressesgsadiserved for soft PZT in Zhou et al. (2005).

3.3 Magneto-electric Coupling of Two-phase Composites

In this section we focus on the magneto-electric couplingwad-phase composites and take a closer look at
the polarization state as well as the pressure dependerieh was in the previous sections investigated for
a single-phase ferroelectric material. The magneto+étecbupling in composite materials is a strain-induced
property and requires a distinct electro-mechanical dogpf the ferroelectric phase. Thus, the ME coupling
can be increased by an improved electro-mechanical respgribe electro-active phase, which can be achieved
by poling of the ferroelectric matrix as well as by an appleaipressive stress. To give an impression of the
microscopic switching behavior, we consider a periadi¢ & on the microstructure, consisting of a ferroelectric
matrix with a spherical piezomagnetic inclusion with 25%uoe fraction, see Figure 6, which is driven by an
alternating electric field in vertical direction. We assudidebarium titanate unit cells at each integration point of
the piezoelectric matrix, which are uniformly distributedthree dimensional space. In the following numerical
example an applied alternating electric field yields akimg reorientations of the microscopic barium titanate
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Figure 5: a) Butterfly hysteresis and b) dielectric hystieresrves over an electric fiels for different applied
compressive stresses.

unit cells, which result in a non-linear behavior of the M&efficient depending on the polarization state of the
ferroelectric matrix. To give an impression of the simuthiricroscopic switching behavior we apply a cycling
electric field in vertical direction on th&@¥ &, see Figure 6a. In Figure 6b we show the distributioEpandB;

for a macroscopic loadingz = 2 kV/mm at timet,. In order to demonstrate the polarization switching insfoe
ZY &, we have chosen two Gauss points, of which we illustrate tisation distributions of the barium titanate
unit cells for a sequence of macroscopic electric fi@lg$or two distinguished points (1) and (2), see Figure 6c.

Matrix Inclusion
Eg kv

MM -2:5000 -1.5000 -0.5000 0.5000 1.5000 2.5000 B3 AM  -0.0500-0.0140 0.0220 0.0580 0.0940 0.1300

)

)

c) E3=05 Ez=10 Ez=15 E3=20 [Ez=00 Ez=-0625 Eg=-125 Ez=-20

Figure 6: a) Cyclic loading of an alternating macroscopextic field, b)%#7 & and c) orientation distributions
with distinguished points (1) and (2) at specific time steps.

The first point(1) is located above the magnetic inclusion, where the locatidfield is smaller than the applied
macroscopic field. The second poii®) is located at the right side of the inclusion, where a micopscelectric
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field concentrationKs) is observed in a horizontal area around the magnetic imciugor imaging the switching
behavior the orientation distributions in both integratjgoints are depicted at the eight points of titpdo tg,
which focus on the loading process of the electric field inifp@sand negative direction. During the first 4 time
stepst; to ts for an increased electric field we observe a switching of thentations which then point into the
direction of the applied field. When the electric field decesa® the maximum negative value, during the time
stepsts to tg, a stepwise reorientation of the unit cells takes place. @ymaring the behavior in both points we
clearly see a different switching response due to the diffelocal electric fields.

For a more precise prediction of the ME-coefficient we penfed simulations with a refined finite element mesh
of the Z¥ &'s. Furthermore, we applied compressive stresses on theositenpo investigate their influences on
the ME-coefficient. The resulting hysteresis loops and thelmear behavior of the ME-coefficients are depicted
in Figure 7.
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Figure 7: a) Effective response of the butterfly hysteresigps$, b) dielectric hysteresis, ¢) ME coefficient for
applied stresses from 0 MPa to 200 MPa and d) ME coefficierdptied stresses of 200 MPa.

We observe a strong dependency of the transferred strains the electric matrix to the magnetic inclusion
on the ME coefficient. The magnitude of the magneto-electoigpling is based on the incremental change of
the electric butterfly hysteresis curve. Here we observetwrat#on of the ME-coefficient under high electric
fields. When the electric field loading is removed, a remanegtddefficient remains, which is in the case of no
compressive stresses approximately half to the one peebligith purely linear piezoelectric and piezomagnetic
material models with assumed idealized polarization andnetization. The modified electro-mechanical be-
havior in case of applied compressive stresses affects #gato-electric coupling in a positive manner, see
Figure %. At a compressive stress of 200 MPa the ME-coefficient at nemiapolarization is raised up to
033(033 = 200MPa) = 1.423 - 1019 s/m and is 304.1 % larger than the coupling coefficient at atrassed
state frs3(033 = 0 MPa) = 0.4709 - 1011 s/m). The performed simulations of the ME coefficients are no
adjusted to experimental measurements and are purelycposdi of the used material models. However, the au-
thors would assume a decrease of the ME coefficient for isgrgaapplied compressive stresses. This material
behavior is due to the complexity of the microscopic intéoars an open question, which will be investigated in a
future work, where we will compare the simulated result$weitperimental measurements.
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3.4 Influence of the Microscopic Morphology on ME Coefficients

As already demonstrated in Figure 6 the heterogeneous stigodure and the resulting inhomogeneous distribu-
tion of the local electric fields play a significant role on theal polarization states. Regions inside the microstruc-
ture with low electric field distributions show accordingignall electro-mechanical properties, which decreases
the strain-induced magneto-electric coupling. To ingzde the influence of the microscopic morphology on the
ME-coefficient we performed 25 simulations with composit@nsisting of a piezoelectric matrix and different
ellipsoidal piezomagnetic inclusions with varying volurfinactions. Here, we restricted the simulations to two-
dimensional boundary value problems and purely transheisaropic linear material models. The used material
parameters for polycrystalline barium titanate and cdieatite are listed in Table 4. Here it has to be emphasized,
that we consider non-conductive magnetic inclusion. Iisiaflulations a macroscopic electric field of 2 kV/mm in
vertical direction is applied and periodic boundary coiodi$ are used on th&? &

Table 4: Material parameters for polycrystal barium titerend cobalt ferrite, see Bechmann (1956); Stevens et al.

(1956); Murthy (1983); Lee et al. (2005); Labusch et al. @0S5chbder et al. (2015a).

Modulus Unit BaTiQ CoFe0, ‘ Modulus  Unit BaTiQ CoFe0,

C11 N, 166-10°0  2121-10* | enn(efy) &% 112:104(1265  0.80-10 4 (9)
Ciz - 7710 745100 | ezz(eh;) mS 126:1074 (1423  0.93-1074(11)
Ci3 -5 7810 7.45-10° | ga1 e 0.0 5803

Cs3 N, 162100 2121-10° | gs3 s 0.0 —6997

Cas o, 4310 6.88-10" | qis @ 0.0 5500

€1 S a4 0.0 m1(p) & 1.26(1.003 157.0 (124.9)
€33 5 186 0.0 s (phs) v 1.26(1.003 157.0 (1249)
es < 116 00

Figure 8 shows three example microstructures with diffeireriusion geometries but equal volume fractions. The
longitudinal expansions of the ellipsoids with varying wwole fractions is kept constant to enable a comparison
with the different microstructures. Figure 8 also depibtsélectric field distributioft, of the composites.
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Figure 8: Electric field distributiok, for three example microstructures with 30 % inclusion vaduinaction.

We can clearly observe, that due to the different electrimiévity of the magnetic inclusion concentrations of
the electric fields occur at the left and right boundary of ittedusions. Simultaneously, very low microscopic
electric fields, in comparison with the applied macroscdigltl, are present at the vertical boundaries. For a
high magneto-electric coupling the electro-mechanicapprties of the matrix in the regions of the interphase
between both constituents should also be enhanced, whibk ase for ellipsoidal inclusions aligned along the
direction of the applied electric field. As a consequenceMiecoefficient for the three composites raised from
T2 = 1.1465 10719 s/mfor a) overd,; = 1.6517- 10719 s/mfor b) to@p, = 2.1963- 10719 s/mfor c).
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Figure 9: Three-dimensional visualization of the ME-caddfints for different inclusion geometries and volume
fractions.

A visualization of the ME-coefficients of all considered naistructures is given in Figure 9. The resulting ME-
coefficients are plotted against the inclusion volume foacand the ratio between the horizontal and vertical
radius of the ellipsoidal inclusion, which yield a threendinsional plot, where the highest point of the surface
describes the maximum ME-coefficient. Taking a closer lddkigure 9 we observe, that for a circular inclusion
the best ME value is obtained for 50 % volume fraction of bdtlages. As demonstrated in Figure 8 the ME
coupling can be increased by changing the inclusion shaphipsoid aligned along the direction of the applied
field. Thus, the highest ME-coefficient, = 3.3739- 10710 s/mis obtained for a microstructure with a vertical
ellipsoidal inclusion with 40 % volume fraction.

4 Conclusion

In this contribution, we proposed a two-scale homogeropadpproach for magneto-electro-mechanically coupled
boundary value problems. The procedure was implementedtietFE-method, which allows for the considera-
tion of attached microscopic representative volume eléstercompute the macroscopic boundary value problem.
The main focus is on the determination of the magneto-étectrefficient and consideration of the influences of
applied stresses and microscopic morphologies on the MBliogu Numerical simulations demonstrate the en-
hancement of the ME-coefficient under compressive stremsg$or specific shapes of the magnetic inclusions.
To further improve the prediction of the effective propesti we inspected a ferroelectric pre-polarization pro-
cess by considering the microscopic ferroelectroelastitching behavior. In this contribution we have neglected
any conductivity of the magnetic inclusion consideringyotiile net (= high frequency) dielectric constant. The
more realistic case of low but finite conductivity is planriedfuture work. In future developments we will more
precisely simulate the magnetostrictive response by imeiging a non-linear dissipative material model.
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