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Mathematical Models for Thin Piezoelectric Interphases Including
Thermal Effects

M. Serpilli

We study the thermo-electromechanical behavior of a thin interphase, constituted by a piezoelectric anisotropic
thin layer, embedded between two generic three-dimensional piezoelectric bodies by means of the asymptotic anal-
ysis including also thermal effects. After defining a small real dimensionless parametéich will tend to

zero, we characterize two different limit models and their associated limit problems, the so-called weak and strong
thermo-piezoelectric interface models, respectively. Moreover, we identify the non classical thermo-electromechanical
transmission conditions at the interface between the two three-dimensional bodies.

1 Introduction

In recent years the conception and use of smart materials have undergone a major development in all fields of
aeronautical, mechanical and civil engineering. Smart materials, such as piezoelectric materials, are often inte-
grated within the structure in different configurations: for instance, piezoelectric transducers can be embedded or
glued onto the structural members to be controlled. Moreover, the same piezoelectric actuators are often obtained
by alternating different thin layers of material with highly contrasted thermo-electromechanical properties. This
generates different types of complex multimaterial assemblies, in which each phase interacts with the others. An
extensive list of references on the subject can be found in the following cited papers for what concerns with piezo-
electric interphases/interfaces problems using classical variational tools: see, for instance, Benveniste (2006, 2009)
for curved thin interphases in conduction phenomena.

The successful application of the asymptotic methods to obtain a mathematical justification of thin structure mod-
els in the field of linear and non linear elasticity (see, e.g., Ciarlet (1997)) and in piezoelectricity, taking into
account both sensor and actuator functions and the influence of temperature (see, e.g. Blanchard and Francfort
(1987); Figueiredo and Franco Leal (2005); Weller and Licht (2010); Miara and Suarez (2013)) has stimulated
the research toward a rational simplification of the modeling of complex structures obtained joining elements of
different dimensions and/or materials of highly contrasted properties. Thin interphases represent one of the most
peculiar bonded joint between two media. Within the theory of elasticity, the asymptotic analysis of a thin elastic
interphase between two elastic materials has been deeply investigated through the years, by varying the rigidity
ratios between the thin inclusion and the surrounding materials and by considering different geometry features.
For instance, it is worth mentioning the contributions by Geymonat et al. (1999), Krasucki et al. (2004), the works
by Lebon and Rizzoni (2010, 2011) for the case of thin interfaces with similar and hard rigidities, and, also, the
works by Bessoud et al. (2009, 2008, 2011) in which the authors studied the case of plate-like and shell-like elastic
inclusions with high rigidity in a rigorous functional framework.

This work is conceived as a generalization of the previous work by Serpilli (2015) on asymptotic weak and strong
piezoelectric interface models, taking into account the effect of temperature. In the present work we identify two
different interface limit models of an assembly constituted by a thin thermo-piezoelectric layer inserted between
two generic thermo-piezoelectric bodies by means of an asymptotic analysis. By defining a small real parameter
¢, associated with the thickness and the thermo-electromechanical properties of the middle layer, we perform
an asymptotic analysis by lettingtend to zero. We analyze two different situations by varying the thermo-
electromechanical stiffnesses ratios between the middle layer and the adherents. The first case corresponds to
the so-calledveakthermo-piezoelectric interface model, where the thermo-electromechanical coefficients of the
intermediate domain have order of magnitudwith respect to those of the surrounding bodies: in this case,

the intermediate layer is considered to be soft, from a mechanical point of view, and with small thermo-electric
conductivity properties with respect to the upper and lower bodies. The second case of study is the straraled
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thermo-piezoelectric interface model, where the thermo-electromechanical rigidities have order of magnitude

in this case, the middle layer is rigid and with high thermo-electric conductivities. Within the reduced models, the
interphase is replaced by a material surface whose energy, in both cases, is the limit of the interphase energy. This
surface energy is then translated in ad hoc transmission conditions at the interface.

2 The physical problem

In the sequel, Greek indices range in the §et2}, Latin indices range in the sét, 2,3}, and the Einstein’s
summation convention with respect to the repeated indices is adopted. We also introduce the following notation
for the scalar product:

a-b:=a;b;, forallvectorsa = (a;) andb = (b;).

Let us consider a three-dimensional Euclidian space identifieR}owand such that the three vectass form

an orthonormal basis. Lé2™ andQ~ be two disjoint open domains with smooth bounda@€s™ and 0Q~.

Letw := {0QF n dQ~}° be the interior of the common part of the boundaries which is assumed to be a non
empty domain inR? having a positive two-dimensional measure. We consider the assembly constituted by two
solids bonded together by an intermediate thin plate-like @8y of thickness2h®, where0) < ¢ < 1is a
dimensionless small real parameter which will tend to zero. We suppose that the thickroésse middle layer
depends linearly on, so thath® = ¢h.

More precisely, we denote respectively with < := {2° := x + ches; x € Q*}, the translation of2* (resp.

) along the directiores (resp. —e3 ) of the quantityeh, with Q™*< := w x (—eh,ch), the central plate-

like domain, and with2® := Q¢ U Q™ U Q7¢, the reference configuration of the assembly. Moreover, we
define withS* := w x {+eh} = QT° n Q™= the upper and lower faces of the intermediate plate-like domain,

e = 00+ /St andl'];® := dw x (—¢ch, h), its lateral surface, see Figure 1. L&t ,,, % ), (IS5, TSy)

Figure 1: The reference configuration and the geometry of the interphase.

and(I';,,I'; ) be three suitable partitions 6f2°, withI', ,, I'S ;, andI';, of strictly positive Hausdorff measure.

The multimaterial is, on one hand, clamped aldijg,,, at an electrical potential® = 0 onI'¢ ;, and at a certain
temperaturd® = 0 onI';, and, on the other hand, subject to surface foggesnI'; ., surface electrical charges

d® onT,; and surface heat soura€ onI'¢,,. The assembly is also subject to body for¢eselectrical loadings

pS and an internal heat sourgeé acting inQ*. We suppose, without loss of generality, tft-< andl';";* are

both free of mechanical, electrical and thermal charges. We consider the following regularity assumptions for the
thermo-electromechanical loadfs € L?(Q2%), pS € L2(Q1°), j¢ € L2(Q%9), gf € L2(T¢, ), w® € L2(T5y)

andd® e L*(T¢ ). We finally assume th&*¢ and2™ are constituted by three homogeneous linearly thermo-
piezoelectric materials, whose constitutive laws are defined as follows:

05 (U7, %, 60°) = Chppeq, (U°) — PRy BR(9®) — X507,

ijk kij
Di(uf, ¢, 07) = Ppj.e5,(u%) + HEE5 (¢7) + pi o7, 1)
q; (0°) = —K3;0507,

where(o?;) is the classical Cauchy stress tengef, (u%)) := (5(0fus + d5us)) is the linearized strain tensor,
(Dg) is the electrical displacement fiel;;) is the heat flow vectory© is the electrical potential anBif (¢°) :=

—0; ¢° its associated electrical fieldCy;.,), (Pir), (Hi;), (X5;), (pf) and (K73;) represent, respectively, the
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classical fourth order elasticity tensor, the third order piezoelectric coupling tensor, the second order dielectric
tensor, the second order thermal stress tensor, the pyroelectric vector and the second order thermal conductivity
tensor related t&*-° andQ=.

Tensors(C5,,), (Hy;), (X5;) and (K;) satisfy the following coercivity properties: for any symmetric matrix

field (b;;), there exists a constant> 0 such thatCy;, ,brebi; > ¢, ; |bi;|*; for any vector field(a;), there

exist constants;, ¢z, cs > 0 such thatHsa a; > 1Y, |ail?, X5a50; = ¢2 Y, a;]? andKfaja; > ¢, |aql?.

Moreover, we have the symmetri€s,,, = Cy,,; = C%,, Hi; = Hj;, Ppyy = Py, X5 = X5, and K = K5,

Let X¢ < 00¢, we introduce the functional spaces
V(Qf,3°) := {v° e HY(QF); v =0 onX}, V(QF, X9) := [V(Q5, 29)]3.

The thermo-electromechanical state at the equilibrium is determined by the #fiptet(u®, <, 6°). The physical
variational problem defined over the variable dom@frreads as follows:

Finds® € V(0,1 1)) x V(Q°,T%,,) x V(Q,T%,) such that @
ATE (85, 1) + ATE(s8,7°) + A5 (s, 7°) = LE(rf),

forall ¢ = (v&,¢°,n°) € V(Q°,T¢ ) x V(Q5,T,) x V(Q°,T5,), where the bilinear formst*(-,-) and
A™=(-, ), and the linear forni.c(-) are defined by

?

a5ty = | R )es (v7) + HE S () BE(07) + K 050700+

+ P (Bf (%) e (u) — B (%) e (V) — Xij7€5; (v)6° — p; =079°6° } da”,

ij i

ATE(s5,rF) = J

OB ) v+ H B (00 B (%) + KT C050%00

)

+ Phi (7 (V)i (u) — B (%) el (v9)) — X7 %eg; (vO)07 — p*07=0° } dar®,

J
L5(r) = J (Ff05 + p2u® + o7 )da® + f gfvsdre — f deydTe — f wnFdre.
Qte r

r

€ e e
mN eN tN

By virtue of theV(Q°, IS ) x V(Q°,T5,) x V(Q°,I'¢,)-coercivity of the bilinear forms and thanks to the
Lax-Milgram lemma, problem (2) admits one and only one solution.

3 The asymptotic expansion method

In order to study the asymptotic behavior of the solution of problem (2) whemnds to zero, we rewrite the
problem on a fixed domaift independent of. By using the approach of Ciarlet (1997) we consider the bijection
7 :xeQ— a2 € given by

(21, w2, 23) = (x1,22,23 — h(1 —¢)), forallz eﬁ;,

-m
(21, T2, 23) = (21, %2,£23), forallz e Q
7 (21, 9, w3) = (1,79, 23 + h(1 —¢)), forallzeQ,,,

whereQf := {z + he, z € QF}, Q™ := w x (—h, h) andSE := w x {£h}. In order to simplify the notation,
we identify QF with QF, andQ with o oo Likewise, we notd'y := 0Q*/SE, ', := dw x (—h,h),
(Conps D), (Tep, Ten) and(Typ, Ty ), the partitions 0P := I'+ U I,

Consequently,

1. .
05, = 0o andos = gag in Q™.

In the sequel, only if necessary, we will note, respectively, With, )=, n*) and(v™,¢™,n™), the restrictions
of functions(v, ¥, n) to QF andQ™.

With the unknown thermo-electromechanical stefte= (u®, ¢°, %), we associate the scaled unknown thermo-
electromechanical stat¢e) := (u(e), p(¢), 0(¢)) defined by:
us (2°) = us(e) (), ¢ (x°) = p(e)(x), 6°(xf) = O(e)(z) forallzs = ncx e Q.

3

We likewise associate with any test functioris= (v, <, n), the scaled test functions= (v, v, n), defined by
the scalings:
vE(2°) = vi(a), ¥e(x°) = P(x), n°(af) = n(x) foralla® =7z e .
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We suppose that the thermo-electromechanical coefficieri?s afre independent af, so that

te . . + t.e . _ p* . + t.e te . _ t
Cijlc[ T Cijk[’ Hzg . H’L]’ Pzﬂc . szk7 ng . Xz]7 Kz'j : K]’ pz =D

while the thermo-electromechanical coefficient$)5f have the following dependence with respect to

m,e m m,e | m m,e |
Cljkf ngijke? H:. = EPH P. . €p

me | pym m,e p = gPpm
ij ij ijk X _€X K _6K1J7 prL <C:Z)z'a

zgk? ij YR i

with p € {—1, 1}. Two different limit behaviors will be characterized according to the choice of the exppnient
the case op = —1, we derive a model for a strong thermo-piezoelectric interface; by chopsing, we deduce
a model for a weak thermo-piezoelectric interface.

We also make the following assumptions on the applied mechanical, electrical and thermal loads:

fE(xf) = fi(x) and g5 (x°) = g;(x) forallz® =7z € ﬁi’g,
e(ara) = pe(x) and d*(zf) = d(x
w

) forallz® =7z € ﬁi’s,
75(2°) = j(z) and w*(z°) = w(z) foralla® =z e Q"

where functionsf; € L?(Q%), p. € L2(QF), j € L2(Q%), g; € L?(Tyun), d € L?(Ten) andw € L?(Tyy) are
independent of. ThusLe(r¢) = L(r

According to the previous hypothesis, problem (2) can be reformulated on a fixed donmadilependent of.
Thus we obtain the following scaled problem:

{ Finds(e) e V(Q,Tp) x V(Q,Tep) x V(Q,Tip) such that 3)
( ( )7T) + A+(8(5)7T) + Am’p(g)(s(g)vr) = L(T‘),

forallr e V(Q,Typ) x V(Q,Tep) x V(Q,Tip), p € {—1,1}, where

A @) = | {Coerntaleev) + B0 + Ki5os0(0)0m
P (Oup(e)ens(v) — dens(u(e) — X (V)0(E) — pF 200l } d,
A™2(2)(s(2),7) 1= eP1am(s(e), 7) + ePb(s(2), ) + ePTLem (s(e), 1),
with
a™(s(e),r) = o {C13305ui(€)03v; + Hi3030(€)d31) + K35030()dsn+
+ Pk (03p(e)03v; — O39dsui(€))} de,
b™(s(e),r) := JQ {C’gja(agui(s)ﬁavj + 0au;(€)03v;) + H5(030(€) 00t + O39000(€))+
+K[%(030(€)0an + 03104 0(g)) + Pin;(03¢0()0qv; — O30 u;(e))+
+ P (0ap(£)03v; — Ontpdsui(e)) — X5 03v,0() — p5'ds1pf(e)} du,
(s0)7) = | {Clhyata(€)p0; + HPuse €10 + KZs2ab()001
P2 (0ap(2)050i — QathOpui(e)) — XinOavitl(e) — Poatht(e) } de

We can now perform an asymptotic analysis of the rescaled problem (3). Since the rescaled problem (3) has a
polynomial structure with respect to the small parameteve can look for the solutior(s) = (u(e), ¢(€),0(¢))
of the problem as a series of powerszof

u(e) =u’ +eut +2u? +. ..
s(e) =8 +est +e2s2+... = < ple) =" +epl +2p? +... | (4)
0(c) = 6° + 0 + 262 +

with s7 = (u?,99,07) € V(Q,T'p) x V(Q,Tep) x V(Q,T:p), ¢ = 0. By substituting (4) into the rescaled
problem (3), and by identifying the terms with identical poweepive obtain, as customary, a set of variational
problems to be solved in order to characterize the limit thermo-electromechanical’statéu’, ©°, 6°) and its
associated limit problem, fgre {—1,1}.
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4 The case op = 1: the weakthermo-piezoelectric interface

In this Section we characterize the limit model for a weak thermo-piezoelectric interface. By chpesihgwe
obtain the following set of variational problems:

PL: AT(O )+ A~ (8 ;) +a™(s0r) = ()

P A+(s,r)+A (st,r) +a™ (s,r)+b"’( ): (5)
73(} s AT(s9 )+ AT (s, r) + a™ (s, ) + b (s ) + ™ (s972,r) = 0, ¢ = 2
The first problenP; of (5) represents the so-called limit problem, which reads
Finds® = (u’,¢%6%) € W(Q,Tp) x W(Q,Tep) x W(Q,Typ) such that ©)
A= (% r) + AT (s r) +a™(s%7) = L(r),

forallr e W(Q,T,,p) x W(Q,Tep) x W(Q,Ttp), where
W(Q, %) :={ve L}Q); vt e HY(OQF),d30™ € L2(Q™), v =00nX, vt =v™ on St}
W(Q, %) = [W(Q,2)]3.

The limit problem (6) can be simplified if one considers the structure of the bilineardtrtn -), which involves
only the derivatives along the;-coordinates. Indeed, by choosing test functiong), n € D(Q2™), one has

{(C&guo’m + P@ggpo’m) - 03V + (H&ggoo’m -P- 63u0’m)631/1 + Kagao’magn} dx =0,
Qm

whereC := ( MJS) P := (Pj}), H := Hj and K := K33 are introduced for the compact notation of the
problem. The previous variational equation implies the existence of three constant functions with reggect to
namely,z = z(Z), a = a(Z) andb = b(z), with Z = (z,), such that

C&guovm + Paggao’m =12z,
H&gapo’m —P . 95u™ = q,
K(’)g&oﬂn = b.

By solving the linear system above and thanks to the continuity conditiomg en+h, we can explicitly compute
z, a andb as functions of the jumps of the displacement field, electric potential and temperature at the interface
betweer2™ andQ—, as follows

Z=%ﬂCWPH+PMﬂ®»a=§%@W¢T—P'Dﬂm,b=§%KWW~ ™

This implies thattzu®™ = [[“ 1 g500m = [%,C:]] andozf%™ = [[g—z]] and thusu®™, %™ and#®>™ become
affine functions ofrs. Indeed one has

0,m _ s.0 L3 0 0,m _ /0 L3 0 0,m _ /0 L3 10

where(f) := f++f7 and[[f]] := f* — f~ denote, respectively, the mean value and the jump of the restrictions
of f onS* andS~. By using the continuity conditions ofi" andS— and after an integration by parts og, we
get

am(s%,r) = J (z-vh +ayp™ +bnT)dl — J (z-v- +ayp™ + by~ )dl.
S+

Hence, using expressions (7) and by identifyf1g and S~ with the interfacev, the limit problem can be refor-
mulated in the following reduced form:

{ Finds® €e W(Q,T,.p) x W(,Tep) x W(Q,T;p) such that ®)
A= (% r) + AT (s% 7)) +am(s%r) = L(r),

forallr € W(Q,Tyup) x W(Q,Tep) x W(,Typ), where
W(Q,Y) = {ve L2(Q); vt e H'(QF), v=00n%}, W(Q,X):= [W(Q,2)]?,
and,

(%) = g [ {1+ PILD) - [V + (LD — P [o]) [0] + KD} .
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Remark 1. Thanks to the asymptotic analysis, we transform the limit problem onto a coupled thermo-electromechanical
interface problem betweel™ and2~, with non classical transmission conditions at the interfacé&his prob-

lem represents a generalization of the one obtained for weak piezoelectric interfaces in Serpilli (2015) including
thermal effects. We rewrite problem (8) in its differential form and we obtain:

Thermal problems in Q*  Electrostatic problems inQ*  Elasticity problems in Q*

0igt =7 inQ*F, 0;DF = p. inQ*, —0j05 = f; InQF,
qiini =w onlyy, D;—Lni =d onl.y, U;;nj =G onT';,n,
0 =0 onlp, W’ =0 onl.p, u’ =0 onl,,p,

Transmission conditions ornw

o5 = — 55 (Calluf] + Piislle°l)  onw,
Ui_i’> = 721 ( zSJS[[u ]] + P313[[900]]) onw,
Df = g (HH[#°N - Pislul])  onw,
Dy = g (HH[#°N - Pislul])  onw,

q;)r = ﬁKgg[[eo]] onw,
qg = ﬁK%[[OO]] onw,
which can be rewritten, following Geymonat et al. (1998),
[[Uis]] =0, [Ds] =0, [lgsll =0 onw,
(023]3u0 a + Pgrz? 0 +) = _023 (CzSJSUO + Py 13(»0 ) onw,
D+ L(HpOt — Pibudt) = =Dy — L(HBe" ™ — Piu)™)  onw,
q — fK;g@O t =gy — EK?:%QO - onw.

Remark 2. By applying the rescaling method to the constitutive law (1), one can compute the scaled stresses , the
scaled electric displacements and the scaled heat flows, as follows

ot(e) = Ukeekg(U({:‘)) +P,; aw( ) — X;56(e),

Di(e) = Pesi(u(e)) — Hi050(c )+p+9( )

g (€) = —K506(e),

O-ZL(S) = z_]k:?)aguk(s) + P31]a390(5) (Cﬁka(/auk( ) + PazJOOZSO( ) Xme( ))ﬂ
Di*(e) = Piyisosuk(e) — Hizdsp(e) + e(Pii, dauk(€) — Higdap(e) + pi" 0(2)),
;" () = —Kj5030(e) — e K[50a0(e).

By definition, we have that;;(c), D;(c), gi(¢) € L*(Q2). Let us consider the following identity, in the sense of
distributions,

“'H—K’ H+

S+

J {O'ij(E)Tij + DZ(E)FZ + qz(s)Gq} dr = f {U%(E)Tij + D;—L(E)Fz + q;—r(e)Gi} dr+
Q Ot
+ { ngéguk + PgJag@(&“))ﬂj + (Pi?3a3uk(€) — H{Q&gw(e))ﬂ — K{}’}&g@(s)Gl} dx+ (9)
SZ’VYL
+EJ {(Cllafaur(e) + Paij0ap(e) — Xi70(e))Tij + (Plialaur(e) — Hindap(e) + pi0(e)) Fi
Q7YL
—K;Z&aé)(e)Gi}dx, for all ﬂj = Tjia Fi, Gz € D(Q)

The asymptotic expansions method allows to look for the stresses, electric displacements and heat flows as series
of powers ofs, so that

oij(e) = J?j + EG}j + Ezafj +...,
D;(e) = DY +eD} +&2D? + ..., (10)
qi(e) = ¢ +eq! + 22 +

By inserting (4) and (10) in (9), and by identifying the terms with identical power, we obtain

0,m

0y = f?k?ﬁiiu% + P?Z?j@S@O = 2 ( z]k3[[uk]] + P3U [[900]])
0,m m m m m

D" = Puc?,a‘i“g - st ‘93@0 = Tlh(Piks[[uk]] - Hj [,

g™ = —KB0s6° = —5- K[[6°],
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whereas ot N N
T T 0 T O
ot = C'”Mek.g(u ) + ,ﬂj@kap - X750

ij

DIE — = Phen(u) — HS0;0° + pio°,
+ +
qi = —Kijajéo.

5 The case ofp = —1: the strongthermo-piezoelectric interface

In the sequel we identify the strong thermo-piezoelectric interface problem. By chgosing1, we obtain the
following set of variational problems:

77:21 : a™(s%r) =0,

77:11 :oa™(styr) +0m(s% 1) =0,

Pt AT(sOr) + A (%) + am(SQ,’I‘) +bm ( L) +cem(s%r) = L(r),
73(;1 D AT(s9,r) + A7 (s9,7) + a™ (72 r) + (sq+1 r)+c™(s?,r) =0, qg=

Let us consider problerﬁ’j. By choosing test functionse V(Q,T,,,p) x V(Q,T.p) x V(Q,T;p), one has,
using the compact notation,

{(C@guo’m + Pagtpo’m) - 03V + (Haggoo’m -P- 63u0’m)831/1 + Kageo’magn} dx =0,
Qm

which is satisfied whel€o;u®™ + Po;p®™ = 0, Hozp?™ — P - 93u®™ = 0 and Kd;6%™ = 0. Hence,
o3u®™ = 0, 939%™ = 0 anddzf®>™ = 0, and sou®™, > andf§®™ are independent ofs, i.e., u®™ =
w0 (E), @M = O () ande®m — 60 ().

Considering problerr}P:l1 with test functions: € V(Q,T,,,p) x V(Q,Tep) x V(Q,T'p), we get

f {(C’”jgagu + PILozob™ 4 Ci3ia0a uo " P00 ™ — XY ™) 05v; + (K5a0300™ +
K150a0"™)05m + (Hyy030"™ — Pyosu;™ — Pyt Oau)™ + H000"™ — pglaoym)agw} dx = 0.
The previous variational problem is verified when

Clia03u;™ + Piosob™ = —Cl 0oul™ — Pliada@®™ + X50%™,

i3jo a3
H030"™ — PYbdsu;™ = P dqud™ — H0,0%™ + pgte®m, (11)
9391’7” - K%’?a 90 m

Now we can easily computéguj””, d30™ and 936%™ in terms ofaau?’m, dap®™ and %™, Let (d;;) =
(Cf3;3)~", we obtain

Oxu}™ = —dig { (Clle + K Py Pl ) 0atsf™ + (Pl — K Pt i) Gag®™ — (X758 — K Pglyph) 0™
O™ = 1 { Pl 00l = Hipy0ap™ + ph0°m

(12)

with Py, = P, — Piadi;Cio Hig i= HI + Piiydi; Pilig, ply = p§' + Piiydi; X7 andk/ := 7

We are now in position to characterize the limit problem. Let us consider proBjgmand let us choose test
functionr e Y(Q,T,,p) X Y(2,Tep) x Y(2,Typ), where

Y(Q, %) := {ve L}(Q); vt e HY(QF), L2(Q™) 3 030™ = 0,o™ € H}(Q™), v =00nY, vt =v™ on S*},
Y(Q,%) = [Y(Q,2)]3.

Thus,PO_1 takes the following simplified form

AT ) + f {ClBja0pul™ + Pg;0pp"™ + Clgjadsul™ + Pipiose"™ — X700%™)0av;+
Qm

+(K0300™ + Ko 050%™ 0an + (Hi30p0"™ — Plbidgul™ — Plisdsu,™ + Hlsd30"™ — pit0®™)0atp} da = 0.
(13)
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By substituting expression (12) in problem (13) we obtain, as customary, the limit problem:

{ Finds® e Y(Q,T,,p) x Y(,Tep) x Y(Q,T;p) such that (14)

A= (8% r) + AT (s 7) + A™(sY, r) = L(7),

forallr e Y(Q,T')p) x Y(Q,Tep) x Y(,Typ), where
A0, 7) 1= J {(Citya0su? + P 050" — X726°) davy + Kils056° 0+
Qm
+ (ngaﬁwo — Py ogul — ;53}90) aw} dz.

The reduced coefficients™. , P™ . H™

o Po HLL X and K77 are defined as follows

iBja * iBia p3ja'Pq 3ja

Cllia = Clhye = Oty (Cltis + K PIs Py ) + K Pt P,
Prn = Py = ooy Py — ¥ PiagHby ) — K Pl Hb,
HEL, = HE, ~ Py (Ply — K Py Hiy ) — K HZH]

837
Ym o._ ym m m I DM rpm o/
Xja T onz — Yp3qatpg (Xq3 —k P3q3p3) —K'P. D3,

3ja
~mo.__ m m m / m / ! m ./
Do = Do + Popadpg (qu —k P3q3P3) — K'HJ5ps,
rom Km Ko Kgs
Kaﬂ = Kis — —km

We notice that’ (€2, 32) is isomorphic td’ (Q, 2) := {v € H(Q), v|, € H'(w), v = 00nX}, Q2 := QT LwuQ ™.
We can integrated™ (-, -) alongz; and obtain the reduced form of the limit problem:

Finds® € Y(Q,T,up) x Y(,Tep) x Y(Q,T,p) such that
A= (% r) + AT (s 7) + A™(sY, r) = L(r),
forallr € Y(Q,T,p) x Y(Q,Tep) x Y(Q,T;p), with
A™(s0,7) i= 2h f {(CiBya000 + Pij05¢° — X3n0°) dav; + Kl00°0un+
w
+ (F500¢° — Pgidgud — 56° ) 0uts | di.
Remark 3. The variational limit problem results into a non classical transmission problem befveamd )~
with ad hoc transmission conditions at the interface This problem represents a generalization, taking into
account the influence of temperature, of the Ventcel-type transmission conditions obtained for strong piezoelectric
interfaces in Serpilli (2015). After an integration by parts we can rewrite problem (14) in its differential form, so
that

Thermal problems in Q* Electrostatic problems inQ*  Elasticity problems in Q*

G =j InQF, iDf =pe InQF, ~0j05 = fi in 0%,

gini=w onTy, Dfn;=d onTl.y, o;n; =¢;  onl'pmn,
0° =0 onT:p, W =0 onl.p, uw =0 onT,.p,
GoVa =0  ONyy, Dyvy, =0  0nven, OaiVa = 0 oNvymnN,

Transmission conditions ornw

[u’I =0, [T =0, [°T=0 onw,

[ois]]l = —2h00Gai onw,
[Ds]] = 2héda Dy, onw,
[gs]l = 2h0aGa onw,
wheres; == C1;,0pul + Pl,dpe” — X10°, Dy := PJ,0pul — H 059° + p0° andg, = —K7050°

represent, respectively, the reduced two-dimensional interface stress tensor, the reduced interface electric displace-
ment and the reduced interface heat flow defined ovand(v,,) denotes the unit normal vector to the uncharged
thermo-electromechanical boundaries;, vmn, Vv < Ow.
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Remark 4. Let us estimate the stresses, electric displacements and heat floWs idsing the same procedure
adopted in Remark 2, by applying the rescaling method, one has

0;7(5> = g%(cng,aduk(E) 3;]63(10<E)> %(Cz]kaa uk?( ) + P(Z’Z]a ( ) - Xme( ))
Di*(e) = & (Plis0sur(e) — Hig0sp(e)) + 1 (Piiofaun(e) — Hindatp(e) + pi0(e))
¢ (e) = — = Ki5030() — 1K[30a0(e).

The asymptotic expansions method allows to look for the stresses and electric displacements as series of powers
of ¢, so that

o(e) = Lo+ Lo o) veo M L
D(e) = 5 D;72™ + gD. b DI+ eDP™ L (15)

—2 0, 1,m
q"(e) = g m+%qi P = PR S

By using (4) and (15), and relations (12), by identifying the terms with identical power, we obtain

o™ = O s 0suf + Py 0sp® = 0,
D™ = Piadsuf — H 050 =0,
q; 2™ = —K5030° =0,

ST = O sdsul + ijka
D™ = Phadsu), — HB 03" + Pl ot — H0a® + p"6° = P, dauf — HI 0@ + MI"6°,
g7 = —K3330" — Kn0a0® = —KJ10a0".

3w63<p + O Oaul + P]l’;]é’acpo — X“’HO CllkaOa uP + szjé’agoo — X;’}@O,

Expressions above are thought as a first approximation of the stress field, the electric displacement field and the
heat flow inQ™: in order to have a better estimation of both stresses and electric displacements, we need to
characterize the successive terms of the asymptotic expansions for the displacement field and electric potential
field, such as1?, »? and#?. For what concerns with the stresses, electric displacements and heat flawsia
obtain, as customary,
ot = Cfpene(U0) + P ope® — X56°,

ij
DO+—ije]k( %) — H+6]<p + 6’

qZ- - = 7K:58J90
6 CONCLUDING REMARKS

In the present work we derive two limit interface models corresponding to a generic piezoelectric assembly with

a piezoelectric interphase, taking into account the thermal effect, through the asymptotic expansions method. We
analyze two particular cases: the first casepfee 1, corresponding from a mechanical point of view to a soft
weakly conducting thermo-piezoelectric interphase, leads tevrekthermo-piezoelectric interface model; the

latter, forp = —1, corresponding to a rigid highly conducting interphase between two thermo-piezoelectric media,
leads to thestrong thermo-piezoelectric interface model. For what concerns with the first case, the interphase
disappears from a geometrical point view and is described only by means of a surface energyafigriel),

depending on the discontinuities of the displacement field, electric potential and temperature at the interface. In the
second case, the interphase is substituted by a material surface which behaves as a thermo-piezoeletric membrane.

As future developments, we would like to study more complex interface problems taking into account thermo-
electromagnetoelastic couplings and time-dependent phenomena. Moreover we are numerically implementing the
model by adapting the domain decomposition algorithm, presented in Geymonat et al. (1998, 2014), to the present
case.
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