
 88

TECHNISCHE MECHANIK, 36, 1-2, (2016), 88 - 101 
submitted: July 27, 2015 

 
 
 

A Robust, Compressible, Hyperelastic Constitutive Model for the 
Mechanical Response of Foamed Rubber  
  
M. Lewis 
 
 
An overview of the roles that cellular elastomers play in engineered systems and the phenomenology of these 
materials is presented.  Available data on these materials and empirical modeling approaches that have been 
used to approximate the mechanical response of these materials is then considered. The Compressible, 
Hyperelastic, Isotropic, Porosity-based Foam model (CHIPFoam), a model developed at Los Alamos National 
Laboratory (LANL) with a simple micromechanical basis, is then described, and its ability to fit available data is 
demonstrated.  Finally, extensions and improvements to the model and the additional predictivity to be achieved 
with these extensions are discussed. 
 
 
1 Introduction 
 
Cellular solids are both useful and common in everyday applications ranging from baked bread to impact 
absorbers. These materials are used in engineered systems. Specifically, cellular polydimethylsiloxane (PDMS) 
with different fillers in either a blown foam form (room temperature vulcanized or RTV) or in a leached foam 
form (cellular silicone or CS) is often used in cushions and pads in engineered systems. These foams are often the 
most compliant materials used in such systems.  As a result, displacements of and stresses in neighboring 
components are strongly affected by the thermomechanical behavior of these materials. 
 
PDMS is a silicon-based polymer.  These filled PDMS materials are in the rubbery regime, well above their glass 
transition temperatures, over a large temperature range.  In this regime, the materials can sustain large elastic 
strains.  This feature puts these materials in the class of materials that must be modeled with hyperelastic models.  
Hyperelastic models are described in terms of strain energy functions from which stress states are derived. These 
strain energy functions are analogous to potential functions in three-dimensional space, such as gravity potential 
or electrostatic potential fields, whose gradients in their respective function spaces produce conjugate forces 
(gravitational or electromotive in these cases). 
   
Solid elastomers are often idealized as incompressible. This is because their bulk moduli are typically two to four 
orders of magnitude larger than their shear moduli for small strain response. Unlike solid elastomers, foamed 
rubber is initially quite compressible because of its porosity, so most of the strain energy functions used for solid 
elastomers are not appropriate for foamed elastomers. 
 
Our ability to model these materials has been poor until very recently.  Despite attempts to model foam structures 
using representative volume element (RVE) approaches like those used by Hohe and Becker (2003) and 
Bardenhagen et al. (2005), the only model for this class of materials that reproduced the limited extant test data 
had no basis in actual foam mechanics and, as such, could not be applied to predict the response of foams with 
different porosities or relative densities based on data from foams of known porosities or relative densities.  We 
propose a model that has a basis in the response of an isolated pore in a Neo-Hookean solid that addresses this 
deficiency and has been applied to represent foam components with varying porosities.  In the current paper, the 
basis of the Compressible, Hyperelastic, Isotropic, Porosity-based Foam model (CHIPFoam) developed by Lewis 
and Rangaswamy (2015)  is described and corrected, and its applicability for relevant materials is demonstrated. 
 
In the next section of this paper, Phenomenology, the phenomenology of elastomeric foams in general and some 
of the issues in obtaining data from thin foam samples are described.  Following that, a quick review of 
hyperelasticity is presented, and the previously used model, Hyperfoam, is described and discussed, along with 
issues associated with its use for our components in the Hyperfoam section.  In the CHIPFoam Basis section, the 
basis for the CHIPFoam model is presented, and the purpose of each term in the strain energy is explained.  
Additionally, cases when some of the terms may be omitted are identified. 
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The process for fitting available data is described in the Data Fitting section, along with examples of a fit to data 
from a near uniaxial strain test.  The model implementation as a UHYPER subroutine in ABAQUS is presented 
in the Model Implementation section.  Finally, recommendations for improvements to the modeling of these 
materials are presented in the Further Work section of this paper. 
 
2 Phenomenology 

2.1 Nonlinearity and Dependence on Porosity 
 
As mentioned previously, the mechanical response of foamed elastomers is nonlinear and very dependent on the 
porosity of the foam.  The porosity is directly related to the foam density as follows: 
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where φo is the porosity of the foam, s is the solidity of the foam, ρr is the relative density of the foam, ρf is the 
mass density of the foam, and ρs is the mass density of the parent material.  The nonlinearity of the foams 
uniaxial mechanical response is demonstrated in Figure 1, as is the strong dependence of the mechanical response 
on the porosity of the material. 
 

 
 

Figure 1. Engineering stress vs. engineering strain loading curves from uniaxial compression tests of cushion 
material of densities ranging from 0.57 g/cc to 0.86 g/cc at 70°C.  Note that compressive quantities are plotted as 
negative in this figure. The plot demonstrates the nonlinear mechanical response seen in these foams and the 
strong dependence of this response on the density of the foams, which is directly related to the foam porosity by 
equation (1). 
 

2.2 Mullins Effect, Hysteresis, and Large Deformation Elasticity 
 
Additional mechanical phenomena are seen in these materials when they are cycled in compression.   Figure 2 
shows the resulting stress-strain behavior when a material with an estimated porosity somewhere between 20% 
and 25% is cycled to nearly 20% strain in compression four times.  The first cycle loading curve stresses lie 
above the loading curve stresses for subsequent cycles, which all tend to overlay each other. This effect, a cyclic 
softening of the loading curve, is known in the elastomer literature as the Mullins effect (Mullins, 1948), after 
Leonard Mullins, a rubber researcher the mid-20th century.  
 
The unloading curve stresses in Figure 2 are nearly identical from one cycle to the next and all are lower than the 
loading cycle stresses at the same strains.  This mechanical hysteresis is typically observed in elastomers.    
 
An additional feature of the curves shown in Figure 2 is that the curves unload and recover to a strain near zero at 
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zero stress, indicating that the large deformation (nearly 20% strain) is almost completely recoverable.  In order 
to model this phenomenology, a theory capable of handling large elastic strains is needed. 
 
 

 
 
Figure 2.  Cyclic engineering stress vs. engineering strain curves from uniaxial compression tests of a cushion 
material at 20°C.  Hysteresis is apparent in that the unloading of the specimen occurs at stresses lower than those 
seen in loading.  Mechanical energy is being dissipated.  Also, the difference between the first cycle loading 
curve and subsequent cycle loading curves is evidence of the Mullins effect, a cyclic softening phenomenon. 
 

2.3 State of Stress and Strain in Thin Specimens 
 
While the data presented in Figures 1 and 2 are reported as axial stress and strain from compression tests, it 
should be noted that they are not from uniaxial stress tests. The thicknesses of these specimens were 
approximately 1 mm, while the diameter of the specimens were approximately 16 mm.  As the platens in these 
tests were not lubricated and the specimen lateral strain was not measured, it is reasonable to assume that the 
strain state most nearly approximated uniaxial strain, and that lateral strains were zero while radial stresses in the 
specimen were probably not negligible.   
 
An additional issue is that many of these materials have “skins,” or regions of very low porosity near free 
surfaces.  As a result, stress cushions have more of a sandwich composite structure.  For the present time we 
ignore this effect, though finite element modeling techniques for modeling this sort of foam core structure are 
available. 
 

2.4 Low Strain Behavior in Compression under Near-Uniaxial Stress Conditions  
 
A compression test was conducted on a sample of S5370, a blown PDMS foam, at LANL. In the test, the platen-
sample interfaces were lubricated and lateral strain was manually measured with a micrometer. The observed 
sample lateral strain was not linear in the applied axial strain, and a plot showing the large strain Poisson’s ratio 
and the decrease in relative volume vs. axial compressive strain (shown as positive in compression) is presented 
in Figure 3, with an accompanying stress-strain curve shown in Figure 4.    
 
The large strain Poisson’s ratio used is defined as follows: 
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where νNL is the large strain Poisson’s ratio, el is the engineering lateral strain, and ea is the engineering axial 
strain in a sample subjected to uniaxial stress.  Additionally, the relative volume is defined as the ratio of the 
initial density to the current density of the sample at a point of interest, typically the gauge section. 
 
The decrease in Poisson’s ratio is typically associated with an inflection point in the stress-strain curve and both 
are thought to be a consequence of buckling in the foam. 

 
 

Figure. 3. Measured large strain Poisson’s ratio and relative volume decrease in a lubricated S5370 (blown 
PDMS foam) specimen as a function of axial engineering strain, shown positive in compression. Note the drop in 
Poisson’s ratio early in compression, thought to be associated with hyperelastic buckling in the foam structure in 
foams of low relative density or high porosity.  It is often associated with an inflection point in the stress-strain 
curve, as indicated in Figure 4. 
 

 
Figure 4. Loading stress-strain curve for an S5370 (blown PDMS foam) specimen in compression. Compressive 
quantities are shown as positive. Note an inflection point in the curve near an engineering strain of 0.1, near the 
strain at which the Poisson’s ratio data shown in Figure 3 begins to decrease. 
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2.5 Viscoelasticity and Temperature Effects 
 
It is well known that stress cushion materials exhibit stress relaxation and other viscoelastic phenomena.  These 
phenomena are effected by temperature in that increasing temperature tends to decrease relaxation times.  Some 
work on characterizing and modeling such behavior is described by Yang et al. (2000).  Additionally, work by 
Treloar (1958) has demonstrated that the shear stiffness of rubber is strongly dependent on temperature, and is 
characteristically linear in absolute temperature, i.e. increasing in stiffness as temperature is raised. 
 
3  Hyperfoam 
 
It is clear that the mechanical behavior of elastomeric foams is complicated. While the Mullins effect, hysteresis, 
and other dissipative phenomena like viscoelasticity and potential gas flow effects are important parts of that 
behavior, a crucial part of the response is large deformation elasticity.  In order for a mechanical constitutive 
theory for these materials to be useful over a large set of possible strain histories, it must be based on hyperelastic 
theory. 
   

3.1 A Brief Review of Hyperelastic Theory 
 
Hyperelastic theory is based on the existence of a strain energy density function, W, that is computable for each 
strain state.  The strain measures used are appropriate for large elastic strain.  The strain energy density is the 
work required/ per unit initial material volume, to reach the strain state.  Through work and energy arguments, 
one can show that the Cauchy stress may be computed from the strain energy function as follows: 
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where σ is the Cauchy stress tensor, J is the relative volume, and F is the deformation gradient, or the gradient of 
the current location of each point with respect to the original configuration, or 
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where x is the vector to a point in the current configuration and X is the vector to that point in the initial 
configuration.  A superscript T indicates the transpose of a tensor. 
 
 W may be expressed as a function of invariants of the Cauchy-Green tensors or in terms of principal stretches, as 
Ogden argues for. Typical invariants used for strain energy functions are J , I1 , and I 2 . J has already been 

defined but can also be calculated as the determinant of F.  I1  is the trace of the isochoric Cauchy-Green tensor 
(either left or right), as follows: 
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Although we will not use it here, it is worth mentioning that I 2  is the trace of the inverse of the isochoric 
Cauchy-Green tensor.  

 
It is relatively easy to show that the Cauchy stress for a material with a strain energy function expressed as a 
function of J and I1  is as follows: 
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where i is the second order identity tensor. 
 
Similarly, for cases where the strain energy function is expressed in terms of principal stretches, λi, and J, as in 
the case of the Hyperfoam model, the Cauchy stress can be shown to be as follows: 
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where pi are the principal directions associated with the principal stretches. 
 
W has additional requirements of convexity in the space of the deformation gradient, but these are beyond the 
scope of the current paper. 

3.2 Hyperfoam Model Form 
 
The Hyperfoam model is a variation on an Ogden (1984) strain energy function proposed by Jemiolo and 
Turtletaub (2000), who moved from the isochoric principal stretches used by Ogden to the full principal 
stretches. The strain energy function for the Hyperfoam model is in terms of principal stretches and J and is as 
follows: 
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The exponents in equation (8) are typically not whole numbers and may be either positive or negative. The 
Hyperfoam model reproduces test data well, provided the right test data are available. As mentioned previously, 
available test data are often best characterized as uniaxial strain compression data. As a result, it is not possible to 
differentiate between the contribution of the axial principal strain term and that of the relative volume term in the 
strain energy function.   
 
Fitting Hyperfoam typically involves using a nonlinear least squares method, usually inside ABAQUS, and the 
resulting model parameters have no discernible physical association.  When data are modified slightly, the model 
parameters can change substantially.  Additionally, as available data are from tests which approximate uniaxial 
strain compression conditions, it is common to set the Poisson’s ratio to zero to disambiguate the effects of the 
principal strain and relative volume terms.  
  
While this approach is a way to use available data, it artificially turns uniaxial strain data into uniaxial stress data 
and ignores the effects of variable Poisson’s ratio seen in Figure 3. One would expect that as a foamed rubber is 
consolidated in one direction, that its response in transverse directions would stiffen.  Using a zero Poisson’s 
ratio decouples the responses in orthogonal directions very effectively and prevents this expected stiffening 
phenomenon.  
 
4 CHIP Foam basis 

 
The reader should be convinced of the many shortcomings of the Hyperfoam model at this point.  This next 
section describes the fundamental basis of the CHIPFoam model, which was developed to have a 
micromechanical basis and be predictive of the response of foams with various porosities.  CHIPFoam is, as the 
acronym indicates, an isotropic, hyperelastic model that includes compressibility effects, both in terms of the 
foam as a material and the parent material compressibility as well.   
 
The model consists of four components.  First, a smaller deformation component which attempts to capture small 
strain linear behavior and buckling-type behavior within the foam is included. This term includes uncoupled 
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deviatoric or shear and volumetric parts. Next, a term that captures the response of an incompressible spherical 
shell is used to describe the stiffening at large deformations. This term couples deviatoric and volumetric 
behaviors. A third term accounts for matrix compressibility to allow a consistent response at large compressions.  
Finally, an optional term which is somewhat coupled with the second third terms can be included to represent the 
effect of gas compression in closed cell foams.  For most of our applications, this term and its complications can 
be ignored.   
  

4.1 Smaller Strain Compressive Behavior Including Buckling Effects 
 
To capture smaller strain near linear behavior, a simple Neo-Hookean strain energy function for shear response is 
introduced. An accompanying volumetric strain energy function is added to include initial compressibility of the 
foam.  It is quadratic in J.  This early part of the strain energy function is as follows:    
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This strain energy function provides small strain behavior that linearizes to infinitesimal strain linear elasticity 
with shear and bulk moduli of Ĝ and K̂ . 

 
In order to capture a decreasing Poisson’s ratio and buckling behavior, the volumetric strain energy function has 
been modified to instantaneously change from quadratic to linear at a predefine relative volume, as follows:                                               
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The expression [ ]bJJ −Η  in equation (10) is the Heaviside step function, equal to zero for negative arguments 
and unity for nonnegative arguments. While equation (10) is not strictly convex in J, terms to be added later will 
guarantee convexity of the total strain energy function in J.  

 
A plot of the large strain Poisson’s ratio as defined in (2) is presented in Figure 5 for the strain energy function of 
equation (9) and that of equation (10) with shear to bulk modulus ratio of 0.6 and a value of Jb, the buckling 
relative volume, of 0.94.  
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Figure 5. A plot of the large strain Poisson’s ratio as defined in (2) for the strain energy functions of equations (9) 
and (10) demonstrating the drop achievable with the buckling modification presented in equation (10).  Note that 
a ratio of shear to bulk modulus of 0.6 was used to provide an initial Poisson’s ratio of 0.25 and a volumetric 
buckling relative volume of 0.94 was chosen. 
 
It should be noted that the modification of the volumetric term presented in equation (10) is in no means the only 
modification acceptable or useful. Instead of transitioning to an essentially zero bulk tangent modulus, one could 
transition to different tangent bulk moduli at different points using sets of tangent parabolas at specified relative 
volumes. Such an approach would allow for near exact matches of Poisson’s ratios, although the challenge of 
coding necessary to support this in a material model is probably not justified by these gains in fidelity. 

4.2 Pore Mechanics Basis and Strain Energy Function 
 
In order to capture the stiffening behavior seen as a foamed rubber is compressed to a relative volume 
approaching the solidity of the material, the response of the simplest possible isotropic Representative Volume 
Element (RVE), a spherical shell of incompressible rubber, is considered. If the ratio of inner radius to outer 
radius is chosen to provide the right solidity of the volume inside the outer boundary of the sphere, then this RVE 
has the same initial porosity as the foam, the only material structure statistic that is  reproduced with this RVE 
choice.  As this particular RVE choice is so simple, and does not capture spatially varying or relevant length 
scales, it is more appropriate to refer to it as a mechanical surrogate.  This approach is somewhat similar tot that 
taken by Dienes and Solem (1999) for the response of a void in a linear elastic material. 
 
By invoking symmetry and incompressibility, one can solve for the displacement field inside this surrogate shell 
subjected to uniform radial compression on its boundary followed by a volume conserving stretch field 
superposed on the entire compacted shell. Once the kinematics have been solved, one can then use a strain energy 
function for the parent material and integrate the strain energy density over the entire initial volume of material, 
normalize it by the initial volume enclosed by the outer boundary of the shell, and calculate a strain energy 
function appropriate for this simplest of micromechanical models. We initially assumed a parent material with a 
Mooney-Rivlin strain energy function, linear in both the first and second isochoric invariants. The resulting strain 
energy function is published (Lewis and Rangaswamy, 2011). The generality added by the inclusion of the 
second invariant was not necessary for good data fits, so the strain energy was simplified to include only a Neo-
Hookean parent material. The resulting strain energy function term is as follows: 
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WD = C10 I1 f J,φo( ) − 3 1−φo( )  ,      (11) 

 
where the function multiplying the first isochoric invariant is as follows: 
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and φo is the initial porosity or void volume fraction of the material. 
 
We have chosen to refer to the strain energy function (11) as the Danielsson function, after Mats Danielsson et al. 
(2004), who published a version of it in 2004, although it was not expressed in invariant form as shown here. The 
Danielsson function explicitly couples volumetric and shear response. This leads to shear stiffening response with 
compression in addition to the volumetric stiffening expected. It should be noted that the Danielsson strain 
energy function loses polyconvexity if the initial porosity is greater than 0.71 and the applied relative volume is 
approximately 0.4 or less. For the foams we have been interested in modeling thus far, the initial porosities have 
been substantially less than this limiting porosity. 
  
Note that this function has a singularity as the relative volume approaches the solidity of the material. This is 
sensible in that the derivation of the Danielsson function involves the assumption of incompressibility in the 
parent material. This is good if one is trying to model conditions of true “lock-up” in the material, however it is 
problematic for real finite element analyses. During an implicit solution calculation in a finite element analysis, 
many trial states may be passed to a material model subroutine. The likelihood of the subroutine receiving a 
value of J that is less than the initial solidity of the material is high unless the entire analysis involves uniform 
low strains. 
 
A plot of the function f is shown in Figure 6 for a material with a porosity of 0.52. 
 

   
Figure 6. The function f of J in (12) for a material with a porosity of 0.52.  The singular behavior discussed in the 
text is clearly demonstrated.  
 

4.3 Parent Material Compressibility Effects to Remove Singular Behavior 
 
In order to avoid the singularity problem mentioned in the previous section, it was necessary to consider 
compressibility of the parent material. Rather than do this in an ad hoc manner, the problem of compression of 
the spherical shell assuming a compressible parent material was attempted. That problem was not found to be 
tractable.  An approximation is possible, however and is described here. More detail is available in Lewis and 
Rangaswamy (2013). 
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The first observation to make is that in the compression of a spherical shell of an incompressible material, only 
the deviatoric stresses are directly computable from the constitutive model.  The pressure field must be solved for 
to satisfy equilibrium and boundary conditions.  The pressure field was solved for and it was found that it could 
be reasonably approximated (Lewis and Rangaswamy, 2013) as a constant pressure in the spherical shell as 
follows: 
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where pg is the pressure in the interior of the pore, potentially from any gas present. 
 
The effect of a uniform pressure in a compressible shell is simple to calculate and is to uniformly compact the 
entire shell.  For tractability, a compressibility model for the parent material that leads to a logarithmic relation 
between relative volume of the material and the pressure was assumed.  This implies a volumetric strain energy 
function for the parent material as follows: 
 

W = K Jm ln Jm − Jm +1( ) ,      (14) 

 
where Jm is the relative volume in the parent material and K is the apparent bulk modulus of the parent material. 
The solution for Jm is necessary for this part of the strain energy function, and is simply as follows: 
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All of the previous suggests that some modifications need to be made to the Danielsson function to be compatible 
with the assumption of parent material compressibility. It is appropriate and necessary to decompose the 
macroscopic relative volume into two parts, namely a part due to the incompressible response of the material in 
the RVE and a part due to the parent material compressibility. The appropriate decomposition is a multiplicative 
one as follows: 
 

 mJJJ =  .      (16) 
 

 
Figure 7. Schematics of the compressive deformations associated with Jm (left) and J (right). 

 
Jm is as in (15), but the pressure is now 
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consistent with the original derivation.  Note that J  has a physical lower limit of the solidity of the material, s. 
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The Danielsson function must be modified similarly to be consistent with this parent material compressibility 
inclusion.  The modified Danielsson function is as follows: 
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Note that equation (18) is modified from what appears in Lewis and Rangaswamy (2015), to meet requirements 
that the pressure be zero when the relative volume is unity.  The energy stored in the compression of the parent 
material is as follows: 

 
Wm = 1−φo( )K Jm ln Jm − Jm +1( ) .      (19) 

 

4.4 Effect of Gas Pressure in Voids 
 
Equations (13) and (17) explicitly contain a gas pressure term. In order to capture that term properly and also 
include a gas compression term in the strain energy function to represent energy stored in the gas in closed cell 
foams or under loading conditions that are rapid enough that the gas cannot escape, it is necessary to consider the 
behavior of gas trapped in the inner cavity of the spherical shell. It should be noted that for many of our 
conditions these gas terms may be neglected.  For completeness they are presented here. 
 
For our purposes and to be consistent with zero energy at a reference state with a nonzero absolute pressure, we 
formulate the gas pressure as a function of the relative volume of the gas as follows: 
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where po is the ambient pressure, Jg is the relative volume of the gas, and γis an exponent that may be chosen as 
unity for isothermal deformations and as the ratio of the gas specific heats at constant pressure and constant 
volume for adiabatic deformations.  A strain energy function, then, for the gas is obtained by integrating the 
pressure with respect to the relative volume with a negative sign applied for thermodynamic consistency.  We 
then scale the resulting strain energy function by the initial volume of the inner cavity as follows: 
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The only missing piece here is the connection between the relative volume of the gas and our multiplicatively 
decomposed volume terms. To be consistent with the spherical shell mechanical surrogate for void response, the 
relation needed is as follows: 
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5 Data Fitting 
 
The full strain energy function is the sum of the strain energy functions introduced previously, as follows: 
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As previously mentioned, the last three volumetric strain energy terms in equation (23) supplement the first term 
to maintain convexity in relative volume. 
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The full set of model parameters that must be fit to available data is { }γϕ ,,,,,,ˆ,ˆ

10 oob pKCJKG . If gas effects are 
negligible, as they are typically for moderate to high porosity foams deformed slowly, there are only six 
parameters. The contributions of each model parameter to the uniaxial strain compression response are 
unambiguous enough to allow good fitting to data from our tests. The process of calculating the relative volume 
decomposition, which is an iterative process, and the expression of the derivatives of the relative volume 
components with respect to the total relative volume, are presented more fully in Lewis and Rangaswamy (2015). 
An example fit to recently obtained uniaxial S5370 (blown PDMS foam) data is shown in Figure 8. 
 

 
Figure 8. A model fit to recently obtained uniaxial compression data from an S5370 (blown PDMS foam) sample 
with a density of 0.8504 g/cc. 
 
Note that the fitting process for the data shown in Figure 8 was somewhat simplified as the porosity of the foam 
was relatively low. As a result, the strain energy terms associated with low strain response in compression, 
namely WLB , can be omitted and the parameters associated with it, namely Ĝ , K̂ , and Jb, do not need to be fitted. 
Gas effects are negligible for the data shown in Figure 8, as the compressive strain rate was 0.01 s-1 and the 
specimen diameter was approximately 13 mm.  As such, the parameters associated with Wg, namely po and γ  do 
not require fitting.  Additionally, the test specimen was approximately 1 mm thick, so an assumption of uniaxial 
strain was deemed appropriate.  The only remaining parameters to fit were the porosity (φo), the parent material 
effective Neo-Hookean modulus (C10), and the parent material effective bulk modulus (K).  The fitting process 
consisted of looping over a range of possible porosities and using a Levenberg-Marquardt algorithm to obtain the 
best fits for the two moduli for each porosity, and selecting the fit associated with the porosity that had the 
minimum RMS error relative to the measured stress-strain curve. 
 
6 Model Implementation 
 
A version of the CHIPFoam model that omitted the premultiplier of Jm in the expression for Jg in equation (22) 
and in the modified Danielsson function in equation (18) was implemented as a UHYPER subroutine in 
ABAQUS. While the UHYPER framework is not as flexible for mechanical response calculation as the more 
general UMAT subroutine in ABAQUS, it is well suited to quick coding and testing of invariant-based 
hyperelastic formulations such as CHIPFoam. 
  
The UHYPER subroutine is passed model parameter values in the PROPS array, along with any user-defined 
state variables in the SDV array. The implementer may update the state variables but must update the values of 
the energy function and its partial derivatives with respect to the first and second isochoric invariants and the 
relative volume up to third order. These values allow ABAQUS to calculate the Cauchy stress tensor and a 
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material tangent stiffness tensor to be used in calculation and iteration.  
 
A critical part of the solution for the energy function and its derivatives is the multiplicative decomposition of J. 
To achieve this decomposition equation (15) was used along with equations (16), (17), (20), and (22) and a 
bisection algorithm. This scheme works efficiently and robustly.  
 
7 Further work 
 
While much work has been and much achieved in the development of CHIPFoam, much remains to be done to 
maximize its usefulness. The areas for further work can be grouped into topics of hyperelastic theory, dissipative 
behavior, and use in explicit dynamics. 
   
In terms of hyperelastic theory development, there are three main thrusts. First, the idea of establishing a set of 
bulk tangent moduli at various relative volumes to best match observed lateral expansion data should be explored 
and the results documented.  If observed low strain Poisson’s effects can be matched with a few terms added to 
equation (10), this should be pursued.  Second, the dependence of the parameters in equation (10) on porosity for 
a given parent material should be studied to determine whether the treatment of spatial porosity distributions 
mentioned in the previous section could be improved to include smaller strain dependence on porosity.  Third, 
the inclusion of a third relative volume term in the multiplicative decomposition of J should be investigated to 
determine if the lack of polyconvexity that can be seen at high porosities (greater than 70%) can be removed by 
introducing a part of the volume change that results from buckling in the foam. 
   
In the area of dissipative behavior, the inclusion of viscoelasticity, hysteresis, and Mullins effects should be 
investigated to determine the best theoretical and algorithmic treatments for modeling these phenomena. For 
Mullins effect approaches, we are considering the approach taken by Ogden and Roxburgh (1988) and 
generalized by Naumann and Ihlemann (2015) and that taken by Rickaby and Scott (2012). Once the best 
approaches are determined, it is likely that the model will have to be recoded as a more general UMAT to include 
these effects. 
 
While this model has been implemented as a UHYPER subroutine and used for implicit, quasistatic analyses, 
there are reasons to apply it to explicit dynamic problems. ABAQUS/Explicit does not have an analog of the 
UHYPER subroutine, but has an anisotropic version that could probably be used effectively. This coding needs 
to be done and verified. 
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