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Mathematical Models for Thin Piezoelectric Interphases Including
Thermal Effects

M. Serpilli

We study the thermo-electromechanical behavior of a thin interphase, constituted by a piezoelectric anisotropic
thin layer, embedded between two generic three-dimensional piezoelectric bodies by means of the asymptotic anal-
ysis including also thermal effects. After defining a small real dimensionless parameterε, which will tend to
zero, we characterize two different limit models and their associated limit problems, the so-called weak and strong
thermo-piezoelectric interface models, respectively. Moreover, we identify the non classical thermo-electromechanical
transmission conditions at the interface between the two three-dimensional bodies.

1 Introduction

In recent years the conception and use of smart materials have undergone a major development in all fields of
aeronautical, mechanical and civil engineering. Smart materials, such as piezoelectric materials, are often inte-
grated within the structure in different configurations: for instance, piezoelectric transducers can be embedded or
glued onto the structural members to be controlled. Moreover, the same piezoelectric actuators are often obtained
by alternating different thin layers of material with highly contrasted thermo-electromechanical properties. This
generates different types of complex multimaterial assemblies, in which each phase interacts with the others. An
extensive list of references on the subject can be found in the following cited papers for what concerns with piezo-
electric interphases/interfaces problems using classical variational tools: see, for instance, Benveniste (2006, 2009)
for curved thin interphases in conduction phenomena.

The successful application of the asymptotic methods to obtain a mathematical justification of thin structure mod-
els in the field of linear and non linear elasticity (see, e.g., Ciarlet (1997)) and in piezoelectricity, taking into
account both sensor and actuator functions and the influence of temperature (see, e.g. Blanchard and Francfort
(1987); Figueiredo and Franco Leal (2005); Weller and Licht (2010); Miara and Suarez (2013)) has stimulated
the research toward a rational simplification of the modeling of complex structures obtained joining elements of
different dimensions and/or materials of highly contrasted properties. Thin interphases represent one of the most
peculiar bonded joint between two media. Within the theory of elasticity, the asymptotic analysis of a thin elastic
interphase between two elastic materials has been deeply investigated through the years, by varying the rigidity
ratios between the thin inclusion and the surrounding materials and by considering different geometry features.
For instance, it is worth mentioning the contributions by Geymonat et al. (1999), Krasucki et al. (2004), the works
by Lebon and Rizzoni (2010, 2011) for the case of thin interfaces with similar and hard rigidities, and, also, the
works by Bessoud et al. (2009, 2008, 2011) in which the authors studied the case of plate-like and shell-like elastic
inclusions with high rigidity in a rigorous functional framework.

This work is conceived as a generalization of the previous work by Serpilli (2015) on asymptotic weak and strong
piezoelectric interface models, taking into account the effect of temperature. In the present work we identify two
different interface limit models of an assembly constituted by a thin thermo-piezoelectric layer inserted between
two generic thermo-piezoelectric bodies by means of an asymptotic analysis. By defining a small real parameter
ε, associated with the thickness and the thermo-electromechanical properties of the middle layer, we perform
an asymptotic analysis by lettingε tend to zero. We analyze two different situations by varying the thermo-
electromechanical stiffnesses ratios between the middle layer and the adherents. The first case corresponds to
the so-calledweakthermo-piezoelectric interface model, where the thermo-electromechanical coefficients of the
intermediate domain have order of magnitudeε with respect to those of the surrounding bodies: in this case,
the intermediate layer is considered to be soft, from a mechanical point of view, and with small thermo-electric
conductivity properties with respect to the upper and lower bodies. The second case of study is the so-calledstrong
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thermo-piezoelectric interface model, where the thermo-electromechanical rigidities have order of magnitude1
ε :

in this case, the middle layer is rigid and with high thermo-electric conductivities. Within the reduced models, the
interphase is replaced by a material surface whose energy, in both cases, is the limit of the interphase energy. This
surface energy is then translated in ad hoc transmission conditions at the interface.

2 The physical problem

In the sequel, Greek indices range in the sett1, 2u, Latin indices range in the sett1, 2, 3u, and the Einstein’s
summation convention with respect to the repeated indices is adopted. We also introduce the following notation
for the scalar product:

a ¨ b :“ aibi, for all vectorsa “ paiq andb “ pbiq.

Let us consider a three-dimensional Euclidian space identified byR3 and such that the three vectorsei form
an orthonormal basis. LetΩ` andΩ´ be two disjoint open domains with smooth boundariesBΩ` and BΩ´.
Let ω :“ tBΩ` X BΩ´u˝ be the interior of the common part of the boundaries which is assumed to be a non
empty domain inR2 having a positive two-dimensional measure. We consider the assembly constituted by two
solids bonded together by an intermediate thin plate-like bodyΩm,ε of thickness2hε, where0 ă ε ă 1 is a
dimensionless small real parameter which will tend to zero. We suppose that the thicknesshε of the middle layer
depends linearly onε, so thathε “ εh.
More precisely, we denote respectively withΩ˘,ε :“ txε :“ x ˘ εhe3; x P Ω˘u, the translation ofΩ` (resp.
Ω´) along the directione3 (resp. ´e3 ) of the quantityεh, with Ωm,ε :“ ω ˆ p´εh, εhq, the central plate-
like domain, and withΩε :“ Ω`,ε Y Ωm,ε Y Ω´,ε, the reference configuration of the assembly. Moreover, we
define withS˘,ε :“ ω ˆ t˘εhu “ Ω˘,ε X Ωm,ε, the upper and lower faces of the intermediate plate-like domain,
Γ˘,ε :“ BΩ˘,ε{S˘,ε, andΓm,ε

lat :“ Bωˆp´εh, εhq, its lateral surface, see Figure 1. LetpΓε
mD, Γε

mN q, pΓε
eD, Γε

eN q

Figure 1: The reference configuration and the geometry of the interphase.

andpΓε
tD, Γε

tN q be three suitable partitions ofBΩε, with Γε
mD, Γε

eD andΓε
tD of strictly positive Hausdorff measure.

The multimaterial is, on one hand, clamped alongΓε
mD, at an electrical potentialϕε “ 0 on Γε

eD and at a certain
temperatureθε “ 0 onΓε

tD and, on the other hand, subject to surface forcesgε
i onΓε

mN , surface electrical charges
dε onΓε

eN and surface heat sourcewε onΓε
tN . The assembly is also subject to body forcesfε

i , electrical loadings
ρε

e and an internal heat sourcejε acting inΩ˘,ε. We suppose, without loss of generality, thatΩm,ε andΓm,ε
lat are

both free of mechanical, electrical and thermal charges. We consider the following regularity assumptions for the
thermo-electromechanical loads:fε

i P L2pΩ˘,εq, ρε
e P L2pΩ˘,εq, jε P L2pΩ˘,εq, gε

i P L2pΓε
mN q, wε P L2pΓε

tN q
anddε P L2pΓε

eN q. We finally assume thatΩ˘,ε andΩm,ε are constituted by three homogeneous linearly thermo-
piezoelectric materials, whose constitutive laws are defined as follows:

$
&

%

σε
ijpuε, ϕε, θεq “ Cε

ijk`e
ε
k`puεq ´ P ε

kijE
ε
kpϕεq ´ Xε

ijθ
ε,

Dε
i puε, ϕε, θεq “ P ε

ijkeε
jkpuεq ` Hε

ijE
ε
j pϕεq ` pε

i θ
ε,

qε
i pθεq “ ´Kε

ijBε
jθ

ε,
(1)

wherepσε
ijq is the classical Cauchy stress tensor,peε

ijpuεqq :“
`

1
2 pBε

i u
ε
j ` Bε

ju
ε
i q
˘

is the linearized strain tensor,
pDε

i q is the electrical displacement field,pqε
i q is the heat flow vector,ϕε is the electrical potential andEε

i pϕεq :“
´Bε

i ϕ
ε its associated electrical field.pCε

ijk`q, pP ε
ijkq, pHε

ijq, pXε
ijq, ppε

i q and pKε
ijq represent, respectively, the
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classical fourth order elasticity tensor, the third order piezoelectric coupling tensor, the second order dielectric
tensor, the second order thermal stress tensor, the pyroelectric vector and the second order thermal conductivity
tensor related toΩ˘,ε andΩm,ε.
TensorspCε

ijk`q, pHε
ijq, pXε

ijq and pKε
ijq satisfy the following coercivity properties: for any symmetric matrix

field pbijq, there exists a constantc ą 0 such thatCε
ijk`bk`bij ě c

ř
i,j |bij |2; for any vector fieldpaiq, there

exist constantsc1, c2, c3 ą 0 such thatHε
ijajai ě c1

ř
i |ai|2, Xε

ijajai ě c2

ř
i |ai|2 andKε

ijajai ě c3

ř
i |ai|2.

Moreover, we have the symmetriesCε
ijk` “ Cε

k`ij “ Cε
jik`, Hε

ij “ Hε
ji, P ε

kji “ P ε
kij , Xε

ij “ Xε
ji andKε

ij “ Kε
ji.

Let Σε Ă BΩε, we introduce the functional spaces

V pΩε, Σεq :“ tvε P H1pΩεq; vε “ 0 onΣεu, VpΩε, Σεq :“ rV pΩε, Σεqs3.

The thermo-electromechanical state at the equilibrium is determined by the tripletsε :“ puε, ϕε, θεq. The physical
variational problem defined over the variable domainΩε reads as follows:

"
Findsε P VpΩε, Γε

mDq ˆ V pΩε, Γε
eDq ˆ V pΩε, Γε

tDq such that
A´,εpsε, rεq ` A`,εpsε, rεq ` Am,εpsε, rεq “ Lεprεq,

(2)

for all rε “ pvε, ψε, ηεq P VpΩε, Γε
mDq ˆ V pΩε, Γε

eDq ˆ V pΩε, Γε
tDq, where the bilinear formsA˘,εp¨, ¨q and

Am,εp¨, ¨q, and the linear formLεp¨q are defined by

A˘,εpsε, rεq :“
ż

Ω˘,ε

!
C˘,ε

ijk`e
ε
k`puεqeε

ijpvεq ` H˘,ε
ij Eε

j pϕεqEε
i pψεq ` K˘,ε

ij Bε
jθ

εBε
i η

ε`

` P ˘,ε
ihk pEε

i pψεqeε
hkpuεq ´ Eε

i pϕεqeε
hkpvεqq ´ X˘,ε

ij eε
ijpvεqθε ´ p˘,ε

i Bε
i ψ

εθε
(

dxε,

Am,εpsε, rεq :“
ż

Ωm,ε

!
Cm,ε

ijk`e
ε
k`puεqeε

ijpvεq ` Hm,ε
ij Eε

j pϕεqEε
i pψεq ` Km,ε

ij Bε
jθ

εBε
i η

ε`

` Pm,ε
ihk pEε

i pψεqeε
hkpuεq ´ Eε

i pϕεqeε
hkpvεqq ´ Xm,ε

ij eε
ijpvεqθε ´ pm,ε

i Bε
i ψ

εθε
(

dxε,

Lεprεq :“
ż

Ω˘,ε

pfε
i vε

i ` ρε
eψ

ε ` jεηεqdxε `
ż

Γε
mN

gε
i v

ε
i dΓε ´

ż

Γε
eN

dεψεdΓε ´
ż

Γε
tN

wεηεdΓε.

By virtue of theVpΩε, Γε
mDq ˆ V pΩε, Γε

eDq ˆ V pΩε, Γε
tDq-coercivity of the bilinear forms and thanks to the

Lax-Milgram lemma, problem (2) admits one and only one solution.

3 The asymptotic expansion method

In order to study the asymptotic behavior of the solution of problem (2) whenε tends to zero, we rewrite the
problem on a fixed domainΩ independent ofε. By using the approach of Ciarlet (1997) we consider the bijection
πε : x P Ω ÞÑ xε P Ω

ε
given by
$
’&

’%

πεpx1, x2, x3q “ px1, x2, x3 ´ hp1 ´ εqq, for all x P Ω
`
tr,

πεpx1, x2, x3q “ px1, x2, εx3q, for all x P Ω
m

,

πεpx1, x2, x3q “ px1, x2, x3 ` hp1 ´ εqq, for all x P Ω
´
tr,

whereΩ˘
tr :“ tx ˘ he3, x P Ω˘u, Ωm :“ ω ˆ p´h, hq andS˘ :“ ω ˆ t˘hu. In order to simplify the notation,

we identify Ω˘
tr with Ω˘, andΩ with Ω

˘
Y Ω

m
. Likewise, we noteΓ˘ :“ BΩ˘{S˘, Γm

lat :“ Bω ˆ p´h, hq,
pΓmD, ΓmN q, pΓeD, ΓeN q andpΓtD, ΓtN q, the partitions ofBΩ :“ Γ˘ Y Γm

lat.
Consequently,

Bε
α “ Bα andBε

3 “
1
ε

B3 in Ωm.

In the sequel, only if necessary, we will note, respectively, withpv˘, ψ˘, η˘q andpvm, ψm, ηmq, the restrictions
of functionspv, ψ, ηq to Ω˘ andΩm.

With the unknown thermo-electromechanical statesε “ puε, ϕε, θεq, we associate the scaled unknown thermo-
electromechanical statespεq :“ pupεq, ϕpεq, θpεqq defined by:

uε
i pxεq “ uipεqpxq, ϕεpxεq “ ϕpεqpxq, θεpxεq “ θpεqpxq for all xε “ πεx P Ω

ε
.

We likewise associate with any test functionsrε “ pvε, ψε, ηεq, the scaled test functionsr “ pv, ψ, ηq, defined by
the scalings:

vε
i pxεq “ vipxq, ψεpxεq “ ψpxq, ηεpxεq “ ηpxq for all xε “ πεx P Ω

ε
.
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We suppose that the thermo-electromechanical coefficients ofΩ˘ are independent ofε, so that

C˘,ε
ijk` :“ C˘

ijk`, H˘,ε
ij :“ H˘

ij , P ˘,ε
ijk :“ P ˘

ijk, X˘,ε
ij :“ X˘

ij , K˘,ε
ij :“ K˘

ij , p˘,ε
i :“ p˘

i ,

while the thermo-electromechanical coefficients ofΩm have the following dependence with respect toε

Cm,ε
ijk` :“ εpCm

ijk`, Hm,ε
ij :“ εpHm

ij , P m,ε
ijk :“ εpPm

ijk, Xm,ε
ij :“ εpXm

ij , Km,ε
ij :“ εpKm

ij , pm,ε
i :“ εppm

i ,

with p P t´1, 1u. Two different limit behaviors will be characterized according to the choice of the exponentp: in
the case ofp “ ´1, we derive a model for a strong thermo-piezoelectric interface; by choosingp “ 1, we deduce
a model for a weak thermo-piezoelectric interface.

We also make the following assumptions on the applied mechanical, electrical and thermal loads:

fε
i pxεq “ fipxq and gε

i pxεq “ gipxq for all xε “ πεx P Ω
˘,ε

,

ρε
epxεq “ ρepxq and dεpxεq “ dpxq for all xε “ πεx P Ω

˘,ε
,

jεpxεq “ jpxq and wεpxεq “ wpxq for all xε “ πεx P Ω
˘,ε

,

where functionsfi P L2pΩ˘q, ρe P L2pΩ˘q, j P L2pΩ˘q, gi P L2pΓmN q, d P L2pΓeN q andw P L2pΓtN q are
independent ofε. ThusLεprεq “ Lprq.

According to the previous hypothesis, problem (2) can be reformulated on a fixed domainΩ independent ofε.
Thus we obtain the following scaled problem:

"
Findspεq P VpΩ, ΓmDq ˆ V pΩ, ΓeDq ˆ V pΩ, ΓtDq such that
A´pspεq, rq ` A`pspεq, rq ` Am,ppεqpspεq, rq “ Lprq,

(3)

for all r P VpΩ, ΓmDq ˆ V pΩ, ΓeDq ˆ V pΩ, ΓtDq, p P t´1, 1u, where

A˘pspεq, rq :“
ż

Ω˘

!
C˘

ijk`ek`pupεqqeijpvq ` H˘
ij BjϕpεqBiψ ` K˘

ij BjθpεqBiη`

` P ˘
ihkpBiϕpεqehkpvq ´ Biψehkpupεqqq ´ X˘

ijeijpvqθpεq ´ p˘
i Biψθpεq

(
dx,

Am,ppεqpspεq, rq :“ εp´1ampspεq, rq ` εpbmpspεq, rq ` εp`1cmpspεq, rq,

with

ampspεq, rq :“
ż

Ωm

␣
Cm

i3j3B3uipεqB3vj ` Hm
33B3ϕpεqB3ψ ` Km

33B3θpεqB3η`

`Pm
3i3pB3ϕpεqB3vi ´ B3ψB3uipεqqu dx,

bmpspεq, rq :“
ż

Ωm

␣
Cm

i3jαpB3uipεqBαvj ` BαujpεqB3viq ` Hm
α3pB3ϕpεqBαψ ` B3ψBαϕpεqq`

`Km
α3pB3θpεqBαη ` B3ηBαθpεqq ` Pm

3αipB3ϕpεqBαvi ´ B3ψBαuipεqq`

`Pm
αi3pBαϕpεqB3vi ´ BαψB3uipεqq ´ Xm

i3 B3viθpεq ´ pm
3 B3ψθpεqu dx,

cmpspεq, rq :“
ż

Ωm

␣
Cm

iαjβBαuipεqBβvj ` Hm
αβBαϕpεqBβψ ` Km

αβBαθpεqBβη

`Pm
αβipBαϕpεqBβvi ´ BαψBβuipεqq ´ Xm

iαBαviθpεq ´ pm
α Bαψθpεq

)
dx.

We can now perform an asymptotic analysis of the rescaled problem (3). Since the rescaled problem (3) has a
polynomial structure with respect to the small parameterε, we can look for the solutionspεq “ pupεq, ϕpεq, θpεqq
of the problem as a series of powers ofε:

spεq “ s0 ` εs1 ` ε2s2 ` . . . ñ

$
&

%

upεq “ u0 ` εu1 ` ε2u2 ` . . .
ϕpεq “ ϕ0 ` εϕ1 ` ε2ϕ2 ` . . .
θpεq “ θ0 ` εθ1 ` ε2θ2 ` . . .

, (4)

with sq “ puq, ϕq, θqq P VpΩ, ΓmDq ˆ V pΩ, ΓeDq ˆ V pΩ, ΓtDq, q ě 0. By substituting (4) into the rescaled
problem (3), and by identifying the terms with identical power ofε, we obtain, as customary, a set of variational
problems to be solved in order to characterize the limit thermo-electromechanical states0 “ pu0, ϕ0, θ0q and its
associated limit problem, forp P t´1, 1u.
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4 The case ofp “ 1: the weakthermo-piezoelectric interface

In this Section we characterize the limit model for a weak thermo-piezoelectric interface. By choosingp “ 1, we
obtain the following set of variational problems:

P1
0 : A`ps0, rq ` A´ps0, rq ` amps0, rq “ Lprq,

P1
1 : A`ps1, rq ` A´ps1, rq ` amps1, rq ` bmps0, rq “ 0,

P1
q : A`psq, rq ` A´psq, rq ` ampsq, rq ` bmpsq´1, rq ` cmpsq´2, rq “ 0, q ě 2.

(5)

The first problemP1
0 of (5) represents the so-called limit problem, which reads

"
Finds0 “ pu0, ϕ0, θ0q P WpΩ, ΓmDq ˆ W pΩ, ΓeDq ˆ W pΩ, ΓtDq such that
A´ps0, rq ` A`ps0, rq ` amps0, rq “ Lprq,

(6)

for all r P WpΩ, ΓmDq ˆ W pΩ, ΓeDq ˆ W pΩ, ΓtDq, where

W pΩ, Σq :“ tv P L2pΩq; v˘ P H1pΩ˘q, B3v
m P L2pΩmq, v “ 0 onΣ, v˘ “ vm onS˘u,

WpΩ, Σq :“ rW pΩ, Σqs3.

The limit problem (6) can be simplified if one considers the structure of the bilinear formamp¨, ¨q, which involves
only the derivatives along thex3-coordinates. Indeed, by choosing test functionsvi, ψ, η P DpΩmq, one has

ż

Ωm

␣
pCB3u

0,m ` PB3ϕ
0,mq ¨ B3v ` pHB3ϕ

0,m ´ P ¨ B3u
0,mqB3ψ ` KB3θ

0,mB3η
(

dx “ 0,

whereC :“ pCm
i3j3q, P :“ pPm

3i3q, H :“ Hm
33 andK :“ Km

33 are introduced for the compact notation of the
problem. The previous variational equation implies the existence of three constant functions with respect tox3,
namely,z “ zpx̃q, a “ apx̃q andb “ bpx̃q, with x̃ “ pxαq, such that

$
&

%

CB3u0,m ` PB3ϕ
0,m “ z,

HB3ϕ
0,m ´ P ¨ B3u0,m “ a,

KB3θ
0,m “ b.

By solving the linear system above and thanks to the continuity conditions onx3 “ ˘h, we can explicitly compute
z, a andb as functions of the jumps of the displacement field, electric potential and temperature at the interface
betweenΩ` andΩ´, as follows

z “
1
2h

`
Crru0ss ` Prrϕ0ss

˘
, a “

1
2h

`
Hrrϕ0ss ´ P ¨ rru0ss

˘
, b “

1
2h

Krrθ0ss. (7)

This implies thatB3u0,m “ rru0ss
2h , B3ϕ

0,m “ rrϕ0ss
2h andB3θ

0,m “ rrθ0ss
2h , and thus,u0,m, ϕ0,m andθ0,m become

affine functions ofx3. Indeed, one has

u0,m “ xu0y `
x3

2h
rru0ss, ϕ0,m “ xϕ0y `

x3

2h
rrϕ0ss, θ0,m “ xθ0y `

x3

2h
rrθ0ss,

wherexfy :“ f``f´

2 andrrf ss :“ f` ´ f´ denote, respectively, the mean value and the jump of the restrictions
of f onS` andS´. By using the continuity conditions onS` andS´ and after an integration by parts onx3, we
get

amps0, rq “
ż

S`

pz ¨ v` ` aψ` ` bη`qdΓ ´
ż

S´

pz ¨ v´ ` aψ´ ` bη´qdΓ.

Hence, using expressions (7) and by identifyingS` andS´ with the interfaceω, the limit problem can be refor-
mulated in the following reduced form:

"
Finds0 P W̃pΩ, ΓmDq ˆ W̃ pΩ, ΓeDq ˆ W̃ pΩ, ΓtDq such that
A´ps0, rq ` A`ps0, rq ` ãmps0, rq “ Lprq,

(8)

for all r P W̃pΩ, ΓmDq ˆ W̃ pΩ, ΓeDq ˆ W̃ pΩ, ΓtDq, where

W̃ pΩ, Σq :“ tv P L2pΩq; v˘ P H1pΩ˘q, v “ 0 onΣu, W̃pΩ, Σq :“ rW̃ pΩ, Σqs3,

and,

ãmps0, rq :“
1
2h

ż

ω

␣`
Crru0ss ` Prrϕ0ss

˘
¨ rrvss `

`
Hrrϕ0ss ´ P ¨ rru0ss

˘
rrψss ` Krrθ0ssrrηss

(
dx̃.
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Remark 1. Thanks to the asymptotic analysis, we transform the limit problem onto a coupled thermo-electromechanical
interface problem betweenΩ` andΩ´, with non classical transmission conditions at the interfaceω. This prob-
lem represents a generalization of the one obtained for weak piezoelectric interfaces in Serpilli (2015) including
thermal effects. We rewrite problem (8) in its differential form and we obtain:

Thermal problems in Ω˘ Electrostatic problems inΩ˘ Elasticity problems in Ω˘

$
’&

’%

Biq
˘
i “ j in Ω˘,

q˘
i ni “ w onΓtN ,

θ0 “ 0 onΓtD,

$
’&

’%

BiD
˘
i “ ρe in Ω˘,

D˘
i ni “ d onΓeN ,

ϕ0 “ 0 onΓeD,

$
’&

’%

´Bjσ
˘
ij “ fi in Ω˘,

σ˘
ijnj “ gi onΓmN ,

u0 “ 0 onΓmD,

Transmission conditions onω
$
’’’’’’’’&

’’’’’’’’%

σ`
i3 “ ´ 1

2h

`
Cm

i3j3rru0
j ss ` Pm

3i3rrϕ0ss
˘

onω,

σ´
i3 “ ´ 1

2h

`
Cm

i3j3rru0
j ss ` Pm

3i3rrϕ0ss
˘

onω,

D`
3 “ 1

2h

`
Hm

33rrϕ0ss ´ Pm
3i3rru0

i ss
˘

onω,

D´
3 “ 1

2h

`
Hm

33rrϕ0ss ´ Pm
3i3rru0

i ss
˘

onω,

q`
3 “ 1

2hK33rrθ0ss onω,

q´
3 “ 1

2hK33rrθ0ss onω,

which can be rewritten, following Geymonat et al. (1998),
$
’’’’&

’’’’%

rrσi3ss “ 0, rrD3ss “ 0, rrq3ss “ 0 onω,

σ`
i3 ` 1

h pCm
i3j3u

0,`
j ` Pm

3i3ϕ
0,`q “ ´σ´

i3 ` 1
h pCm

i3j3u
0,´
j ` Pm

3i3ϕ
0,´q onω,

D`
3 ´ 1

h pHm
33ϕ

0,` ´ Pm
3i3u

0,`
i q “ ´D´

3 ´ 1
h pHm

33ϕ
0,´ ´ Pm

3i3u
0,´
i q onω,

q`
3 ´ 1

hKm
33θ

0,` “ ´q´
3 ´ 1

hKm
33θ

0,´ onω.

Remark 2. By applying the rescaling method to the constitutive law (1), one can compute the scaled stresses , the
scaled electric displacements and the scaled heat flows, as follows

$
’’’’’’&

’’’’’’%

σ˘
ijpεq “ C˘

ijk`ek`pupεqq ` P ˘
kijBkϕpεq ´ X˘

ijθpεq,
D˘

i pεq “ P ˘
ijkejkpupεqq ´ H˘

ij Bjϕpεq ` p˘
i θpεq,

q˘
i pεq “ ´K˘

ij Bjθpεq,
σm

ij pεq “ Cm
ijk3B3ukpεq ` Pm

3ijB3ϕpεq ` εpCm
ijkαBαukpεq ` Pm

αijBαϕpεq ´ Xm
ij θpεqq,

Dm
i pεq “ Pm

ik3B3ukpεq ´ Hm
i3 B3ϕpεq ` εpPm

ikαBαukpεq ´ Hm
iαBαϕpεq ` pm

i θpεqq,
qm
i pεq “ ´Km

i3 B3θpεq ´ εKm
iαBαθpεq.

By definition, we have thatσijpεq, Dipεq, qipεq P L2pΩq. Let us consider the following identity, in the sense of
distributions,

ż

Ω

tσijpεqTij ` DipεqFi ` qipεqGiu dx “
ż

Ω˘

␣
σ˘

ijpεqTij ` D˘
i pεqFi ` q˘

i pεqGi

(
dx`

`
ż

Ωm

␣
pCm

ijk3B3ukpεq ` Pm
3ijB3ϕpεqqTij ` pPm

ik3B3ukpεq ´ Hm
i3 B3ϕpεqqFi ´ Km

i3 B3θpεqGi

(
dx`

`ε

ż

Ωm

␣
pCm

ijkαBαukpεq ` Pm
αijBαϕpεq ´ Xm

ij θpεqqTij ` pPm
ikαBαukpεq ´ Hm

iαBαϕpεq ` pm
i θpεqqFi´

´Km
iαBαθpεqGiu dx, for all Tij “ Tji, Fi, Gi P DpΩq.

(9)

The asymptotic expansions method allows to look for the stresses, electric displacements and heat flows as series
of powers ofε, so that $

’&

’%

σijpεq “ σ0
ij ` εσ1

ij ` ε2σ2
ij ` . . . ,

Dipεq “ D0
i ` εD1

i ` ε2D2
i ` . . . ,

qipεq “ q0
i ` εq1

i ` ε2q2
i ` . . . .

(10)

By inserting (4) and (10) in (9), and by identifying the terms with identical power, we obtain
$
’&

’%

σ0,m
ij “ Cm

ijk3B3u
0
k ` Pm

3ijB3ϕ
0 “ 1

2h pCm
ijk3rru0

kss ` Pm
3ijrrϕ0ssq,

D0,m
i “ Pm

ik3B3u
0
k ´ Hm

i3 B3ϕ
0 “ 1

2h pPm
ik3rru0

kss ´ Hm
i3 rrϕ0ssq,

q0,m
i “ ´Km

i3 B3θ
0 “ ´ 1

2hKm
i3 rrθ0ss,
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whereas $
’&

’%

σ0,˘
ij “ C˘

ijk`ek`pu0q ` P ˘
kijBkϕ0 ´ X˘

ijθ
0,

D0,˘
i “ P ˘

ijkejkpu0q ´ H˘
ij Bjϕ

0 ` p˘
i θ0,

q0,˘
i “ ´K˘

ij Bjθ
0.

5 The case ofp “ ´1: the strongthermo-piezoelectric interface

In the sequel we identify the strong thermo-piezoelectric interface problem. By choosingp “ ´1, we obtain the
following set of variational problems:

P´1
´2 : amps0, rq “ 0,

P´1
´1 : amps1, rq ` bmps0, rq “ 0,

P´1
0 : A`ps0, rq ` A´ps0, rq ` amps2, rq ` bmps1, rq ` cmps0, rq “ Lprq,

P´1
q : A`psq, rq ` A´psq, rq ` ampsq`2, rq ` bmpsq`1, rq ` cmpsq, rq “ 0, q ě 1.

Let us consider problemP´1
´2 . By choosing test functionsr P VpΩ, ΓmDq ˆ V pΩ, ΓeDq ˆ V pΩ, ΓtDq, one has,

using the compact notation,
ż

Ωm

␣
pCB3u

0,m ` PB3ϕ
0,mq ¨ B3v ` pHB3ϕ

0,m ´ P ¨ B3u
0,mqB3ψ ` KB3θ

0,mB3η
(

dx “ 0,

which is satisfied whenCB3u0,m ` PB3ϕ
0,m “ 0, HB3ϕ

0,m ´ P ¨ B3u0,m “ 0 andKB3θ
0,m “ 0. Hence,

B3u0,m “ 0, B3ϕ
0,m “ 0 andB3θ

0,m “ 0, and so,u0,m, ϕ0,m andθ0,m are independent ofx3, i.e., u0,m “
u0,mpx̃q, ϕ0,m “ ϕ0,mpx̃q andθ0,m “ θ0,mpx̃q.

Considering problemP´1
´1 with test functionsr P VpΩ, ΓmDq ˆ V pΩ, ΓeDq ˆ V pΩ, ΓtDq, we get

ż

Ωm

!
pCm

i3j3B3u
1,m
j ` Pm

3i3B3ϕ
1,m ` Cm

i3jαBαu0,m
j ` Pm

αi3Bαϕ0,m ´ Xm
i3 θ0,mqB3vi ` pKm

33B3θ
1,m`

`Km
α3Bαθ0,mqB3η ` pHm

33B3ϕ
1,m ´ Pm

3i3B3u
1,m
i ´ Pm

3iαBαu0,m
i ` Hm

α3Bαϕ0,m ´ pm
3 θ0,mqB3ψ

)
dx “ 0.

The previous variational problem is verified when
$
’’&

’’%

Cm
i3j3B3u

1,m
j ` Pm

3i3B3ϕ
1,m “ ´Cm

i3jαBαu0,m
j ´ Pm

αi3Bαϕ0,m ` Xm
i3 θ0,m,

Hm
33B3ϕ

1,m ´ Pm
3i3B3u

1,m
i “ Pm

3iαBαu0,m
i ´ Hm

α3Bαϕ0,m ` pm
3 θ0,m,

B3θ
1,m “ ´ Km

α3
Km

33
Bαθ0,m.

(11)

Now we can easily computeB3u
1,m
i , B3ϕ

1,m andB3θ
1,m in terms ofBαu0,m

i , Bαϕ0,m andθ0,m. Let pdijq :“
pCm

i3j3q´1, we obtain

B3u
1,m
i “ ´dij

!´
Cm

j3kα ` k1Pm
3j3P

1
3kα

ˉ
Bαu0,m

k `
`
Pm

αj3 ´ k1Pm
3j3H

1
α3

˘
Bαϕ0,m ´

`
Xm

j3 ´ k1Pm
3j3p

1
3

˘
θ0,m

)
,

B3ϕ
1,m “ k1

!
P 1

3iαBαu0,m
i ´ H 1

α3Bαϕ0,m ` p1
3θ

0,m
)

,

(12)
with P 1

3iα :“ Pm
3iα ´ Pm

3k3dkjC
m
j3iα, H 1

k3 :“ Hm
k3 ` Pm

3i3dijP
m
kj3, p1

3 :“ pm
3 ` Pm

3i3dijX
m
j3 andk1 :“ 1

H1
33

.

We are now in position to characterize the limit problem. Let us consider problemP´1
0 and let us choose test

functionr P YpΩ, ΓmDq ˆ Y pΩ, ΓeDq ˆ Y pΩ, ΓtDq, where

Y pΩ, Σq :“ tv P L2pΩq; v˘ P H1pΩ˘q, L2pΩmq Q B3v
m “ 0, vm P H1pΩmq, v “ 0 onΣ, v˘ “ vm onS˘u,

YpΩ, Σq :“ rY pΩ, Σqs3.

Thus,P´1
0 takes the following simplified form

A˘ps0, rq `
ż

Ωm

␣
Cm

iβjαBβu0,m
i ` P m

βαjBβϕ0,m ` Cm
i3jαB3u

1,m
i ` P m

3αjB3ϕ
1,m ´ Xm

jαθ0,mqBαvj`

`pKm
α3B3θ

1,m ` Km
βαBβθ0,mqBαη ` pHm

αβBβϕ0,m ´ P m
αβiBβu0,m

i ´ P m
αi3B3u

1,m
i ` Hm

α3B3ϕ
1,m ´ pm

α θ0,mqBαψ
(

dx “ 0.
(13)
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By substituting expression (12) in problem (13) we obtain, as customary, the limit problem:
"

Finds0 P YpΩ, ΓmDq ˆ Y pΩ, ΓeDq ˆ Y pΩ, ΓtDq such that
A´ps0, rq ` A`ps0, rq ` Amps0, rq “ Lprq,

(14)

for all r P YpΩ, ΓmDq ˆ Y pΩ, ΓeDq ˆ Y pΩ, ΓtDq, where

Amps0, rq :“
ż

Ωm

!´
C̃m

iβjαBβu0
i ` P̃m

βαjBβϕ0 ´ X̃m
jαθ0

ˉ
Bαvj ` K̃m

αβBβθ0Bαη`

`
´
H̃m

βαBβϕ0 ´ P̃m
βαiBβu0

i ´ p̃m
α θ0

ˉ
Bαψ

)
dx.

The reduced coefficients̃Cm
iβjα, P̃m

βαj , H̃m
βα, X̃m

jα, p̃m
α andK̃m

αβ are defined as follows

C̃m
iβjα :“ Cm

iβjα ´ Cm
p3jαdpq

´
Cm

q3iβ ` k1Pm
3q3P

1
3iβ

ˉ
` k1Pm

3jαP 1
3iβ ,

P̃m
βαj :“ Pm

βαj ´ Cm
p3jαdpq

´
Pm

βq3 ´ k1Pm
3q3H

1
β3

ˉ
´ k1Pm

3jαH 1
β3,

H̃m
βα :“ Hm

βα ´ Pm
αp3dpq

´
Pm

βq3 ´ k1Pm
3q3H

1
β3

ˉ
´ k1Hm

α3H
1
β3,

X̃m
jα :“ Xm

jα ´ Cm
p3qαdpq

`
Xm

q3 ´ k1Pm
3q3p

1
3

˘
´ k1Pm

3jαp1
3,

p̃m
α :“ pm

α ` Pm
αp3dpq

`
Xm

q3 ´ k1Pm
3q3p

1
3

˘
´ k1Hm

α3p
1
3,

K̃m
αβ :“ Km

αβ ´
Km

α3Km
β3

Km
33

.

We notice thatY pΩ, Σq is isomorphic tõY pΩ̃, Σq :“ tv P H1pΩ̃q, v|ω P H1pωq, v “ 0 onΣu, Ω̃ :“ Ω`YωYΩ´.
We can integrateAmp¨, ¨q alongx3 and obtain the reduced form of the limit problem:

"
Finds0 P ỸpΩ̃, ΓmDq ˆ Ỹ pΩ̃, ΓeDq ˆ Ỹ pΩ̃, ΓtDq such that
A´ps0, rq ` A`ps0, rq ` Ãmps0, rq “ Lprq,

for all r P ỸpΩ̃, ΓmDq ˆ Ỹ pΩ̃, ΓeDq ˆ Ỹ pΩ̃, ΓtDq, with

Ãmps0, rq :“ 2h

ż

ω

!´
C̃m

iβjαBβu0
i ` P̃m

βαjBβϕ0 ´ X̃m
jαθ0

ˉ
Bαvj ` K̃m

αβBβθ0Bαη`

`
´
H̃m

βαBβϕ0 ´ P̃m
βαiBβu0

i ´ p̃m
α θ0

ˉ
Bαψ

)
dx̃.

Remark 3. The variational limit problem results into a non classical transmission problem betweenΩ` andΩ´

with ad hoc transmission conditions at the interfaceω. This problem represents a generalization, taking into
account the influence of temperature, of the Ventcel-type transmission conditions obtained for strong piezoelectric
interfaces in Serpilli (2015). After an integration by parts we can rewrite problem (14) in its differential form, so
that

Thermal problems in Ω˘ Electrostatic problems inΩ˘ Elasticity problems in Ω˘

$
’’’&

’’’%

Biq
˘
i “ j in Ω˘,

q˘
i ni “ w onΓtN ,

θ0 “ 0 onΓtD,
q̃ανα “ 0 onγtN ,

$
’’’&

’’’%

BiD
˘
i “ ρe in Ω˘,

D˘
i ni “ d onΓeN ,

ϕ0 “ 0 onΓeD,
D̃ανα “ 0 onγeN ,

$
’’&

’’%

´Bjσ
˘
ij “ fi in Ω˘,

σ˘
ijnj “ gi onΓmN ,

u0 “ 0 onΓmD,
σ̃αiνα “ 0 onγmN ,

Transmission conditions onω
$
’’&

’’%

rru0ss “ 0, rrϕ0ss “ 0, rrθ0ss “ 0 onω,
rrσi3ss “ ´2hBασ̃αi onω,
rrD3ss “ 2hBαD̃α onω,
rrq3ss “ 2hBαq̃α onω,

whereσ̃αi :“ C̃m
jβiαBβu0

j ` P̃m
βαiBβϕ0 ´ X̃m

iαθ0, D̃α :“ P̃m
βαiBβu0

i ´ H̃m
βαBβϕ0 ` p̃m

α θ0 andq̃α :“ ´K̃m
αβBβθ0

represent, respectively, the reduced two-dimensional interface stress tensor, the reduced interface electric displace-
ment and the reduced interface heat flow defined overω andpναq denotes the unit normal vector to the uncharged
thermo-electromechanical boundariesγeN , γmN , γtN Ă Bω.
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Remark 4. Let us estimate the stresses, electric displacements and heat flows inΩm. Using the same procedure
adopted in Remark 2, by applying the rescaling method, one has

$
’&

’%

σm
ij pεq “ 1

ε2 pCm
ijk3B3ukpεq ` Pm

3ijB3ϕpεqq ` 1
ε pCm

ijkαBαukpεq ` Pm
αijBαϕpεq ´ Xm

ij θpεqq,

Dm
i pεq “ 1

ε2 pPm
ik3B3ukpεq ´ Hm

i3 B3ϕpεqq ` 1
ε pPm

ikαBαukpεq ´ Hm
iαBαϕpεq ` pm

i θpεqq ,

qm
i pεq “ ´ 1

ε2 Km
i3 B3θpεq ´ 1

εKm
iαBαθpεq.

The asymptotic expansions method allows to look for the stresses and electric displacements as series of powers
of ε, so that $

’&

’%

σm
ij pεq “ 1

ε2 σ´2,m
ij ` 1

εσ´1,m
ij ` σ0,m

ij ` εσ1,m
ij ` . . . ,

Dm
i pεq “ 1

ε2 D´2,m
i ` 1

εD´1,m
i ` D0,m

i ` εD1,m
i ` . . . ,

qm
i pεq “ 1

ε2 q´2,m
i ` 1

εq´1,m
i ` q0,m

i ` εq1,m
i ` . . . .

(15)

By using (4) and (15), and relations (12), by identifying the terms with identical power, we obtain

$
’’’’’’’’’&

’’’’’’’’’%

σ´2,m
ij “ Cm

ijk3B3u
0
k ` Pm

3ijB3ϕ
0 “ 0,

D´2,m
i “ Pm

ik3B3u
0
k ´ Hm

i3 B3ϕ
0 “ 0,

q´2,m
i “ ´Km

i3 B3θ
0 “ 0,

σ´1,m
ij “ Cm

ijk3B3u
1
k ` Pm

3ijB3ϕ
1 ` Cm

ijkαBαu0
k ` Pm

αijBαϕ0 ´ Xm
ij θ0 “ Cm

ijkαBαu0
k ` Pm

αijBαϕ0 ´ Xm
ij θ0,

D´1,m
i “ Pm

ik3B3u
1
k ´ Hm

i3 B3ϕ
1 ` Pm

ikαBαu0
k ´ Hm

iαBαϕ0 ` pm
i θ0 “ Pm

ikαBαu0
k ´Hm

iαBαϕ0 `Mm
i θ0,

q´1,m
i “ ´Km

i3 B3θ
1 ´ Km

iαBαθ0 “ ´Km
iαBαθ0.

Expressions above are thought as a first approximation of the stress field, the electric displacement field and the
heat flow inΩm: in order to have a better estimation of both stresses and electric displacements, we need to
characterize the successive terms of the asymptotic expansions for the displacement field and electric potential
field, such asu2, ϕ2 andθ2. For what concerns with the stresses, electric displacements and heat flows inΩ˘ we
obtain, as customary, $

’&

’%

σ0,˘
ij “ C˘

ijk`ek`pu0q ` P ˘
kijBkϕ0 ´ X˘

ijθ
0,

D0,˘
i “ P ˘

ijkejkpu0q ´ H˘
ij Bjϕ

0 ` p˘
i θ0,

q0,˘
i “ ´K˘

ij Bjθ
0.

6 CONCLUDING REMARKS

In the present work we derive two limit interface models corresponding to a generic piezoelectric assembly with
a piezoelectric interphase, taking into account the thermal effect, through the asymptotic expansions method. We
analyze two particular cases: the first case, forp “ 1, corresponding from a mechanical point of view to a soft
weakly conducting thermo-piezoelectric interphase, leads to theweakthermo-piezoelectric interface model; the
latter, forp “ ´1, corresponding to a rigid highly conducting interphase between two thermo-piezoelectric media,
leads to thestrong thermo-piezoelectric interface model. For what concerns with the first case, the interphase
disappears from a geometrical point view and is described only by means of a surface energy, namelyãmps0, s0q,
depending on the discontinuities of the displacement field, electric potential and temperature at the interface. In the
second case, the interphase is substituted by a material surface which behaves as a thermo-piezoeletric membrane.

As future developments, we would like to study more complex interface problems taking into account thermo-
electromagnetoelastic couplings and time-dependent phenomena. Moreover we are numerically implementing the
model by adapting the domain decomposition algorithm, presented in Geymonat et al. (1998, 2014), to the present
case.
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