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Computational and Theoretical Aspects of a Grain-Boundary Model at
Finite Deformations

A.T. McBride, D. Gottschalk, B.D. Reddy, P. Wriggers and A. Javili

A model to describe the role of grain boundaries in the overall response of a polycrystalline material at small
length scales subject to finite deformations is presented. Three alternative thermodynamically consistent plastic
flow relations on the grain boundary are derived and compared using a series of numerical experiments. The nu-
merical model is obtained by approximating the governing relations using the finite element method. In addition,
the infinitesimal and finite deformation theories are compared, and the limitations of the former made clear.

1 Introduction

Modelling crystalline materials at small length scales requires a continuum theory that accounts for both the role
of the grain boundary and for size-dependent effects. Numerous extended (gradient and non-local) continuum
theories of single-crystal plasticity have been presented in the last two decades to capture size-dependent effects.
These include the thermodynamically consistent gradient theory of Gurtin and co-workers and related works (see
e.g. Gurtin, 2002; Gurtin and Needleman, 2005; Gurtin, 2006, 2008a).

Gurtin (2008b) presented a gradient crystal plasticity formulation that accounted for the role of the grain boundary.
Critically, the grain-boundary model incorporates both the misorientation in the crystal lattice between adjacent
grains, and the orientation of the grain boundary relative to the crystal lattice of the adjacent grains. The Gurtin
(2008b) model is restricted to infinitesimal deformations. Recently, van Beers et al. (2013) have proposed and
numerically implemented a theory similar to that of Gurtin (2008b) for incorporating grain boundaries into the
gradient crystal plasticity theory of Evers et al. (2004). Our own contribution (Gottschalk et al., 2015) provides a
theoretical and numerical investigation of the Gurtin (2008b) theory. The two measures of the defect structure at
the grain boundary proposed by Gurtin were compared and a third measure introduced.

The objective of the current work is to extend the Gurtin (2008b) gradient crystal plasticity, grain-boundary theory
to the finite-deformation regime. The basis for the extension is the finite-deformation crystal plasticity theory of
Gurtin (2008a). In the spirit of Gurtin (2008b) for the infinitesimal-deformation theory, spatial intra-grain interac-
tion and inter-grain interaction moduli are used to characterise the structure of the grain boundary. The proposed
measure of the defect structure at the grain boundary involves the jump in the plastic distortion and a spatial
measure of the grain boundary orientation. Two alternative measures of defect structure are also investigated. The
systems of equations governing the response of the grain boundary are derived using a virtual power approach. The
plastic flow relations on the grain boundary then follow from the reduced dissipation inequality. Three different
flow relations, corresponding to the different grain boundary defect structures, are presented.

The structure of the presentation is as follows. The kinematics of the response in the grain and on the grain
boundary are presented in Sec. 2. This is followed by a brief discussion on the various stress measures. The virtual
power formulation is then applied in Sec. 4 to obtain the governing relations on the grain boundary. The free
energy imbalance and the resulting reduced dissipation inequality guides the construction of the various plastic
flow relations in the grain and on the grain boundary presented in Sec. 7. A brief discussion on the numerical
implementation within the finite element method follows. A series of numerical examples presented in Sec. 9
serve to elucidate the theory. Conclusions are then drawn and possible extensions to the work discussed.

102

lenz
Texteingabe
DOI: 10.24352/UB.OVGU-2017-013



2 Kinematics

The finite-deformation theory of Gurtin (2008a), employed to describe the kinematic response of the grain, is
briefly summarised. The main contribution of this section is the subsequent extension of the kinematics of the
infinitesimal-deformation, grain-boundary theory of Gurtin (2008b) to the finite-deformation setting.

2.1 Grain

Consider a continuum body whose placement in the reference configuration is denoted V0 at time t = 0, as
shown in Fig. 1. A typical material point within the reference configuration is identified by the position vector
X . The observed configuration of the body at a later time t is denoted V with a typical material point identified
by the position vector x. The motion ϕ relates the observed and reference configurations as x = ϕ(X, t). The
deformation gradient is defined as the derivative of the motion ϕ with respect to the reference configuration; that
is,

F (X, t) := ∇0ϕ(X, t) ,

where ∇0(•) := ∂(•)/∂X . The Jacobian determinant of the deformation gradient is denoted by J := detF > 0
and its inverse by j := 1/J . The velocity is defined as the time derivative of the motion, i.e. v := ϕ̇. Following
the approach in the classical theory of crystal plasticity (see e.g. Lee, 1969; Rice, 1971; Hill and Rice, 1972; Asaro
and Rice, 1977) the deformation gradient F is decomposed (locally) into elastic and plastic parts, denoted F e and
F p, respectively, as

F = F eF p . (1)

The multiplicative decomposition of F motivates an intermediate undistorted lattice space denoted by V#. From
micromechanical arguments F p is an internal variable related to dislocation flow through the crystal lattice, while
F e−1 defines the local stress-free lattice space. Plastic flow is assumed incompressible and hence detF p = 1 and
detF e = J . The elastic Green–Lagrange strain tensor Ee and the elastic right Cauchy–Green stretch tensor Ce

are defined by

Ee :=
1

2
[F eTF e − I] =

1

2
[Ce − I] , (2)

where I is the second-order material identity tensor.

As a consequence of the local multiplicative decomposition of the deformation gradient in Eq. (1), the spatial
velocity gradient, denoted l := ∇v := ∂v/∂x, is additively split as follows

l = Ḟ F−1 = Ḟ
e
F e−1︸ ︷︷ ︸
le

+F eLp
#F

e−1︸ ︷︷ ︸
lp

, (3)

into the elastic and plastic (spatial) distortion rate tensors, denoted le and lp, respectively. The flow of dislocations
through the crystal lattice is described kinematically via the assumption that the plastic distortion tensor in the
lattice space Lp

# can be expressed in terms of the slip rates να on the individual slip systems as

Lp
# =

∑
α

ναsα# ⊗mα
# =

∑
α

ναSα# .

The notation
∑
α indicates a sum over all slip systems α. Note, the summation convention is not used for slip

systems. The slip direction and slip plane normal in the lattice space for slip system α are denoted by sα# andmα
#,

respectively. The Schmid tensor in the lattice configuration is defined by Sα# = sα# ⊗mα
#. It is important to note

that the rate of plastic distortion, and not the distortion itself, plays the key role as a kinematic descriptor of plastic
deformation in the finite-deformation theory. The plastic distortion tensor in the observed configuration lp can be
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Figure 1: The continuum body in the reference and observed configurations and the associated motion ϕ. The
undistorted lattice space V# is motivated by the multiplicative decomposition of the deformation gradient F =
FeFp. Also shown is a pill-box control volume A centred on the grain boundary.

obtained by a push forward of Lp
# from the lattice space as follows

lp = F eLp
#F

e−1

=
∑
α

να [F esα#]︸ ︷︷ ︸
sα

⊗ [F e-Tmα
#]︸ ︷︷ ︸

mα

=
∑
α

ναSα ,

where the Schmid tensor in the observed configuration is denoted by Sα := sα ⊗mα. It is worth noting that
sα# and mα

# are constant orthonormal vectors. Their counterparts in the observed configuration sα and mα are
orthogonal but not necessarily unit vectors. The associated normalised spatial vectors describing slip plane α are
defined by

s
α :=

sα

|sα| and m
α :=

mα

|mα| .

The vector lα is defined by lα := mα × sα. Hence {mα, sα, lα} constitutes a local orthogonal basis in the
observed configuration.

Following Gurtin (2008a) the constitutive theory at the microscopic scale accounts for a continuous distribution of
geometrically necessary dislocations (GNDs). The dislocations are either of edge or screw type and are charac-
terised in terms of their Burgers and line directions as follows:

• edge dislocation: Burgers direction sα# and line direction lα# := mα
# × sα#;

• screw dislocations: Burgers direction sα# and line direction sα#.
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The distributions of edge and screw dislocations are thus:

ρα`l
α
# ⊗ sα#︸ ︷︷ ︸

edge dislocations

and ρα�s
α
# ⊗ sα#︸ ︷︷ ︸

screw dislocations

,

where ρα` ∈ R and ρα� ∈ R are the densities of the edge and screw dislocations, respectively. The density of the
edge and screw dislocations evolve according to the relation (Gurtin, 2006):

ρ̇α` = −divqα` + ναdivsα︸ ︷︷ ︸
σα`

= −∇να · sα and ρ̇α� = −divqα� + ναdivlα︸ ︷︷ ︸
−σα�

= ∇να · lα . (4)

The vectors qα` and qα� are the spatial edge and screw dislocation flux vectors respectively. Sources of edge and
screw dislocations are denoted σα` and σα�, respectively. We note that lα = F elα#.

Following Cermelli and Gurtin (2001), the Burgers tensor in the lattice space is given by

G := F pCurlF p .

This result follows from performing a boundary integral of the plastic part of the deformation gradient F p over a
closed curve in the reference configuration. Cermelli and Gurtin (2001) show that the quantity GTn# provides
a measure - based on the plastic strain - of the (local) Burgers vector in the lattice space âe per unit area âe for

a plane with unit normal n#. The plastically convected rate of G, denoted
�
G, can be expressed in terms of the

temporal changes of the distributions of edge and screw dislocations as

�
G =

∑
α

[ρ̇α`l
α ⊗ sα + ρ̇α�s

α ⊗ sα] .

2.2 Grain Boundary

The polycrystalline body is composed of grains, separated by grain boundaries as depicted in Fig. 1. An arbitrary
grain boundary in the observed configuration is denoted by G. The grain boundary is represented as a two-sided
interface, with common sides denoted by GA and GB . The grains on either side of the grain boundary are corre-
spondingly denoted VA and VB . The outward unit normals to GA and GB are denoted by nA and nB , respectively.
The normal to the grain boundary in the observed configuration is defined by n := nA. The evolution of the grain
boundary normal with the deformation is described using the curvilinear-coordinate-based methodology presented
in Javili et al. (2014). The grain boundary is assumed to be coherent (material), that is

ϕ := ϕ|G and [[ϕ]] := ϕ|GB −ϕ|GA = 0

v := ϕ̇ := v|G and [[v]] = 0 . (5)

In the spirit of Gurtin (2008b) for the infinitesimal-deformation theory, the intra-grain interaction and inter-grain
interaction moduli are defined in terms of the normalized slip plane directions and normals as

CαβIJ = [sαI · sβJ ][mα
I × n] · [mβ

J × n] . (6)

The slip interaction moduli are classified as follows:

• CαβAA: intra-grain interaction moduli for grain A;

• CαβAB : inter-grain interaction moduli between grains A and B;

• CαβBB : intra-grain interaction moduli for grain B.

The inter-grain interaction moduli for an arbitrary pair of slip systems and grain-boundary orientation thus have
the range −1 ≤ CαβAB ≤ 1. The inter-grain interaction moduli characterise the interaction between slips systems
in adjacent grains separated by a grain boundary. The systems are non-interactive if CαβAB = 0 and maximally
interactive if |CαβAB | = 1. These definitions imply that a pair of slips systems in adjacent grains are (see Eq. (6)):
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• non-interactive if and only if either

s
α
A · sβB = 0 or [mα

A × n] · [mβ
B × n] = 0 ;

• maximally interactive if and only if all of the following conditions are satisfied

s
α
A = ±sαB , m

α
A · n = 0 , m

β
B · n = 0 .

The boundary integral of the plastic distortion tensor lp over a closed loop C in the observed configuration,∫
C

lpdx =
∑
α

∫
C

να[sα ⊗mα]dx ,

is the measure proposed to characterise the defect structure at the grain boundary. Integration over a pill box A
centered on the grain boundary as depicted in Fig. 1 yields∫

C

lpdx =
∑
α

[ναA[sαA ⊗mα
A]dx− ναB [sαB ⊗mα

B ]dx]

= −
∑
α

[[να[sα ⊗mα]]]dx .

Using the property that the line segement dx is tangent to the grain boundary, this expression can be written as

−
∑
α

[[να[sα ⊗mα]][i− n⊗ n]dx = [[lp]][n×]︸ ︷︷ ︸
˙H

[n× dx] ,

where [n×]ij := εikjnk. The term [n × dx] is an area element directed orthogonal to the pill box and tangent to

the grain boundary. Hence Ḣ provides a rate-like measure of the kinematic and geometric mismatch at the grain
boundary. The measure H is defined by

H =

∫ t

0

Ḣ dt .

The Schmidt orientation tensor for slip system α in grain J , denoted NαJ , is defined by∑
α

[
ναBNαB − ναANαA

]
= Ḣ ,

where

NαJ = SαJ [n×] = sαJ ⊗ [mα
J × n] for J = A,B .

Remark

For the infinitesimal theory, following a near-identical procedure to that outlined above, the grain boundary Burgers
tensor (not the rate thereof) is given by:

Hlin = [[Hp]][n×] ,

whereHp =
∑
α γ

αSα and γα =
∫ t
0
να dt.

2.3 Alternative Measure of Mismatch

As shown in Gottschalk et al. (2015) for the infinitesimal-deformation theory, the rate of change of the grain
boundary Burgers tensor Hlin can be zero for non-zero slip rates at the grain boundary for misorientated grains.
This can result in zero dissipation for a finite slip rate as discussed in detail in Sec. 6.2. An alternative measure
of mismatch, which ensures finite dissipation for finite slip rates, was proposed in Gottschalk et al. (2015). The
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measure entails a sum over all slip systems from both sides of the grain boundary for the slip systems with the least
mismatch. This implies that resistance to dislocation flow on a slip system at the grain boundary depends on the
geometrically most favourable interaction partner in the adjacent grain. The extension of this mismatch measure
to finite deformations is given by

ḢαβR :=
√
Rαβ [νβBN

β
B − ναANαA] .

The flag Rαβ take the values 1 or 0, in this way allowing a selection of particular combinations of slip systems
for the two adjacent grains. The square root is introduced to arrive at a convenient formulation for the magnitude,
given by ∣∣ḢαβR ∣∣2 = Rαβ

∣∣νβBNβB − ναANαA∣∣2 .
3 Kinetics

In the spirit of the theory of surface elasticity proposed by Gurtin and Murdoch (1975), the grain and the grain
boundary are endowed with their own free energies. In the case of the grain boundary, the free energy is solely a
defect energy, that is, there is no energetic stress measure (macroscopic or microscopic) on the grain boundary.

The macroscopic tensorial Cauchy stress in the grain is denoted by σ. Scalar and vector microscopic forces on
each of the slip systems, denoted by πα and ξα respectively, are postulated as conjugates to the slip rates να and
their spatial gradients ∇να. The vectorial microscopic stresses exist only in the grain. Scalar microscopic forces
conjugate to the slip rates on either side of the grain boundary are denoted by παA and παB . The power conjugate
pairings are thus as follows:

σ ↔ le Cauchy stress in V ,
πα ↔ να scalar microscopic force in V ,

ξα ↔ ∇να vector microscopic force in V ,
παA ↔ ναA , π

α
B ↔ ναB scalar microscopic forces on GA,GB .

The primary difference between the geometrically linear power conjugate parings and the proposed nonlinear ones
is the use of slip rates as primal quantities. The primal quantities in the linear theory are the rates themselves.

The lattice stress T e
# is defined so as to be power conjugate to the rate of the elastic strain Ėe and is defined via

the relation:

σ : le = σ : [Ḟ eTF e−1] = [F e−1σ · F e−t] : [F e−tḞ eT] = jT e
# : Ėe .

4 Virtual Power Formulation

The virtual power formulation is employed to determine the governing equations in the grain and on the grain
boundary for the finite-deformation setting. The governing relations in the grain follow directly from Gurtin
(2008a) and are therefore simply stated without derivation. The governing relations on the grain boundary are new
and details of the derivation are given. Virtual rate-like quantities are denoted by δ(•).

4.1 Grain

The classical equilibrium equation in the grain and the Cauchy traction vector t, obtained using the virtual power
balance, are given by

divσ + b = 0 in V and t(n) = σn on ∂V , (7)

there the body force vector per unit observed volume is denoted here by b.
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The microscopic force balance and the scalar microscopic traction Ξα are given by

divξα + τα − πα = 0 in V and Ξα(n) = ξα · n on ∂V , (8)

where resolved shear stress on slip system α is denoted by τα := σ : Sα. A prescribed scalar microscopic traction
Ξα of zero is termed a micro-free boundary condition. A homogeneous Dirichlet boundary condition for the slip
rate να = 0 is term micro-hard. A micro-hard condition is often assumed to hold on the grain boundary.

The macrscopic and microscopic balances, (7) and (8), are coupled via the Cauchy stress and the resolved shear
stress, and the plastic flow relation to be derived in Sec. 7.1.

4.2 Grain Boundary

Consider, once again, a two-sided “pillbox” control region A centred on the grain boundary G. The two sides of
the the pillbox are denoted AA and AB , with outward unit normals respectively denoted by −nA and −nB . As
mentioned previously, no vectorial microforces exist within the grain boundary. The scalar microscopic forces παA
and παB do however exist on either side of the two-sided grain boundary.

The balance of internal and external virtual power, denoted P int and P ext respectively, for the grain boundary reads:∫
AA

[σAnA] · δv da+

∫
AB

[σBnB ] · δv da+
∑
α

∫
A

[παAδν
α
A + παBδν

α
B ] da︸ ︷︷ ︸

P int

=
∑
α

∫
AA

[−ξαA · nA]δναA da+
∑
α

∫
AB

[ξαB · nB ]δναB da︸ ︷︷ ︸
P ext

.

(9)

Setting δvαJ = 0 gives the standard traction continuity condition for coherent (material) grain boundaries (inter-
faces):

[[σ]]n = 0 .

Now set δv ≡ 0. The virtual power balance yields the two microscopic force balance (one for each side) on the
grain boundary as

0 =
∑
α

∫
AA

[−παA + ξαA · nA] δναAda+
∑
α

∫
AB

[−παB + ξαB · nB ] δναBda

=
∑
α

∫
A

[−παA − ξαA · n]δναAda+
∑
α

∫
A

[−παB + ξαB · n] δναBda

=⇒ − παA − ξαA · n = 0 on GA and − παB + ξαB · n = 0 on GB . (10)

The microforce balances on the grain boundary (10) are coupled to the response in the grains on either side via the
resolved shear stress and the scalar microscopic traction.

5 Free Energy Imbalance

The free energy per unit volume of the grain in the lattice space is denoted by Ψ. The free energy, measured per unit
area, of the grain boundary in the lattice space is denoted by Ψ. The non-negative dissipation density, measured
per unit volume of the observed configuration, is denoted byD. Similarly, the dissipation per unit observed area of
the grain boundary is denoted by D ≥ 0. The free energy imbalance imposes the physical restriction that the rate
of change of free energy is not greater than the external power expended.
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5.1 Grain

Following Gurtin (2008a) the localised free energy imbalance in the grain takes the form:

0 ≤ D = −Ψ̇j + σ : le +
∑
α

[πανα + ξα · ∇να]

= −Ψ̇j + jT e
# : Ėe +

∑
α

[πανα + ξα · ∇να] . (11)

5.2 Grain Boundary

Following a similar procedure as for the grain and using the external power in the grain boundary, defined in
Eq. (9), the free energy imbalance on the grain boundary takes the form:

0 =
˙∫

A

Ψ j da− P ext +

∫
A

D da

=

∫
A

Ψ̇ j da−
∑
α

∫
A

[παAν
α
A + παBν

α
B ] da+

∫
A

D da

=⇒ 0 ≤ D = −Ψ̇ j +
∑
α

[παAν
α
A + παBν

α
B ] .

The contribution of the product of the scalar microscopic forces and the slip rates on either side of the grain
boundary will play a key role in subsequent developments.

6 Reduced Dissipation Inequalities and the Elastic Constitutive Relations

The constitutive relations are obtained by endowing the free energy functions in the various parts of the body with
structure. A set of (arbitrary) properties associated with all slip systems is denoted as follows

~ρ := {ρ1, ρ2, . . . , ρα, . . . , ρnss} ,

where nss is the number of slip systems.

6.1 Grain

Assume a free energy for the grain decoupled into an elastic (macroscopic) and a defect (microscopic) part, denoted
Ψe and Ψd respectively, that takes the form

Ψ = Ψe(Ee) + Ψd(~ρ) .

The defect energy Ψd is defined to be a function of the dislocation densities. The scalar energetic defect forces
associated with edge and screw dislocations are respectively defined by

fα` = j
∂Ψd(~ρ)

∂ρα`
and fα� = j

∂Ψd(~ρ)

∂ρα�
.

Making use of Eq. (4), the time rate of change of the defect energy yields the following definition for the energetic
vectorial microstress ξαen:

jΨ̇d(~ρ) =
∑
α

[
fα` ρ̇

α
` + fα�ρ̇

α
�
]

=
∑
α

[
−fα` sα + fα�l

α
]︸ ︷︷ ︸

ξαen

·∇να .
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Using these relations and definitions, the free energy imbalance in the grain (11) yields the constitutive relation for
the lattice stress T e

# and what remains is the reduced dissipation in the grain Dred obtained as follows:

D = −j
[
∂Ψe

∂Ee : Ėe + Ψ̇d
]

+ jT e
# : Ėe +

∑
α

[πανα + ξα · ∇να] ≥ 0

=⇒ T e
# =

∂Ψe

∂Ee , (12)

Dred :=
∑
α

[
[ξα − ξαen]︸ ︷︷ ︸

ξαdis

·∇να + πανα
]
≥ 0 ,

where ξαdis is the dissipative vectorial microstress. The scalar microstress πα is assumed to be fully dissipative.
To elucidate the role of the grain boundary, the vectorial microstress is assumed to be fully energetic. That is, we
assume the following:

ξαdis ≡ 0 =⇒ ξα ≡ ξαen

παen ≡ 0 =⇒ πα ≡ παdis

and hence the reduced dissipation inequality in the grain simplifies further as

Dred ≡
∑
α

παdisν
α ≥ 0 . (13)

6.2 Grain Boundary

The grain boundary is assumed from the onset to be fully dissipative. Following Gurtin and Needleman (2005);
Gurtin (2008b), the reduced dissipation on the grain boundary is expressed in terms of the rate of change of the
defect measure on the grain boundary Ḣ and its conjugate kinetic quantity K, or equivalently the sum of the
dissipation from each slip system on either side of the grain boundary παJ,disν

α
J . The reduced dissipation inequality

can also be expressed in a form that is amenable to the the alternative measure of mismatch at the grain boundary
proposed in Sec. 2.3. That is,

Dred = K : Ḣ︸ ︷︷ ︸
(I)

=
∑
α

[παA,disν
α
A + παA,disν

α
B ]︸ ︷︷ ︸

(II)

=
∑
α,β

Kαβ : ḢαβR︸ ︷︷ ︸
(III)

≥ 0 , (14)

whereKαβ is the conjugate kinetic quantity to Ḣαβ .

7 Plastic Flow Relations

In order to complete the theory, the reduced dissipation inequalities in the various parts of the body (13, 14)
are satisfied in a thermodynamically consistent manner by postulating plastic flow relations for the dissipative
internal variables. We restrict attention here to viscoplastic flow relations to circumvent well-documented problems
associated with the rate-independent theory.

7.1 Grain

A regularized effective dissipation function for the grain, denoted by Dα
vis, is proposed and takes the form:

Dα
vis =

S

m+ 1

[ |να|
ν0

]m+1

ν0 ,
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where S > 0 is the slip resistance (assumed constant), ν0 is the reference value for the slip rate and m > 0 is the
rate sensitivity. The scalar microforce follows as:

παdis =
∂Dα

vis

∂να
= S

[ |να|
ν0

]m
sgnνα .

It is clear that this regularized result for παdis satisfies the reduced dissipation inequality in the grain (13).

7.2 Grain Boundary

Viscous plastic flow relations on the grain boundary are constructed so as to mimic those in the bulk. The reduced
dissipation inequality on the grain boundary (14) can be satisfied in a variety of ways. The first two possibilities
discussed here were proposed by Gurtin (2008a) for the infinitesimal-deformation problem and are hence referred
to as the Gurtin I and Gurtin II models. The third option is termed the modified formulation and attempts to address
various limitations of the Gurtin theory as detailed in Gottschalk et al. (2015).

7.2.1 Plastic flow relations in terms of Ḣ: the Gurtin I model

In the Gurtin I model, the plastic flow relation is chosen so as to ensure that the term labelled I in the reduced
dissipation inequality (14) is satisfied. Thus a regularized dissipation potential for the grain boundary is selected
as follows:

Dvis =
S

m+ 1

[
|Ḣ|
Ḣ0

]m+1

Ḣ0 , (15)

where S > 0 is the (constant) slip resistance, Ḣ0 is the reference scalar value for the rate of the grain-boundary
Burgers tensor and m > 0 is the rate sensitivity parameter. The flow relation forK follows as

K =
∂Dvis

∂Ḣ
= S0

[
|Ḣ|
Ḣ0

]m
Ḣ

|Ḣ|
. (16)

7.2.2 Flow relations in term of να: the Gurtin II model

In the Gurtin II model, the plastic flow relations are chosen so as to ensure that each term within the summation
term (labelled II in the reduced dissipation inequality) is satisfied separately.

A regularized dissipation potential for side I of the grain boundary is chosen as

D
α

vis,I =
S

m+ 1

[ |ναI |
ν0

]m+1

ν0 ,

where ν0 is the reference value for the rate of the grain-boundary slip, and the remaining parameters are defined as
in Eq. (15). The regularized dissipation function for the grain boundary follows as

D
γ

vis =
∑
α

[
D
α

vis,A +D
α

vis,B

]
.

The dissipative internal microscopic forces on either side of the grain boundary (see Eq. (10)) are thus obtained as

παI,dis =
∂D

γ

vis

∂ναI
= S

[ |ναI |
ν0

]m
ναI
|ναI |

.
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7.2.3 Flow relations in term of ḢαβR : the modified model

In the modified model, the plastic flow relation is chosen so as to ensure that each term within the summation term
(labelled III in the reduced dissipation inequality) is satisfied separately. The regularized dissipation potential for
the modified model is chosen to be

Dvis,R =
S

m+ 1

[
|ḢR|
Ḣ0

]m+1

Ḣ0

where

|Ḣ| :=
√∑

α

∑
β

∣∣ḢαβR ∣∣2 .
8 Finite Element Approximation

The non-linear coupled system of equations governing the response of the grain and the grain boundary are solved
approximately using the finite element method in space in conjunction with a Newton–Raphson procedure. Rate
quantities are approximated using the finite difference method. Equation 4 for the evolution of the density of
the edge and screw dislocations is approximated using a backward-Euler scheme. The evolution of the elastic
constitutive relation (12) requires an approximation of F p (see Eq. (2)). A Crank–Nicholson interpolation of the
exponential approximation for Ḟ p proposed by Steinmann and Stein (1996) is employed to ensure that the plastic
incompressibility constraint is fulfilled. The incremental form of the system of governing equation is recast into
a variational format following a similar procedure as in Gottschalk et al. (2015) for the infinitesimal deformation
problem.

The incremental variational problem is solved approximately using the finite element method. The finite element
library AceGen (Korelc, 2002) is used to implement the solution scheme. This allows the system of residual equa-
tions and the numerical tangent to be computed directly from the incremental potential arising in the variational
problem. A time-step duration control procedure is used to optimise the time-step size and to ensure quadratic
convergence of the Newton–Raphson scheme. The grain is discretized using Lagrangian Q1 elements. The nodal
degrees of freedom are (u, ~ν). The grain boundary is also approximated using Q1 elements with negligible thick-
ness in the direction of the grain boundary normal. The evaluation and integration of quantities on the grain
boundary are performed with respect to the mid-plane of the grain-boundary element. The kinematic coherence
condition (5) is enforced using a penalty formulation described in Gottschalk et al. (2015).

9 Numerical Examples

The grain-boundary model developed in the preceding sections is elucidated via a series of three-dimensional
numerical examples. A detailed numerical investigation of the infinitesimal-deformation theory was presented
in Gottschalk et al. (2015). The influence of lattice misorientation and the grain boundary orientation on the
overall response of the specimen was demonstrated for single and double slip bi-crystals, and for a face-centred
cubic (FCC) crystal composed of multiple grains. The objectives here are to compare the infinitesimal- and finite-
deformation theories, to illustrate features of the finite-deformation theory, and to compare the influence of the
various different defect measures proposed to describe the kinematic mismatch at the grain boundary on the overall
response.

The first numerical example problem is of torsion in a single slip system bi-crystal. The tensile response of a
double slip system polycrystal is then examined. The final example investigates the role of the grain boundary for
nano-indentation of a FCC bi-crystal and is inspired by the experiments of Britton et al. (2009).

The elastic response is governed by a standard neo-Hookean free energy (see e.g. Holzapfel, 2000). The constitu-
tive parameters used, unless specified otherwise, are listed in Table 1. The computations are simplified by choosing
a linear viscous relation. A more realistic range of viscous parameters will be explored in future work.

112



Table 1: Constitutive parameters used for the numerical examples unless stated otherwise. See Gottschalk et al.
(2015) for further details and definitions.

First Lamé parameter λ 1.05× 10−1 N/µm2

Second Lamé parameter µ 5.4× 10−2 N/µm2

Burgers vector length b 2.5× 10−4 µm
Back stress cut-off radius R 2× 10−2 µm

Reference slip rate ν0 1 /s

Ḣ0 1 /s

Slip resistance S 1 N/µm2

S 1× 10−1 N/µm2

Rate sensitivity m, m 1

9.1 Torsion of a Bi-crystal

Consider the 100×100×400 µm bi-crystal shown in Fig. 2. Single slip is assumed for both grains. The orientation
of the slip systems and the grain boundary in the reference configuration is shown in Fig. 2(b). The crystal lattice
in grains A and B is defined by (sA,mA) = (1/

√
2)((1, 1, 0), (1,−1, 0)) and (sB ,mB) = ((1, 0, 0), (0,−1, 0)),

respectively. The grain boundary normal vector is given by n = e3 in the reference configuration. The slip
directions are chosen parallel to the grain boundary to minimise the role of the grain boundary. As shown in
Fig. 2(a), each grain is discretized into 20× 20× 20 elements. The lower face of grain A is fully fixed and micro-
hard conditions imposed. A rotation in the e1–e2 plane is prescribed on the upper face and micro-hard conditions
assumed. The finite rotation is applied in 36 equal load increments. The Gurtin I and II models were used for this
example. For this problem and geometry, the predictions of the two models are indistinguishable.

Figure 2: The problem of torsion in a bi-crystal.

The deformed states predicted using the infinitesimal- and finite-deformation theory for a twist of φ3 = π/5 are
shown in Fig. 3. The e3 component of the displacement field and the slip are superimposed upon the domain. The
relation between the resulting component of the torque vector in the e3 direction on the upper face, defined by
Mz := |

∫
x× σe3 dA|, where x is a point on the upper face, and the angle of twist φ3 is shown in Fig. 4. The

infinitesimal- and finite-deformation models are in good agreement for φ3 approximately less than 0.1 rad. This is
to be expected as the deformations are reasonably small within this range. For φ3 > 0.1 rad the disagreement be-
tween the models becomes significant with the infinitesimal-deformation model exhibiting a far stiffer response. In
the infinitesimal-deformation model, the deformation is concentrated near the upper surface of grain B as shown in
Fig. 3(a). This is non-physical. The response of the finite-deformation model is far smoother as shown in Fig. 3(b).
Interpenetration occurs in the infinitesimal-deformation model when the twist is greater than approximately 0.2π
rad. It is clear from the distribution of the slip that the infinitesimal-deformation model is unable to account for
the change in the interaction of the slip systems with deformation. The finite-deformation model captures the
deformation-induced transformation of the adjacent slip systems to non-parallel.
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The finite-deformation model can predict the response of the system for far greater twists, as shown in Fig. 5 for
φ3 ∈ [0, 2π]. The change in the grain-boundary interaction coefficient CAB from the beginning to the end of the
loading cycle is also shown. The significant change in the interaction coefficient highlights the need to account for
finite deformations.

Figure 3: Comparison of the infinitesimal and finite deformation theory for the problem of torsion in a bi-crystal.
The z-component of the displacement is superimposed upon the deformed domain in (a)–(b), while in (c)–(d) it is
the slip.

�3 [rad]

infinitesimal deformation

finite deformation

M
Z

[N
]

Figure 4: Relation between the applied twist φ3 and the resulting torque Mz on the upper surface of the bi-crystal.

9.2 Extension of a Double-slip System Polycrystal

The focus of this example is on the misorientation of slip systems across grain boundaries. Consider the [100]3 µm
polycrystal subjected to tensile loading shown in Fig. 6. The polycrystal is composed of 27 equally sized grains.
The direction of loading is chosen so as to ensure that the angle between the lattice orientation in each grain and
the loading direction remains constant during the loading process. This ensures that the difference in the response
results solely from the grain boundary model and mismatch across the grain boundary. Each of the grains has two
slip systems. Consider a unit cell with s1 = 1/

√
2(−1, 1, 0) and s2 = 1/

√
2(1, 1, 0), and m1 = 1/

√
2(1, 1, 0)

and m2 = 1/
√

2(−1, 1, 0). The lattice orientation of each grain in the polycrystal is defined by a rotation of the
unit cell given in terms of the Euler angle ψ=[φ1, α, φ2], following the convention of Bunge (1969). The grains in
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Figure 5: Relation between the applied twist φ3 and the resulting torque Mz on the upper surface of the bi-crystal
for the finite deformation model. The variation in the grain-boundary interaction coefficient CAB at various stages
of the loading is also shown.

the polycrystal are either unrotated (i.e. ψ = [0°, 0°, 0°]) or rotated by ψ = [−90°, α°, 90°], where α ∈ [0, 90]. This
gives rise to the polycrystalline structure depicted in Fig. 7. The disctretization of the domain and the boundary
conditions are shown in Fig. 6. Each grain is discretized into 63 elements. A displacement of uy = 100 µm is
applied on the boundary with outward normal n = [0, 1, 0]. Micro-hard boundary conditions are also assumed
on this surface. The opposite boundary with outward normal n = [0,−1, 0] is prevented from displacing in the
y-direction and micro-hard conditions are imposed. The additional constraints to prevent rigid body motion are
indicated in Fig. 6.

100100 µm

Figure 6: The problem of extension of a double-slip system polycrystal.
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Abbildung 5.23: Kristallnummerie-
rung im Mehrkristall

K.  [�] K.  [�] K.  [�]
1 [-90,↵,90] 10 [0,0,0] 19 [-90,↵,90]
2 [0,0,0] 11 [-90,↵,90] 20 [0,0,0]
3 [-90,↵,90] 12 [0,0,0] 21 [-90,↵,90]
4 [0,0,0] 13 [-90,↵,90] 22 [0,0,0]
5 [-90,↵,90] 14 [0,0,0] 23 [-90,↵,90]
6 [0,0,0] 15 [-90,↵,90] 24 [0,0,0]
7 [-90,↵,90] 16 [0,0,0] 25 [-90,↵,90]
8 [0,0,0] 17 [-90,↵,90] 26 [0,0,0]
9 [-90,↵,90] 18 [0,0,0] 27 [-90,↵,90]

Tabelle 5.4: Gleitsystemrotationen jedes Korns (K.)
im Mehrkristall mit Doppelgleitung

Zuletzt wird das Beispiel noch einmal mit dem Korngrenzenmodell Gurtin II berechnet.
Die Spannungs-Dehnungs-Verläufe sind in Abbildung 5.26 gezeigt. Da die Kristallaus-
richtungen hier keinen Einfluss auf die Dissipation haben, unterscheiden sich die Er-
gebnisse kaum. Die Verläufe liegen alle im Bereich mikrohart. Selbst für eine Rotation
von ↵ = 0�, was einem Einkristall entspricht, wird ein mikrohartes Verhalten gezeigt.
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Abbildung 5.24: Spannungs-Dehnungsverlauf für unterschiedliche Kristallausrichtungen und
ModDiss-Korngrenzenmodell
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Figure 7: The construction of the polycrystalline domain from two possible unit cells. The variable angle α governs
the interaction between grains.

The variation in the reaction force in the e2 direction versus the E22 component of the Green–Lagrange strain for
differing values of α and for each of the three flow relations is shown in Fig. 8.

The Gurtin I model is able to capture the range of responses between micro-free and micro-hard as α varies between
0 and 90° as shown in Fig. 8(a). For the case of α = 0°, the orientation of the crystal lattice is the same for all
grains and, given the orientation of the grains boundaries, there is no interaction between grains. The response of
the system is thus identical to that obtained using a micro-free gain boundary condition. As α is increased so the
interaction between grains across the grain boundaries increases. For the case of α = 90°, the global response
of the system is identical to that obtained by assuming a micro-hard grain boundary. The micro-hard condition is
often assumed in the literature in the absence of a grain boundary model such as the ones investigated here. The
Gurtin I model can thus account for the full range of interaction between micro-free and micro-hard in a physical
meaningful manner. The modified formulation behaves in a near-identical manner to the Gurtin I formulation as
shown in Fig. 8(c).

The Gurtin II formulation is unable to account for the role of the grain boundary and behaves like the micro-free
model for all values of α as shown in Fig. 8(b). This is not necessarily surprising as the Gurtin II formulation does
not directly account for the misorentation of the crystal lattice in adjacent grains via a defect measure.

9.3 Nanoindentation

The current example attempts to replicate key features of the nanoindentation experiment in a FCC bi-crystal
performed by Britton et al. (2009). Indentation was performed using a Berkovich indenter adjacent to a grain
boundary. The simulated experiment is shown in Fig. 9. The orientation of slip systems in the (unrotated) crystal
lattice are also indicated. The discretization is chosen finer in the vicinity of the grain boundary and below the
contact area of the indenter. Contact is modelled by prescribing the vertical displacement of nodes below the
contact point. The contact is assumed frictionless and micro-hard boundary conditions imposed below the indenter
tip. The displacement on all other faces is fully constrained and micro-free conditions are assumed. The simulation
was performed using the finite deformation theory. Two different grain boundary misorientations were examined:
a low-angle grain boundary with a misorientation of 10° and a high-angle grain boundary with a misorientation of
44°.

The net reaction force on the indenter versus the indentation depth for the three different plastic flow relations
are shown in Fig. 10. Also shown are the results for the micro-free and micro-hard grain boundary assumptions.
The Gurtin I model shows a nearly micro-free behaviour for both the high and low grain boundary misorientations
with only a tiny spread between the low and high angle grain boundary. The dislocations are recombining on both
sides of the boundary leading to a very small dissipation at the boundary. In the Gurtin II model the response is
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Abbildung 5.25: Spannungs-Dehnungsverlauf für unterschiedliche Kristallausrichtungen mit
Gurtin I-Korngrenze
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Abbildung 5.26: Spannungs-Dehnungsverlauf für unterschiedliche Kristallausrichtungen mit
Gurtin II-Korngrenze
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Abbildung 5.26: Spannungs-Dehnungsverlauf für unterschiedliche Kristallausrichtungen mit
Gurtin II-Korngrenze (b) Gurtin II

(c) modified

Figure 8: The relation between the reaction force and the strain on the upper surface of the polycrystalline domain
for varying α and for each of the three plastic flow relations.

similar to the micro-hard model with a small difference between the low- and high-angle boundary. The difference
can be explained with the different crystal orientation in the second grain because of the different misorientation
angle. Only the modified model produces the expected significant difference between the low- and high-angle
grain boundary. The modified model is in agreement with the trends exhibited by the results in Britton et al. (2009)
that show a stiffer response for the high angle grain boundary. This example also illustrates that in addition to the
misorientation of adjacent grains, the orientation of the grains themselves plays a significant role in the overall
response.

Figure 9: The nanoindetation problem.

10 Discussion and Conclusions

The response of a polycrystalline material at small length scales and finite deformations can be modelled using
the extension of the Gurtin (2008b) model presented here. Three thermodynamically consistent flow relations
were proposed. The resulting finite element formulation of the highly nonlinear coupled system of governing
equations is robust. The use of automatic differentiation to compute the tangent ensured quadratic convergence
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Abbildung 5.30: Kraft-Eindringkurven für Indentation bei Modellen für große Deformationen

Gurtin II, dass nur unwesentlich in der Rechenzeit hinter der mikroharten Korngrenze
liegt.

micro-free 44˚
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Figure 10: The relationship between the reaction force on the indenter p and the indentation depth h for the various
plastic flow relations, and the low and high-angle grain boundary configuration.

of the Newton scheme. The numerical examples presented illustrate features of the flow relations and the related
defect measures at the grain boundary. The examples do not necessarily identify any one model as physically
correct. The nanoindentation example appears to show that only the modified formulation is capable of capturing
the experimentally observed difference between the low- and high-angle grain boundary configuration.

A detailed comparison with dislocation dynamics simulations, and the careful measurement of the constitutive
parameters used to calibrate the numerical examples would provide further insight.
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