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An adaptive Strategy for the Multi-scale Analysis of Plate and Shell
Structures with Elasto-plastic Material Behaviour

W. Wagner, F. Gruttmann

Modelling of structures on different scales has been a popular subject in the past. Within such a strategy the
structural behaviour is modeled on a macro-level, describing the structure itself, whereas the material behaviour
is modeled on a micro-level. Here typically RVEs are used. The proper choice of boundary conditions for the
RVE is a difficult task in case of shell structures. It should be mentioned that the correct calculation of material
parameters on the macro level is crucial for any associated nonlinear analysis. Here, results have been presented
for homogeneous and layered structures for composite materials in Gruttmann and Wagner (2013). In the present
paper we will discuss the influence of material nonlinear behaviour, here the elasto-plastic behaviour, within the
above described setting. Typically these calculations are very time consuming, even if the FE-model is parallelized.
Thus we will discuss possibilities to change material models on the structural model during the loading process,
starting with elastic material models without a second scale and switching to a two-scale approach, where neces-
sary.

1 Introduction

Finite shell elements which are based on the first–order shear deformation theory are in general able to describe the
global deformation behaviour of thin plate and shell structures. However for some stress components only an aver-
age shape through the thickness can be obtained. Various methods have been developed to obtain the complicated
local deformation behaviour in inhomogeneous thin structures. So–called multi–director shell formulations with an
appropriate number of global degrees of freedom at the nodes yield approximate solutions of the three–dimensional
boundary value problem, e.g. Reddy (2004). The application of brick elements or solid shell elements provides
likewise a computationally expensive approach, e.g. Klinkel et al. (1999, 2006). For laminates each layer must be
discretized with several elements in thickness direction to obtain satisfactory results. The numerical effort for such
a full-scale solution leads for practical problems to an unreasonable number of unknowns. The enhancement of
the displacement field by layer-wise linear (zig-zag) functions through the thickness, see e.g. Carrera (2003), could
be another option. Applications for thin shell structures with a complicated 3D-stress state could be photovoltaic
laminates, OLED, PLED devices, piecoeletric devices, thin CFRP-parts of lightweight structures in aerospace or
automotive industry, among many others. In the present paper the shells are treated as a homogeneous contin-
uum with effective properties obtained through a homogenization procedure to avoid large-scale computations. A
large number of papers exists on computational homogenization methods for general heterogeneous materials, see
e.g. Zohdi and Wriggers (2005); De Borst and Ramm (2011) for a survey and new developments. Computational
homogenization procedures for thin structured sheets have been proposed in Geers et al. (2007); Coenen et al.
(2010). The theory in Geers et al. (2007) is based on a Reissner–Mindlin kinematic, whereas in Coenen et al.
(2010) a Kirchhoff-Love kinematic is adopted. Representative volume elements (RVE) extending through the full
thickness of the structure are introduced. At the top and bottom surfaces of the RVE stress boundary conditions
are applied, whereas periodicity constraints are applied at the lateral surfaces.

Based on these preliminaries the essential features and new aspects of the present formulation are summarized as
follows:

(i) The underlying shell formulation based on the Reissner–Mindlin theory with inextensible director field is
summarized. A two-scale model is introduced and a variational formulation and associated linearization for
the coupled global–local boundary value problem is presented.
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(ii) For the solution of the two-scale problem a FE2 method for small strains is described. Quadrilateral elements
are used for the discretization of the shell structure, whereas solid shell elements are applied on the RVE,
which extends through the total thickness of the shell. A relation between in–plane displacements and shell
strains is developed on the lateral surfaces.

(iii) The nonlinear coupled local and global boundary value problems are simultaneously solved in a Newton
iteration scheme.

(iv) An indicator, based on ideas in Zienkiewicz and Zhu (1987), is developed which allows the switch between
different material models. Thus the FE2 method is only used, where it should be necessary. The approach
of changing material models is fully reversible. Thus, unloading is possible.

2 Two-scale Shell Model –Theory
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Figure 1. Computational homogenization of a layered shell

LetB be the three–dimensional Euclidean space occupied by a shell with thicknessh in the reference configuration.
With ξi we denote a convected coordinate system of the body. The thickness coordinateξ3 = z is defined in the
rangeh− ≤ z ≤ h+, whereh− andh+ are thez−coordinates of the outer surfaces. Thus, an arbitrary reference
surfaceΩ with boundaryΓ is introduced. The shell is loaded statically by loadsp̄ in Ω and by boundary forces̄t
onΓσ. In the following Greek indices range from 1 to 2 and commas denote partial differentiation with respect to
ξα.

Position vectors of the initial reference surface and current surface are denoted byX(ξα) andx(ξα), respectively.
Furthermore, a director̄D(ξα) with |D̄(ξα)| = 1 is introduced as a vector field perpendicular toΩ. The unit
director fieldd̄(ξα) of the current configuration is obtained by orthogonal transformations and is a function of
the rotational parameters̄ω. Within the Reissner–Mindlin theory transverse shear strains are accounted for, thus
d̄ ∙ x,α 6= 0.

Hence, the displacement field follows from the difference of the position vectors in shell space

ū = ū0 + z (d̄− D̄) ū0 = x−X . (1)

The shell strains are derived from the Green–Lagrangian strain tensor using kinematic assumption (1) and are
arranged in a vector as

ε(ū0, ω̄) = [ε11, ε22, 2 ε12, κ11, κ22, 2 κ12, γ1, γ2]
T , (2)

with the membrane strainsεαβ , curvaturesκαβ and transverse shear strainsγα, respectively.

According to Fig. 1 a representative volume element (RVE) at an integration pointi of a typical finite shell element
is introduced. The domainBi extends through the total thicknessh of the shell and has the sizelx × ly × h.
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The displacement field is split in an averaged partū and a fluctuation part̃u.

u = ū + ũ (3)

The averaged displacementsū according to (1) are a linear function of the thickness coordinate, whereasũ de-
scribes warping and thickness change. Hence, the deformation gradientF = 1 + Gradu is defined in a standard
way and the Green–Lagrangian strain tensor follows fromE = 1

2 (FT F− 1).

The weak form of equilibrium can now be written withv = [ū0, ω̄,u]T and admissible variationsδv = [δū0, δω̄, δu]T

g(v, δv) =
∫

Ω

(σ ∙ δε− p̄ ∙ δū0) dA−
∫

Γσ

t̄ ∙ δū0 ds +
ne2∑

e=1

NGP∑

i=1

1
Ai

∫

Ωi

h+∫

h−

S : δE μ̄ dz dA = 0 . (4)

Here,σ denotes the vector of stress resultants

σ = [n11, n22, n12,m11,m22,m12, q1, q2]T (5)

with membrane forcesnαβ = nβα, bending momentsmαβ = mβα and shear forcesqα. On the RVE’sS denotes
the Second Piola-Kirchhoff stress tensor withP = FS and the virtual Green-Lagrangian strain tensor is introduced
via δE = 1

2 (δFT F + FT δF). Furthermorene1 andne2 denote the number of shell elements without or with a
two-scale model introduced.NGP is the number of Gauss points for each element andAi = lx ly is the reference
area of the RVE. It holds for the total number of shell elements:ne = ne1 + ne2.

For the finite element formulation of the next section we need to derive the linearization of eq. (4). With conserva-
tive loadsp̄ andt̄ one obtains

L [g(v, δv), Δv] := g(v, δv) + Dg ∙Δv (6)

whereg(v, δv) is given in (4) and

Dg ∙Δv =
∫

Ω

(Δσ ∙ δε + σ ∙Δδε) dA +
ne2∑

e=1

NGP∑

i=1

1
Ai

∫

Ωi

h+∫

h−

(ΔS : δE + S : ΔδE) μ̄ dz dA (7)

with Δσ = D Δε, ΔS = C ΔE andΔδE = 1
2 (δFT ΔF+ΔFT δF). The material matrixC is a standard output

of a library of constitutive laws in a material description. The linearized virtual shell strainsΔδε are derived for
finite rotations in Wagner and Gruttmann (2005). The stress resultant vectorσ and the matrix of linearized stress
resultantsD are specified in the next section.

3 Two-scale Shell Model – Finite Element Formulation

We describe a finite element formulation based on a standard displacement method applying the isoparametric
concept. The reference surface of the shell is discretized withne quadrilateral isoparametric shell elements

Ωh =
ne1∑

e=1

Ωe +
ne2∑

e=1

Ωe , (8)

where the subscripth refers to the finite element approximation. Initial geometry, displacements and rotations are
interpolated with bilinear functionsNI(ξ, η) which are arranged in the matrixN. The nodal degrees of freedom
are three displacements and two or three rotations.
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Inserting the interpolation functions for the displacements and virtual displacements into the linearized weak form
(6) considering (4) and (7) yields

L [g(vh, δvh), Δvh] =
ne1∑

e=1

δvG
e kG

e ΔvG
e + fG

e

+
ne2∑

e=1













δvG

δV1

...
δVi

...
δVNGP













T

e




















kG 0
... 0

... 0

0 KL
1

... 0
... 0

. . . . . .
... 0 . . . . . .

0 0 0 KL
i 0 0

. . . . . . . . . 0
... . . .

0 0 . . . 0 . . . KL
NGP















e













ΔvG

ΔV1

...
ΔVi

...
ΔVNGP













e

+













fG(σi)
FL

1
...

FL
i
...

FL
NGP

















e

(9)

The indicesG andL refer to the global and local boundary value problems, respectively. The matrices of the first
row in (9) follow from the global part of the linearized weak form. The element residual vector and the tangential
element stiffness matrix read

fG(σi) =
∫

(Ωe)

(BT σ −NT p̄) dA−
∫

(Γσe)

NT t̄ ds kG(Di) =
∫

(Ωe)

(BT DB + G) dA (10)

where the matricesB andG are derived in Wagner and Gruttmann (2005). The vector of stress resultantsσi and
linearized stress resultantsDi are specified below.

The matrices of the second to the last row in (9) are associated with the local boundary value problems at Gauss
points1 ≤ i ≤ NGP of shell elemente and occur only, if a two-scale model is used.

A local boundary value problem can be defined at Gauss pointi

δVT
i (KL

i ΔVi + FL
i ) =

1
Ai

Ne∑

e=1

δvT
e (kL

e Δve + fL
e ) . (11)

Here, the total number of elements used for the discretization of the RVE is denoted byNe. The element residual
vectorfL

e and the tangential element stiffness matrixkL
e read

fL
e =

∫

(Ve)

B̃T S dV kL
e =

∫

(Ve)

(B̃T CB̃ + G̃) dV . (12)

whereB̃ and G̃ are the virtual strain displacement matrix and the geometrical matrix of 8–noded solid shell
elements, respectively.

The element displacement vectorve is now split in a partvΩ which contains the internal displacements and a part
vΓ which contains the boundary displacements of the RVE.

ve =

[
vΩ

vΓ

]

=

[
va

vb

]

=

[
ae Vi

Ae εi

]

(13)

In Eq. (13)ae is the standard assembly matrix andAe(x, y, z) will be specified in the following.

Assuming small strains the relation of the boundary displacements to the averaged strainsĒ is written as




ūx

ūy

ūz



 =




Ē11 Ē12 Ē13

Ē21 Ē22 Ē23

Ē31 Ē32 Ē33








x
y
z





.

(14)
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Inserting the relation of the averaged strains to the shell strains

Ē11 = ε11 + z κ11

Ē22 = ε22 + z κ22

Ē33 = 0

Ē12 = Ē21 = ε12 + z κ12

2 Ē13 = 2 Ē31 = 2 ε13 = γ1

2 Ē23 = 2 Ē32 = 2 ε23 = γ2

(15)

into (14) yields with further considerations, see Gruttmann and Wagner (2013),

[
ūx

ūy

]

=

[
ε11 + zκ11 ε12 + zκ12 2 ε13

ε12 + zκ12 ε22 + zκ22 2 ε23

]



x
y
z



 (16)

Eq. (16) is now rewritten with the vector of shell strains (2) as

[
ūx

ūy

]

=

[
x 0 1

2 y xz 0 1
2 y z z 0

0 y 1
2 x 0 yz 1

2 x z 0 z

]















ε11

ε22

2ε12

κ11

κ22

2κ12

γ1

γ2















ūI = AI(x, y, z) ε ,

(17)

where the index refers to nodeI of the considered elemente. The matricesAI are submatrices ofAe introduced
in (13)

Ae =











δ1 A1

...
δI AI

...
δnel Anel











(2 nel×8)

δI =

{
1 if nodeI has fixed dofs
0 else

(18)

with nel = 8 for 8–noded solid shell elements.

Introducingkαβ andfα with α, β = a, b as submatrices ofkL
e andfL

e in (11) leads to

δVT
i (KL

i ΔVi + FL
i )

=
1
Ai

Ne∑

e=1

[
δVi

δεi

]T {[
aT

e kaa ae aT
e kab Ae

AT
e kba ae AT

e kbb Ae

]

e

[
ΔVi

Δεi

]

+

[
aT

e fa
AT

e fb

]

e

}

=
1
Ai

[
δVi

δεi

]T {[
K L

LT M

] [
ΔVi

Δεi

]

+

[
Fa

Fb

]}

.

(19)

With δVi 6= 0 the internal degrees of freedomΔVi can be eliminated from the set of equations using

KΔVi + LΔεi + Fa = 0 (20)

which yields

ΔVi = −K−1 (Fa + LΔεi) . (21)
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With (20) and (21) eq. (19) reduces to

δVT
i (KL

i ΔVi + FL
i ) = δεT

i (Di Δεi + σi) (22)

where

σi =
1
Ai

(Fb − LT K−1 Fa) Di =
1
Ai

(M− LT K−1 L) (23)

are the stress resultants and linearized stress resultants of Gauss pointi. Finally (22) is inserted into the linearized
coupled global-local boundary value problem (9)

L [g(vh, δvh), Δvh] =
ne1∑

e=1

δvG
e kG

e ΔvG
e + fG

e

+
ne2∑

e=1













δvG

δε1

...
δεi

...
δεNGP













T

e




















kG(Di) 0
... 0

... 0

0 D1

... 0
... 0

. . . . . .
... 0 . . . . . .

0 0 0 Di 0 0

. . . . . . . . . 0
... . . .

0 0 . . . 0 . . . DNGP















e













ΔvG

Δε1

...
Δεi

...
ΔεNGP













e

+













fG(σi)
σ1

...
σi

...
σNGP

















e

(24)

The coupled nonlinear system of equations is simultaneously solved within a Newton iteration scheme. The iter-
ation is terminated for the actual load step when local equilibrium in all Gauss points is attained along with the
global equilibrium of the shell which is formulated through the first row of (9) or (24). For further details, see
Gruttmann and Wagner (2013).

4 Adaptive Strategy for the use of different material models

As already said the calculation of structures with a two-scale model is very time consuming. Thus an interesting
strategy could be to use the same 2D nonlinear shell element together with different material laws at different load
levels. Within this paper we have in mind

• Non layered shell structure with linear elastic material law-MAT1 (EL)

• Layered shell structure with elasto-plastic material law-MAT4 (ELPL) ( only for test reasons)

• Non layered shell structure with a two-scale FE2-model on elements0 ≤ e ≤ ne2 with RVE on each Gauss
point-MAT8 (RVE + ELPL)

Thus a calculation starts fully elastic with MAT1 (EL) on a non layered structure. During the loading process a
switch to a layered structure with an elasto-plastic material-MAT4 (ELPL) or to a RVE with elasto-plastic material-
MAT8 (RVE + ELPL) is introduced. This switching procedure requires an indicator to decide if a material change
is necessary. In earlier times the indicator of Zienkiewicz and Zhu (1987) has been successfully used in different
applications for an adaptive mesh refinement. A typical formulation is

∫
ΔSTΔS dA ≥ α‖Eσ‖ , (25)

where‖Eσ‖ is an averaged system energy based on FE-stressesSGP calculated at Gauss points

‖Eσ‖ =
1
ne

ne∑

e=1

∫
ST

GP SGP dA . (26)

Based on a standard FE-smoothing procedure nodal stressesSN could be provided, which can be used to calculate
stress differencesΔS = SN − SGP on each elemente. If the first term in Eq. (25) is larger then the second one a
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mesh refinement will be necessary. Typicalα = 0.05 can be used, which means that an error of 5% is admissible
in one element.

In the same sense one could introduce similar expressions within a nonlinear elasto-plastic model. A first attempt
is the simple model

∫
S2

V dA ≥ α‖Eσ‖ and ‖Eσ‖ =
1
ne

ne∑

e=1

∫
Y 2

0 dA (27)

with a yield stressY0 and the equivalent stressSV =
√

S2
11 − S11 S22 + S2

22 + 3 S2
12. Now, if the first term

exceeds the second one a change of the material model will be necessary. Typicalα = 0.9 is a possible choice,
which means the elastic domain is admissible in one element up to 90% of the yield stress. The material model
is changed for the whole element, if the above described condition is violated once during the loops on layers
and Gauss points. In case of the elasto-plastic material, stresses are calculated naturally at each layer. Using the
two-scale model the output of the RVE are stress resultants, see Eqs. (5, 23). Thus the stress values at top and
bottom of the shell have to be calculated in a standard way via

Sii+ =
nii

h
+

mii

Ii
z+ , Sii− =

nii

h
+

mii

Ii
z− . (28)

Using the above strategy in a parallelized FE-code needs a dynamic parallelization of the element loop. Thus
a balancing of the workload of each processor is necessary due to the fact that elements with elastic material
behaviour as well as elements with another elasto-plastic FE-model on each Gauss-point occur.

LOOP, Load

LOOP, Iteration(Newton)

LOOP, Element (Stiffness matrix andresidual)

N-Processors
in parallel due to work load

P-01 P-02 P-03

NEXT, Element

SOLVEKT ΔV = −R with Parallel-Solver

NEXT, Iteration

NEXT, Load

Further informations on the parallelization of an element loop in a FE-code may be found e.g. in Jarzebski et al.
(2015).

5 Unloading

Special attention has to be set on possible unloading behaviour. Typically the process of changing the material
model should be reversible. Thus a switch back to a fully elastic material model must be possible. Having in
mind that elasto-plastic strains have been reached earlier a general material modelσep = D(ε− εp) for the stress
resultants is necessary. Hence the question is how to calculate elasto-plastic shell strainsεp and elasto-plastic
stress resultantsσep.

For the elasto-plastic material- MAT4 (ELPL) one can calculate the stress resultantsσep in a loop over all layers
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at each Gauss point from the 3D-stressesSep.

σep = 0 ,Dep = 0
i = 1, nlay
→ Ei = εm + ziκ
← Si ep = Ci epEi store fori : Ei p, Ei v

σep = σep +
∫

z

Si ep dzi

Dep = Dep +
∫

z

Ci ep dzi

endi

(29)

In case of the two-scale model-MAT8 all shell values are calculated directly on the RVE at each Gauss point.

→ ε = [εm, κ, γ]
← σep = [Nep,Mep,Qep] store on RVE:Ep, Ev

← Dep

(30)

Thus, in case of unloading, the elasto-plastic strains

εp = ε−D−1
ep σep (31)

are stored in a history array and the switch to the fully elastic material-MAT1 can be done via

σ = D(ε− εp) (32)

6 Examples

The developed algorithms are implemented in an extended version of the general finite element program FEAP
Taylor (2011). With the first example we compare the finite element solutions for a Two-span girder subjected to
concentrated loads with analytical expressions. The same is done within the second example for a square plate.

6.1 Two-span girder with single loads

For the first example we choose a simple Two-span girder with single loads. The length is given withL = 100 cm
and the cross section data areB = 10 cm, H = 2 cm. The external loading is given by two 2 single loads
F = f ∙B = 1 kN. For the material law we introduce a classical elasto-plastic material behaviour including linear
hardening. We choose the elasticity modulusE = 21000 kN/cm2, Poisson’s ratioν = 0.3, initial yield strength
Y0 = 30 kN/cm2 and the hardening modulusCp = E/10000 kN/cm2. An analytical solution (without hardening)
including unloading is available on the basis of a plastic hinge theory. The distribution of the bending moments in
the ultimate load case is presented in Figure 2 with 3 plastichinges.

Figure 2. Bending moments of 2-span girder with single loads

The associated finite element discretization is presented in Figure 3, taking into account that symmetry conditions
could be used. The mesh is chosen with 40 4-node shell elements in length direction and 4 elements in transverse
direction, respectively. The element formulation is based on a finite rotation theory including an interface to
different 2D- and 3D-material formulations, for details see Wagner and Gruttmann (2005).
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f = 0.1

L = 100

L = 100

B=10

Figure 3. FE-discretization of the symmetric part 2-span girder with single loads

In Figure 4 load deflection curves are presented. These are depicted for the single load versus the vertical displace-
ment under the single load. Curves are shown based on an analytical solution from the plastic hinge beam theory
with Fpht = Y0(BH2/6L)(4 + 1) = 9 kN. First results are from a FE-model shell with elasto-plastic material
behaviour (MAT4) and 11 layers in thickness direction. Second results are from a shell formulation with a multi-
scale FE2 approach (MAT8), see Gruttmann and Wagner (2013), describing the macroscopic behaviour on the shell
model and the elasto-plastic material behaviour (MAT4) on a representative volume model (RVE), introduced at
each Gauss point on the shell level. The RVE has a size oflx = ly = h and a discretization of4 × 4 × 11 solid
shell elements, see Klinkel et al. (2006). Finally, for comparison, we present results introducing a 3D FE-model,
again with the solid shell element mentioned before. Here, we choose for the 3D-mesh 11 elements in thickness
direction. All results are very close together in the elastic range. Due to different geometrical discretization models
slightly different results occur, especially in the plastic range, which leads to the same unloading behaviour starting
from differentpoints.
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Figure 4. Load deflection curves for different models without changing the material model

Figure 5 depicts two load deflection curves when using the change of material models based on the above in-
troduced error indicator. These curves are on one hand for the switch between elastic(MAT1) and elasto-plastic
material behaviour (MAT4) and on the other hand for the switch between elastic (MAT1) and elasto-plastic mate-
rial behaviour (MAT4) on a representative volume model (RVE). Both curves are in perfect agreement with load
deflection curves without changing the material models. Presenting the unloading behaviour demonstrates, that
the material switching procedure holds in both directions. The distribution of material models on the FE-mesh is
visualized in Figure 6. Here, we can see finite elements with elastic(red) and elasto-plastic material(blue) on the
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RVE at load levels for F=6/7/8/9/9.25/9.5/9.25/9.0kN.
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Figure 5. Load deflection curves for different models with change of the materialmodel
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Figure 6. Elements with elastic (red) and elasto-plastic material (blue) at different load levels for
F=6/7/8/9/9.25/9.5/9.25/9.0 kN (top to bottom, left to right)

6.2 Square plate with uniform load

With the second example we discuss the elasto-plastic behaviour of a simply supported square plate with uniform
load, see Figure 7. The length is given withLx = Ly = 200 cm and the thickness ish = 4 cm. The external
uniform load is given byq = 1 N/cm2. For the material law we introduce again a classical elasto-plastic material
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behaviour including linear hardening with material parameters of the last example, but with an initial yield strength
of Y0 = 36 kN/cm2.

x

y
q L

L

Figure 7. Simply supported square plate with uniform load

For the associated finite element discretization a mesh with 40 4-node shell elements, is chosen in both directions.
Possible symmetry conditions are not taken into account. In Figure 8 load deflection curves for the value of the
uniform load versus the vertical center displacement are presented. An analytical solution (without hardening)
is available on the basis of a yield line theory withqylt = 6Y0 ∙ (h/Lx)2 = 86.4 N/cm2. First results are from
a FE-model shell with elasto-plastic material behaviour (MAT4) and 11 layers in thickness direction. Second
results are from a FE-model shell with a multi-scale FE2 approach (MAT8) describing the macroscopic behaviour
on the shell model and the elasto-plastic material behaviour (MAT4) on a representative volume model (RVE),
introduced at each Gauss point on the shell level. The RVE has a size oflx = ly = h and a discretization of
4× 4× 5 solid shell elements. Finally, for comparison, we present 3D-results using the solid shell element. Here,
we choose for the 3D-mesh 5 elements in thickness direction. Associated element types have been described in the
example before. All results are very close together in the elastic range. Due to different geometrical discretization
models slightly different results occur, especially in the plastic range, which leads to the same unloading behaviour
starting from different points. The different use of material models on the FE-mesh is visualized in Figure 9.
The distribution of finite elements with elastic (red) and elasto-plastic material (blue) on the RVE is presented at
load levels q=40/50/60/80/82.5/87.5/82.5/80/77.5 N/cm2 (top to bottom, left to right). The typical behaviour with
plastic effects along the diagonals (’yield lines’) can be seen clearly.
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Figure 8. Load deflection curves for different discretizations and material models.
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7 Conclusions

In this paper a multi-scale approach for shell structures is presented. With respect to shells the introduced RVE on
the element Gauss point has a natural thickness h. This requires the formulation of special boundary conditions.
The total set of equations contain equilibrium formulations on the structural level as well as on the level of Gauss
points. It is possible to solve the whole set of equations simultaneously. Basically the formulation allows the mix-
ture of element concepts. We have shown that it is possible to mix elements with conventional material description
with elements, where RVE’s are introduced to describe the material behaviour. Calculations based on a multi-scale
approach are very time consuming. Thus an adaptive strategy has been introduced to switch automatically between
different discretization and material models. For this an indicator in dependence on the indicator of Zienkiewicz
and Zhu (1987) has been proposed. The examples show the efficient practical applicability of the proposed method,
also in the unloading regime. Further research may be focused on the formulation of indicators to switch between
different materialmodels.
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Figure 9. Elements with elastic (red) and elasto-plastic material (blue) at different load levels for
q=40/50/60/80/82.5/87.5/82.5/80/77.5 N/cm2 (top to bottom, left to right)
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