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Numerical Study of the Deformation Behavior of Eutectic Cu/Ag
Polycrystals

S. Dodla, A. Bertram

Many materials in nature have a complex structure at different length scales, which influence the material behavior.
In the current work, we have investigated the deformation behavior of eutectic Cu/Ag composites with a lamellar
structure inside the grains. In particular, the deformation process by uniaxial compression, uniaxial tension, and
simple shear have been studied. In order to simulate the deformation behavior of the eutectic Cu/Ag composites,
an elasto-viscoplastic continuum model has been implemented considering the initial texture (500 grains) from the
experimental data. The numerical simulations have been carried out using the finite element software ABAQUS.
The deformation behavior and the simulated texture are correlated to experimental results and discussed.

Notation. We use a symbolic notation given in the continuum mechanics text book (Bertram, 2012). Scalars,
vectors, second-order and fourth-order tensors are denoted bya, a, A, andA, respectively. The scalar, dyadic, and
Rayleigh product are given by∙, ⊗, and∗, respectively, wherea ∙ b := aibi, a ⊗ b := aibjei ⊗ ej , A ∗ C :=
CijklAei ⊗ Aej ⊗ Aek ⊗ Ael. : denotes the double contraction between tensors,i.e.,A : B := AijBij . AT , A−1

andȦ denote the transpose, the inverse, and the material time derivative of a second-order tensorA. The linear
mapping of a second-order tensorA by a fourth-order tensorC is written asC [A].

1 Introduction

Cu-Ag polycrystals are widely used in magnet research and applications because of their high strength and high
conductivity (Asano et al., 1993; Sakai and Schneider-Muntau, 1997). The eutectic structure of Cu-Ag produces
high strength compared to other Cu-Ag compositions. The eutectic Cu-Ag polycrystal shows a two phase lamellar
structure inside the grains strengthened with Cu and Ag laminates. Both Cu and Ag lamella phases inside the
microstructure present a lamellar ordered face centered cubic (fcc) lattice structure. The lamellar Cu-Ag poly-
crystal shows an ultimate tensile strength above 700 MPa with increase in the drawing strain (Grünberger et al.,
2001; Heringhaus, 1998), and a difference in strain hardening in tension and compression (Shen et al., 2007). The
strength and hardening effects are influenced by the grain size, lamellar nanostructure and corresponding volume
fraction of each phase. In order to study micro-structural effects on the mechanical properties, a physics based
model is required to capture the lamellar information at the micro scale, grain information at meso scale, and the
effective behavior at the macro scale to design the structural components.

In the past 20 years multiscale modeling is the common finite element (FE) approach to study the deformation
process and the texture evolution of the multi-phase materials. With this method, an elasto-viscoplastic phenome-
logical model has been applied to study the deformation behavior of eutectic Cu/Ag composites at three different
scales (micro, meso, and macro). The micro scale represents the two phase lamellar structure of Cu/Ag phases, the
meso scale represents the grain structure, and the macro scale represents the homogenized deformation behavior
of the material. Artificial homogenization from micro to meso scale has been done using projection criteria i.e.,
amplifying the lamella scale to fit into grain scale. The amplification has been done since the lamellae (micro scale)
and the grains (meso scale) live on rather different length scales. And the numerical homogenization between the
meso and macro scale has been done by means of the finite element method. The micro scale captures the lamellar
structure present inside the grain, the meso scale allows to capture the grain structure present inside the material,
and the macro scale for computing the homogenized deformation behavior. The majority of early works have used
the micro structure information of a single phase, because finite element calculations of the microstructure for the
multiphase materials are computationally expensive. Our previous work (Dodla et al., 2015a) is focused on the
RVE with 100 grains along with a Cu/Ag lamellar structure to study the compressive flow behavior. In the current
work, the FE based multiscale modeling approach is used to study the deformation process (uniaxial compression,
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Figure 1: Optical microscopy images in transverse section of Cu-Ag ingot showing the different information at the
grain scale (left) and at the lamellae scale along with lamella spacing (right)

uniaxial tension, and simple shear) of lamellar Cu/Ag phases with 500 grains.

2 Initial Texture

After secondary processing (cold rolling, cold drawing) for many materials the strength will increase. The enhance
in mechanical strength is believed to be instantly related to the refinement of the microstructure (Misra et al., 2004)
and the lattice distortion in the materials (Han and Yu-Zhang, 2004). In the current work we consider a cold drawn
rod having a diameter of 12.42 mm (more details about the manufacturing process, micro structure, and initial
texture are given in (Dodla et al., 2015b)). Fig. 1 presents the microstructure of the cold drawn sample. Fig. 1
are the optical microscopy images taken from sample in the cold drawn condition showing the combination of
grains with an average grain size of 50μm, lamellar Cu/Ag eutectic regions. The selected region in Fig. 1 (right)
shows the average lamella spacing (LCu +LAg) and the periodic layers of Cu (LCu) and Ag (LAg) lamella. X-ray
analysis is used to determine the texture of a cold drawn rod. XRD measurements are performed by using an
X-ray tube with Chromium-anode in point focus mode and 1D detector with secondaryKβ filtering. The texture
measurements were done at central location of the cold drawn rod in longitudinal direction. From the experimental
investigations (Dodla, 2015), it is observed that the misorientation angle in the lamellar region inside the grain
lies below10o. Hence in the numerical simulations we assume that each lamella (Cu, Ag) inside the grain has
the same initial crystallographic orientation with respect to the grain. The measured texture of the Cu phase has
been approximated by 500 grains as a compromise between precision and computational costs. The texture is
represented in terms of a pole figure and the ODF. Figure 1 (top) represents the measured texture of the sample
material in terms of a (100) pole figure andφ2(= 45o) sections of the orientation distribution function (ODF) in
the space of Euler angles(φ1 ≤ 90o, Φ ≤ 90o). Figure 1 (bottom) represents the texture approximated by 500
grains. The Euler anglesφ1, Φ, φ2 are given in ’ZXZ’ convention (Bunge, 1993).

3 Material Model

An elasto-viscoplastic single crystal constitutive model is implemented for the lamellar structure of the Cu and Ag
phases. The model is based on the concept of isomorphic elastic ranges (Bertram, 2012). The evolution of the
plastic deformation is accounted for by means of a second-order tensor, called plastic transformationP. The tensor
P relates the variables in the undistorted placement to the reference placement. In the following equations, tilde
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Figure 2: Measured (top) and approximated (bottom)(100) pole figure andφ2 section of45o of ODF by 500
discrete orientations

(∼) refers to all variables which are described with respect to the initially undistorted lattice base.

3.1 Constitutive Law

This approach is based on the assumption of isomorphic elastic laws in all elastic ranges of our elasto-plastic
material point. If we express the elastic law in the current elastic range by a functionkp that relates the right
Cauchy-Green tensorC := FT F to the second Piola-Kirchhoff stress tensorT2PK := det(F)F−1TF−T as

T2PK = kp(C) (1)

then the isomorphy condition can be used to transform this elastic law into a (constant) elastic reference lawk0 as

kp(C) = Pk0(P
T CP)PT (2)

by a unimodular plastic transformationP (see Bertram (2012)). If we concentrate on a linear St. Venant-Kirchhoff
law for kp

T2PK =
1
2
K̃[C − Cu] = K̃[ẼG] (3)
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with the Green strain tensor̃EG = 1
2 (C − Cu) with respect to some unloaded configurationCu, then the above

isomorphy condition leads to an elastic reference law

T2PK =
1
2
K[C − I] = K[EG] (4)

with K̃ = P ∗ K, Cu = P−T P−1 andEG = 1
2 (C − I). K̃ denotes the fourth-order constant stiffness tetrad for

a cubic crystal. The stiffness tetrad is represented by a six by six Voigt matrix, and the components refer to the
normalised orthonormal basisBα of symmetric second-order tensors (Böhlke and Bertram, 2001; Cowin, 1989;
Böhlke, 2001), i.e.,Kαβ = Bα : K [Bβ ]
Copper and silver materials have a face centered cubic (fcc) crystal structure. The three independent elastic con-
stants for copper and silver are taken from (Kalidindi and Anand, 1993), (Dodla et al., 2015a).

3.2 Flow Rule

In general, fcc materials exhibit crystallographic slip in{111} 〈110〉 slip systems. These 12 primary slip systems
are described by the Schmid tensorsS̃

α
:= d̃α ⊗ ñα, which are given by the slip directioñdα and the slip plane

normalñα. The resolved shear stressτα in a slip systemα can be calculated as

τα := C̃T̃2PK : S̃
α

(5)

An evolution of the plastic transformationP is given in terms of the shear rateγ̇α and the Schmid tensors̃S
α

P−1Ṗ = −
∑

α

γ̇αS̃
α

(6)

The kinetics of dislocation motion have been elaborated by the relationships between the resolved shear stress and
the plastic shear ratėγα of the slip systemα by using the power law (Hutchinson, 1976)

γ̇α = γ̇0sgn(τα) |
τα

τc(γ)
|m (7)

whereγ̇0 is a constant reference shear rate, and the exponentm determines the strain sensitivity of the material.
The initial conditions of the evolution equation(6) areF̃ (t = 0) = Q (t = 0) ∈ SO(3). The orientation of the
crystal is given by a proper orthogonal tensorQ (t) := gi (t) ⊗ ei. Here{ei} is the orthonormal vector base of a
fixed Cartesian coordinate system, and{gi} is the orthonormal lattice vector base. The initial resolved shear stress
at timet = 0 is given asτc (0) = τc0 .

3.3 Hardening Rule

A simple, most popular ansatz for the two types of hardening (self and latent) is the linear hardening rule (Hill,
1966), (Bertram, 2012).

τ̇c
α =

∑

β

hαβ γ̇β , hαβ = qαβθ (γ) (8)

whereθ(γ) = dτα
c

dγ andqαβ are the matrix components which account for self and latent hardening of the crystal.
For the fcc cubic crystal having 12{111} 〈110〉 primary slip systems, we considerqαβ equal to 1.0 for the coplanar
slip systems and equal to 0.9 for noncoplanar systems (Beyerlein et al., 2011). The evolution of the critical resolved
shear stress of all slip systems as a function of shearγ is described by a Voce-type hardening law (Voce, 1955)

τα
c = τc0 + (τs + θ∞γ)(1 − exp(−θ0γ/τs)) (9)

with

γ =
∫ ∑

α

|γ̇α| dt (10)
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γ is given as an integral over the sum of shear rates of all slip systems. The Voce type hardening rule contains
four hardening parameters, namely the initial resolved shear stressτc0 , a saturation stressτs, an initial hardening
modulusθ0, and a remaining hardening modulusθ∞. The material model has been implemented into the user
subroutine (UMAT) of the finite element package (ABAQUS) (ABAQUS, 1990). A Newton-Raphson iteration has
been performed using a backward Euler scheme (Böhlke et al., 2006).

4 Deformation Process

To study the mechanical behavior and the respective texture development, numerical experiments have been per-
formed like uniaxial tension, uniaxial compression, and simple shear. The deformation process is prescribed in
terms of the macroscopic deformation gradientF or the velocity gradientL = ḞF−1. For prescribing the deforma-
tion gradient, the motion is assumed to be isochoric, i.e.,detF = 1. The deformation gradient is expressed by the
velocity gradientL as

F(t) = exp(L t)F0 (11)

Initially, F0 is given as the second-order identity tensorI .

5 Representative Volume Element (RVE)

Three-dimensional FE simulations are performed by the finite element software (ABAQUS, 1990). Our RVE with
periodic boundary conditions has a Poisson-Voronoi micro structure (Kumar and Kurtz, 1994). In the present work,
the experimental data for uniaxial compression of eutectic Cu/Ag composite was compared with numerical finite
element simulations. Besides the numerical predictions (uniaxial tension, simple shear) with the flow behavior and
the crystallographic texture are numerically investigated in eutectic Cu/Ag composite. From the experimental data
(Dodla et al., 2015b), the average grain size is 50μm and the average lamella spacing(LCu + LAg) is 265 nm.
For each grain we need approximately 190 lamellae spacing(LCu + LAg). Moreover for each lamella a minimum
of 2 elements is required to study the lamellar behavior. In total 380 elements are required for each grain. Due to
the computational limitations, each side of the RVE is modeled by only 40 elements. The element size on each
side of the RVE is fixed based on the minimum thickness of lamella and the number of elements on each side. We
fixed the element size by 0.05 in all our numerical simulations with 500 grains. The predicted material parameters
shown in Table 1.
The finite element model for the simulation of the lamellar structure with 500 grains is shown in Fig. 3. Fig. 3A
(left) represents 500 grains. Each grain corresponds to a different orientation. The grains are visualised in the
figure. Fig. 3A (right) presents the lamellar structure of Cu and Ag. In these simulations, the microstructure
(grains, Cu/Ag lamellae) is given as regular Voronoi tessellations, and the boundary conditions are periodic. The
RVE mesh convergence study is first conducted to study mesh sensitivity of the results. The deformation behavior
has to be investigated until convergence is achieved. The RVE mesh consists of 64,000 linearly fully integrated
hexahedral elements. More information about the simulation procedure has been given in (Dodla et al., 2015a).
The RVE is subjected to uniaxial compression, uniaxial tension, and simple shear as shown in Fig. 3B, 3C, and
3D.

6 Simulated Results

The simulated results are presented in terms of stress-strain responses and the crystallographic texture. The mea-
sured and simulated stress-strain curves under compression are shown in Fig. 4. In this figure, the stress-strain
behavior from the experiments is shown using dotted lines, while the stress-strain response from the RVE ap-
proach is shown using solid lines. The elasto-viscoplastic material model is applied in the numerical simulations

Table 1: Flow rule and hardeningparameters

Material γ̇0 [s−1] m [-] τc0 [MPa] τs[MPa] θ0[MPa] θ∞[MPa]
Cu 0.0001 80 5.5 167.6 7964 9.2
Ag 0.0001 80 5 200.9 4501 20
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(A) 

(B) 

(C) 

(D) 

Figure 3: (A) RVE with 64,000 elements containing 500 grains (left) and Cu/Ag lamellar structure inside
the grains, (B) RVE with compressive deformation along Z direction, (C) RVE with tensile deformation in X
direction, (C) RVE with shear deformation in XY plane.
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Figure 4: Numerical simulation and experimental true stress-strain data of Cu-Ag eutectic composite
in simple compression

Figure 5: Stress-strain curves of the simple tension (bottom left), and the simple shear (bottom right)

to validate the deformation behavior. The simulated RVE successfully validates the flow behavior in the deforma-
tion zone (hardening). In the case of an initial slope, there is a slightly mismatch with the experimental data. There
are different possibilities for the deviation in the initial slope with the experimental data such as heterogeneity in
the microstructure, internal stresses and the elastic constants of Cu/Ag single crystals. Previous studies (Han et al.,
1999; Baldwin, 1949; Denton, 1966) have reported considerable internal stresses in drawn composites due to the
compatibility required during co-deformation. Hence these internal stresses may lead to the rounding of the flow
curves in the elastic region.
The tensile test is the alternate method for the investigation of material properties. Fig. 5 (left) shows the true
stress-strain curves simulated under uniaxial tension. As seen in Fig. 4 and Fig. 5 (left), the stress-strain behavior
under uniaxial compression and uniaxial tension is identical in the elastic region. However, the strain hardening
in tension is slightly higher than under compression. It is often observed that the stress-strain curves under ten-
sion and compression coincide to a certain degree when they are plotted in terms of true stress against true strain
(Lubliner, 2006). A numerical test of simple shear is used to determine the shear stress vs shear strain response
and the crystallographic texture evolution. Simulated results for the shear stressτ12 vs the shear strainε12 in xy
plane on the eutectic Cu/Ag composite are shown in Fig. 5 (right). From the numerical stress-strain plot (Fig. 5
(right)), a smooth transition from the elastic to the plastic behavior is observed. This numerical approach can be
applied for the comparison of experimental shear tests.
The crystallographic texture is presented in terms of theφ2(= 0o − 90o) sections in steps of5o of the orientation
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(A) (B) 

(C) (D) 

Figure 6: Simulated (A, B) and measured (Dodla, 2015) (C, D) ODF for selected sections in the orientation space
in the case of uniaxial compression (A and C) Cu phase, and (B and D) Ag phase.
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(A) (B) 

Figure 7: Simulated ODF for selected sections in the orientation space in the case of uniaxial tension (A) Cu phase,
and (B) Ag phase.

(A) (B) 

Figure 8: Simulated ODF for selected sections in the orientation space in the case of simple shear (A) Cu phase,
and (B) Ag phase.
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distribution function (ODF) in the space of Euler angles(φ1 ≤ 90o, Φ ≤ 90o). The simulated texture in terms of
the ODF is compared with the experimental measured texture for both Cu and Ag phases in simple compression
in Fig. 6. The numerical simulations reproduce the experimentally observed textures for the Cu and Ag phases.
The simulated texture of Cu and Ag phases in Fig. 6 are identical due to the initial approximation of same texture
for both phases. The measured and simulated ODF consists of important texture components (Copper orienta-
tion (90o, 35o, 45o), Brass orientation (35o, 45o, 0o), Goss orientation (0o, 45o, 0o)). The agreement between the
measured and simulated ODF is good (see Fig. 6). It is clear from experiments (Beyerlein et al., 2011; Dodla
et al., 2015b) that the dominant texture in Cu-Ag eutectic composites is a Brass-type texture. From the numerical
simulations of different deformation processes, the dominant texture component is Brass (see Fig. 6 - 8). However
there is a shift in the locations of the peak intensities in the orientation space. Note that the texture intensity in the
Cu phase is slightly higher than the Ag phase for all deformation processes. This is because the harder phase (Cu)
has a stronger influence on texture evolution compared to the softer phase (Ag).

7 Summary

A multiscale modeling approach is introduced to study the deformation process of nanostructured lamellar Cu-Ag
polycrystals. It has been shown that the finite element simulation (RVE) captures the Cu/Ag lamellar structure
inside the 500 grains. The deformation behavior of each lamella (Cu/Ag) phase is given by the elasto-viscoplastic
single crystal constitutive model. In addition, the developed multiscale FE model is able to capture the texture of
each phase. In the case of simple compression there is a good agreement between the measured and simulated ODF
for both phases. It is shown that the dominant texture of lamellar Cu-Ag polycrystals are Brass-type texture for all
deformation process. In the current work the dislocation slip is used as a deformation mechanism that accounts for
plastic deformation at room temperature. Nevertheless there is room for improvement of the material model on the
meso scale (grain) by including, e.g., deformation induced by twinning. To understand the effect of twinning on
the deformation behavior, studies of various deformation tests (tensile, compression, shear) considering slip and
twinning as a deformation mechanism for plastic deformation need to be incorporated.
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Böhlke, T.; Risy, G.; Bertram, A.: Finite element simulation of metal forming operations with texture based
material models.Modelling and Simulation in Material Science and Engineering, 14, (2006), 365–387.

Bunge, H.:Texture Analysis in Materials Science. Curvillier Verlag, G̈ottingen (1993).

164



Cowin, S.: Properties of the anisotropic elasticity tensor.Quarterly J. of Mechanics & Appl. Maths, 42, (1989),
249–266.

Denton, A. A.: Determination of residual stress.Metall. Rev., 11, (1966), 1–23.

Dodla, S.: Experimental Investigations and Numerical Simulations of Lamellar Cu-Ag Composites. Barleben:
Docupoint Verlag. Dissertation, Fakultät für Maschinenbau, Otto-von-Guericke-Universität Magdeburg (2015).

Dodla, S.; Bertram, A.; Kr̈uger, M.: Finite element simulation of lamellar copper-silver composites.Computational
Materials Science, 101, (2015a), 29–38.

Dodla, S.; Thiem, P.; Kr̈uger, M.; Dietrich, D.; Bertram, A.: Microstructure, flow behavior, and bulk texture
evolution of cold drawn copper-silver composites.Journal of Alloys and Compounds, 647, (2015b), 519–527.

Grünberger, W.; Heilmaier, M.; Schultz, L.: Development of high-strength and high-conductivity conductor mate-
rials for pulsed high-field magnets at Dresden.Physica B, 45, (2001), 643–647.

Han, K.; Embury, J. D.; Sims, J. R.; Campbell, L. J.; Schneider Muntau, H. J.; Pantsyrnyi, V. I.; Shikov, A.;
Nikulin, A.; Vorobieva, A.: The fabrication, properties and microstructure of Cu-Ag and Cu-Nb composite
conductors.Materials Science and Engineering A, 267, (1999), 99–114.

Han, K.; Yu-Zhang, K.: Transmission electron microscopy study of metallic multilayers.Scripta Materialia, 50,
(2004), 781–786.

Heringhaus, F.:Quantitative Analysis of the Influence of th Microstructure on Strength, Resistivity, and Magne-
toresistance of Eutectic Silver-Copper. Shaker Verlag, Berlin (1998).

Hill, R.: Generalized constitutive relations for incremental deformation of metal crystals by multislip.Journal of
the Mechanics and Physics of Solids, 14, (1966), 95–102.

Hutchinson, J.: Bounds and self-consistent estimates for creep of polycrystalline materials.Proc. R. Soc. London,
A 348, (1976), 101–127.

Kalidindi, S. R.; Anand, L.: Large deformation simple compression of a copper single crystal.Metallurgical
Transactions A, 24A, (1993), 989–992.

Kumar, S.; Kurtz, S. K.: Simulation of material microstructure using a 3D Voronoi tesselation: Calculation of
effective thermal expansion coefficient of polycrystalline materials.Acta Metallurgica et Materialia, 42, (1994),
3917–3927.

Lubliner, J.:Plasticity Theory. Macmillan Publishing Company, New York (2006).

Misra, A.; Hirth, J.; Hoagland, R.; Embury, J.; Kung, H.: Dislocation mechanisms and symmetric slip in rolled
nano-scale metallic multilayers.Acta Materialia, 52, (2004), 2387–2394.

Sakai, Y.; Schneider-Muntau, H. J.: Ultra-high strength, high conductivity Cu-Ag alloy wires.Acta materials, 45,
(1997), 1017–1023.

Shen, T. D.; Zhang, X.; Han, K.; Davy, C. A.; Aujla, D.; Kalu, P. N.; Schwarz, R. B.: Structure and properties of
bulk nanostructured alloys synthesized by flux-melting.Journal of Materials Science, 42, (2007), 1638–1648.

Voce, E.: A practial strain-hardening function.Metallurgia, 51, (1955),219–226.

Address:

Srihari Dodla, Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough Univer-
sity, LE11 3TU, Loughborough, UK, email: 529srihari@gmail.com
A. Bertram, Otto-von-Guericke-Universität Magdeburg, D-39106, Magdeburg, Germany, Tel. +49 391 67 52246;
Fax +49 391 67 2863, email: albrecht.bertram@ovgu.de

165




