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A Stochastic Finite Element Method with a Deviatoric-volumetric Split for
the Stochastic Linear Isotropic Elasticity Tensor

A. Dridger, I. Caylak, R. Mahnken

This paper presents a numerical method for solution of a stochastic partial differential equation (SPDE) for a linear
elastic body with stochastic coefficients (random variables and/or random fields). To this end the stochastic finite
element method (SFEM) is employed, which usesWIENER’ S polynomial chaos expansion in order to decompose
the coefficients into deterministic and stochastic parts. As a special case, we consider isotropic material behavior
with two fluctuating parameters. Computational approaches involvingGALERKIN projection are applied to reduce
the SPDE into a system of deterministic PDEs. Furthermore, we consider normally distributed random variables,
which are assumed to be stochastically independent, and which establish the number of stochastic dimensions.
Subsequently, the resulting finite element equation is solved iteratively. Finally, in a representative example for a
plate with a ring hole we study the influence of different variances for material parameters on the variances for
the finite element results.

1 Introduction

In general, engineering structures exhibit heterogeneous materials, where adhesives, polycrystalline and compos-
ites are typical examples. The heterogeneity leads to uncertainty in the material parameters and, consequently, to
uncertainty in the mechanical response. Therefore, macroscopically heterogeneous materials should be modelled
by a stochastic rather than a deterministic approach. In addition, nowadays, hybrid materials are very popular. Due
to the different types of attachments, uncertainties may occur especially at the interfaces of the material compo-
nents. Thus, the computation of response statistics at the interfaces is one potential goal, which we want to address
in the near future. Mathematically, such systems can be described by stochastic partial differential equations
(SPDEs) with stochastic fields, which can be solved by the stochastic finite element method (SFEM).

There are two different approaches for SFEM in the literature: Firstly, the perturbation approach (Liu et al.
(1986a,b); Wang et al. (2015)) which is based on a Taylor series expansion of the system response and secondly,
as a more prominent approach, the spectral SFEM wherePolynomial Chaos Expansion(PCE) and/orKarhunen-
Loève (KL) expansions are introduced to represent random fields with a series of randomHermitepolynomials
(Feng et al. (2016); Ghanem and Spanos (1991); Keese (2004); Luo (2006); Matthies and Keese (2005); Sudret
and Der Kiureghian (2000)). In this work, the second approach is favoured in which the stochastic input parameters
and, accordingly, the system response are expanded with the PC expansion. TheMonte Carlo(MC) simulation
method (Hurtado and Barbat (1998); Papadrakakis and Papadopoulos (1996)) can also be combined to both ap-
proaches. Though characterized by its simplicity, however, it is expensive for large systems with an increasing
number of input parameters or growth of the variances. Nevertheless, it is often used to investigate the accuracy of
more advanced approaches. A detailed state-of-the-art review for stochastic finite element method can be found in
Stefanou (2009).

The aim of this work is to consider the uncertainty of a linear elastic body using the SFEM, where an adhesive
material is applied as a prototype. The uncertainty is considered by random material parameters, which are mod-
elled as stochastic variables. These variables are expanded with PC and aGalerkinapproach is used to solve the
associated unknown coefficients of the solution. The key idea of our contribution is the split of the linear elasticity
tensor into a volumetric and a deviatoric part in order to allow the analysis of the volumetric- and the deviatoric
fluctuation. Then, from experimental data the distribution of the random variables, i.e.Young’s modulusE(ω) and
theshear modulusG(ω), are known. Consequently,E andG are expanded with PC, and aGalerkinprojection,
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see e.g. Ghanem and Spanos (1993); Matthies and Keese (2005), is applied to reduce the SPDE into a system of
deterministic PDEs.

In a further part of this work, normally distributed material parameters are considered as stochastically independent
input quantities for the stochastic process. To this end, two different cases are distinguished: In Case IE(ω)
andν(ω) are given as two input parameters based on experimental data. Case II considersG(ω) to be given,
instead ofν(ω). The objective is the calculation of the uncertain system response (displacement). Another similar
formulation to analyze the response displacement variability involving multiple uncertain material properties can
be found in Graham and Deodatis (2001). Since, in both cases, additional elastic constants are calculated in
dependence of the independent parameters, the number of stochastic dimensions is equal to the number of the
independent input parameters. Finally, the stochastic finite element matrix equation consists of three contributions,
namely the deterministic part as well as the variations of a volumetric and a deviatoric part.

An outline of this work is as follows: Section 2 summarizes the governing equations and the variational formulation
for a linear elastic body with fluctuating material parameters. Section 3 and 4 provide respectively the spatial and
the stochastic discretization. Then, in the representative example in Section 5 we consider two approaches (Case
I and Case II) for a two parameter model of isotropic linear elasticity. To this end, we simulate a plate with a ring
hole in plane strain subjected to uniaxial tension with the SFEM. Results of the deterministic solution as well as
the influence of the distribution for the input parameters on the volumetric and deviatoric part are presented.

2 Basic Equations

2.1 Random Fields and Expected Value

For the subsequent exposition on the uncertainty of an elastic body, the following definitions are essential: Consider
the probability space(Ω, Σ,P), whereΩ is the set of elementary events,Σ is theσ-algebra andP is the probability
measure. Arandom variableZ is a measurable function

Z : Ω −→ V (1)

whereV is an appropriate measurable space (see Lasota and Mackey (1994) for more information). As an example,
the uncertainty in the elasticity tensorC may be modelled by its definition as a function over the medium domain
R ⊂ R3 as a random variable or more precisely, as a stochastic field Vanmarcke (1983):

C : R × Ω −→ V, (x, ω) 7→ C(x, ω). (2)

For later use, we define also the expected value for the random variableZ in Eq.(1) as, see e.g. Lasota and Mackey
(1994),

E(Z) =
∫

Ω

ZdP =
∫

Ω

Z(ω)dP(ω). (3)

2.2 Governing Equations for an Elastic Body

In this paper we consider a linear elastic material behavior characterized by two fluctuating material input param-
eters. Therefore, as mentioned above, the elasticity tensorC(x, ω) becomes a stochastic field. In summary, based
on the known equations in continuum mechanics, the following governing equations are used:

1. ∇ ∙ σ(x, ω) = 0

2. σ(x, ω) = C(x, ω) : ε(x, ω)

3. ε(x, ω) =
1
2
(∇u(x, ω) + (∇u(x, ω))T ).

(4)

In addition to the elasticity tensorC we have:σ is the Cauchy stress tensor,u is the system response- (respectively
displacement) vector,ε is the strain tensor and∇ denotes the standard Nabla operator. For the position vector
x ∈ R holds, whereR ⊂ R3 is some bounded, admissible region of the elastic body with corresponding boundary
∂R. In Eq.(4.1) we neglect body forces. Dirichlet and Neumann boundary conditions are considered as

u = ū on∂Ru, t̄ = σ ∙ n on∂Rσ (5)
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with non-intersecting boundaries∂R = ∂Rσ ∪ ∂Ru and0 = ∂Rσ ∩ ∂Ru.

We remark that each system property like boundary conditions, external forces, geometry etc. may have an un-
certainty. However, in this work we focus on the parameter uncertainty for the elasticity tensorC according to
Eq.(2) such that the displacement vectoru(x, ω), the stress tensorσ(x, ω) and the strain tensorε(x, ω) become
stochastic fields.

2.3 Variational Formulation

In addition to the spatial integration, a stochastic integration over the stochastic domain is introduced, thus resulting
into the following weak form:

∫

Ω

∫

R

δε(x, ω) : C(x, ω) : ε(x, ω)dRdP =
∫

Ω

∫

∂Rσ

t̄(x)δu(x, ω)d∂RdP. (6)

The aim is to findu ∈ R such that for all testfunctionsδu Eq.(6) is satisfied. In order to decompose the determin-
istic and the purely fluctuating part the random variables are divided as

1. u(x, ω) = ū(x) + ũ(x, ω)

2. ε(x, ω) = ε̄(x) + ε̃(x, ω)

3. C(x, ω) = C̄(x) + C̃(x, ω).

(7)

In these relations each first term represents the deterministic part (expected value) and the second term the fluctu-
ating part. With an analogous decomposition forδu(x, ω) andδε(x, ω) Eq.(6) results into

1∫

R

δε̄(x)T : C̄(x) : ε̄(x)dR +

2∫

Ω

∫

R

δε̃(x, ω)T : C̄(x) : ε̄(x)dRdP . . .

+

3∫

Ω

∫

R

δε̄(x)T : C̃(x, ω) : ε̄(x)dRdP +

4∫

Ω

∫

R

δε̃(x, ω)T : C̃(x, ω) : ε̄(x)dRdP . . .

+

5∫

Ω

∫

R

δε̄(x)T : C̄(x) : ε̃(x, ω)dRdP +

6∫

Ω

∫

R

δε̃(x, ω)T : C̄(x) : ε̃(x, ω)dRdP . . .

+

7∫

Ω

∫

R

δε̄(x)T : C̃(x, ω) : ε̃(x, ω)dRdP +

8∫

Ω

∫

R

δε̃(x, ω)T : C̃(x, ω) : ε̃(x, ω)dRdP . . .

=
∫

R

fδū(x)dR +
∫

Ω

∫

R

f(x)δũ(x, ω)dRdP. (8)

Compared to the terms1 − 7 the term8 in Eq.(8) merely consists of purely fluctuating parts, and therefore will
be neglected in the sequel. For numerical solution of the weak form in Eq.(8) the SFEM is used where spatial and
stochastic discretization are applied as described next.

3 Spatial Discretization

Upon using Voigt’s matrix notation on the element domain, we have the displacement approximation

u(x, ω) =
nk∑

i=1

Ni(x)ui(ω) = N(x)u(ω) (9)

and the strain approximation

ε(x, ω) = B(x)u(ω), (10)

168



whereB is the associated derivative matrix of shape functionsNi. By applying the Galerkin projection, see e.g.
Hackbusch (1989); Matthies and Keese (2005), the spatial part is

A
ne

e=1

∫

eR

B(x)T C(x, ω)B(x)dR

︸ ︷︷ ︸
K

u(ω) = A
ne

e=1

∫

∂eR

t̄(x)N(x)dR

︸ ︷︷ ︸
f

,
(11)

whereA is the assembly operator andeR is the region of one finite element. We denote

K(x, ω)u(ω) = f̄(x) (12)

as the semi-discrete form. In this contextnk is the number of nodes per element andne is the number of elements.
Using the relations (7), Eq.(11) becomes

A
ne

e=1

∫

eR

B(x)T C̄(x)B(x)dRū + A
ne

e=1

∫

eR

B(x)T C̄(x)B(x)dRũ(ω) . . .

+ A
ne

e=1

∫

eR

B(x)T C̃(x, ω)B(x)dRū + A
ne

e=1

∫

eR

B(x)T C̃(x, ω)B(x)dRũ(ω) . . .

= A
ne

e=1

∫

eR

f(x)N(x)dR (13)

or in a short decomposed form

(K0(x) + K̃(x, ω))(ū + ũ(ω)) = f̄ . (14)

In particular,K0 represents the deterministic part and respectivelyK̃ the fluctuating part:

1. K0(x) = A
ne

e=1

∫

eR

B(x)T C̄(x)B(x)dR,

2. K̃(x, ω) = A
ne

e=1

∫

eR

B(x)T C̃(x, ω)B(x)dR

(15)

Eq.(13) is the starting point for the subsequent stochastic discretization.

4 Stochastic Discretization

In order to perform the stochastic discretization we first have to introduce the multi-variate Hermite polynomials
and the polynomial chaos expansion. Similar to the spatial discretization the multi-variate Hermite polynomials
serve as ansatzfunctions for the stochastic domain.

4.1 Multi-variate Hermite Polynomials

The multi-variate Hermite polynomials are defined by, Keese (2004); Luo (2006)

Hα(θ) :=
∏

i∈N

hαi
(θi), (16)

whereα = (α1, α2, . . . ) is a multi-index andθ = (θ1, θ2, . . . ) is the infinite vector of standard Gaussian random
variables. In these relationshαi are theprobabilistic Hermite polynomials. The first six terms have the following
form:

h0(θ) = 1 h3(θ) = θ3 − 3θ

h1(θ) = θ h4(θ) = θ4 − 6θ + 3 (17)

h2(θ) = θ2 − 1 h5(θ) = θ5 − 10θ3 + 15θ.

Due to orthogonality of the polynomials it follows, Luo (2006):

E(H0) = 1, E(HαHβ) = δαβ , E(Hα) = 0 ∀α 6= 0, (18)

whereE(Hα) denotes the expected value ofHα according to Eq.(3).
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4.2 Wiener’s Polynomial Chaos

The exact Polynomial Chaos Representation (PCE) of the random variableu(ω) in (12) is written as

u(ω) = u(θ(ω)) =
∑

α∈J

uαHα(θ(ω)), (19)

respectively

C(x, ω) = C(x, θ(ω)) =
∑

α∈J

Cα(x)Hα(θ(ω)) (20)

for the locally dependent elasticity matrix withJ as an infinite set of indices.

To discretize the random fields in the SPDE, a representation into a finite number of mutually independent stan-
dard normally distributed random variablesθ̂ = (θ1, θ2, . . . , θm) is applied, Matthies and Keese (2005). The
approximated representation which is important for the numerical computation is then written as

u(ω) ≈ u(θ̂) =
∑

α∈Ĵ

uαHα(θ̂) (21)

C(x, ω) ≈ C(x, θ̂) =
∑

α∈Ĵ

Cα(x)Hα(θ̂) (22)

with Ĵ as a finite set of indices, Matthies and Keese (2005). In this context, we should note thatu0 = ū and
C0(x) = C̄(x) applies, i.e. we obtain the expected values.

4.3 PCE of a Two Parameter Model

As a special case of linear elasticity we consider a linear elastic isotropic material described by two stochastic
independent material parameters. Furthermore, the considered material is regarded as homogeneous with respect
to the expected value, that is, the variances of the input parameters are assumed to be identical for each location.
Therefore, for the subsequent analysis we can neglect the spatial dependence inC(x). Furthermore we assume that
the input parameters are Gaussian which is also verified by the experimental data used in the example in Section5.

The elasticity matrix for a linear isotropic material is given as

C = Cdev + Cvol = 2GIC
dev + KmmT (23)

with

1. G =
E

2(1 + ν)
shear modulus,

2. K =
E

3(1 − 2ν)
bulk modulus

(24)

and

IC
dev = IC −

1
3
mmT , IC =











1
1

1
1
2

1
2

1
2











, m =











1
1
1
0
0
0











. (25)

By use of the Gaussian random variablesG(ω) = G0 + G1θ1(ω) andK(ω) = K0 + K1θ2(ω) we obtain the
stochastic elasticity matrix

C(θ̂) = 2(G0 + G1θ1)I
C
dev + (K0 + K1θ2)mmT

= 2G0I
C
dev + K0mmT

︸ ︷︷ ︸
C0

+2G1I
C
dev︸ ︷︷ ︸

C1

θ1 + K1mmT

︸ ︷︷ ︸
C2

θ2 (26)

= C0 + C1θ1 + C2θ2.
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Eq.(26) constitutes a PCE of the elasticity matrix. Since we assume the random variablesG andK as normally
distributed the PCE consists of two summands, each associated with one standard Gaussian random variableθi.
For this reason we may represent their PCE withnormalindices instead of multi-indices. Consequently, the system
response depends also on two standard Gaussion random variables:

u(θ̂) = u0 + u1θ1 + u2θ2 (27)

4.4 Galerkin Projection

Now we use the expansions (26) and (27) and apply the Galerkin projection explained in Hackbusch (1989);
Matthies and Keese (2005) on Eq.(13):

A
ne

e=1

∫

Ω

Hβ(θ̂)
∫

eR

B(x)T C0B(x)dRdPu0 . . .

+A
ne

e=1

∫

Ω

Hβ(θ̂)
∫

eR

B(x)T C0B(x)dR (u1θ1 + u2θ2) dP . . .

+A
ne

e=1

∫

Ω

Hβ(θ̂)
∫

eR

B(x)T (C1θ1 + C2θ2) B(x)dRdPū . . .

+A
ne

e=1

∫

Ω

Hβ(θ̂)
∫

eR

B(x)T (C1θ1 + C2θ2) B(x)dR (u1θ1 + u2θ2) dP

= A
ne

e=1

∫

Ω

Hβ(θ̂)
∫

eR

f(x)N(x)dRdP ∀β ∈ Ĵ . (28)

By exploiting the Hermite polynomial properties of Eq.(18) with Eq.(3) and neglecting term8 in Eq.(8) it follows
for Eq.(28):

β = 0 → K0u0 + K1u1 + K2u2 + . . . = f
0
6= 0

β = 1 → K0u1 + K1u0 = f
1

= 0

β = 2 → K0u2 + K2u0 = f
2

= 0

with

1. K0 = A
ne

e=1

∫

eR

B(x)T C0B(x)dR

2. K1 = A
ne

e=1

∫

eR

B(x)T C1B(x)dR (29)

3. K2 = A
ne

e=1

∫

eR

B(x)T C2B(x)dR

In matrix notation we obtain

1. Ku = f , where 2.




K0 K1 K2

K1 K0 0
K2 0 K0





︸ ︷︷ ︸
K




u0

u1

u2





︸ ︷︷ ︸
u

=




f

0
0
0





︸ ︷︷ ︸
f

. (30)

Eq.(30) constitutes a deterministic system of equations. EachKα in Eq.(29) and Eq.(30), respectively, are obtained
as in the standard finite element method. The solution vectoru in Eq.(30) represents the PC-coefficients for the
displacement. It is used to determine the density function ofu(θ) and thereby compute the statistics.
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4.5 Numerical Implementation

A common feature of the standard FEM is the banded structure of the stiffness matrix, which also holds for the
stiffness matricesK0, K1 andK2 in Eq.(30). However, in general this does not imply a banded structure for the
total matrixK in Eq.(30). Therefore, for large sized problems a direct solver is not practical for solution ofu and
consequently we use an iterative scheme with apreconditioned gradient methodas follows, Saad (2003):

un+1 = un − K̃
−1

R(un) (31)

with

1. R(un) = Kun − f , 2. K̃ =




K0 0 0
0 K0 0
0 0 K0



 . (32)

Figure 1 illustrates the iterative scheme for the linear elastic SFEM, compared to the standard linear elastic FEM.
It becomes obvious, that for the SFEM with two independent normally distributed parameters, two additionally
loops become necessary. In this way, an increase of independent parameters and/or the order of their PCE (for non-
Gaussian input parameters for example) results to an increase of the numberm for the matricesCi and respectively
Ki, i = 1, ...,m.

SFEM 
 

      
          

Iterative solution

i = i + 1

with

i = 1 : : : n + 1

n = Number of
stochastic
dimensions

i = 1

Ci¡1 ! Ki¡1

·
K0 K1 K2
K1 K0 0
K

2
0 K

0

¸ ·
u0
u

1
u

2

¸
=

·
f
0
0
0

¸For normally distributed input parameters !

System of equations:

FEM 
 

with

C0; C1; C2; : : : ; Cn

u = [u0 u1 u2]
T

u = u0

K¡1f

C0 ! K0

C0

Figure 1: Comparison between FEM and SFEM

5 Representative Example

This section illustrates some stochastic properties of our two parameter model of the previous section for a plate
with a ring hole in a numerical example. The geometry, its loading and the FE-discretization are depicted in Figure
2. The loading is̄t = 200 N/m. For symmetry reasons only a quarter of the structure is investigated, as marked in
Figure 2.b. Note, that in this way we tacitly assume also a symmetry for the stochastic discretization.

We consider two different cases. Case I is based on the assumption thatYoungs modulusandPoisson’s ratioare
two given independent parameters, which means, that the distributions (respectively the density functions) ofE(ω)
andν(ω) are assumed to be known. Case II assumes a known distribution for the shear modulusG(ω) instead for
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Poisson’s ratioν(ω). In both cases, the additional dependent elasticity parameters are calculated in terms of the
independent parameters. The material under consideration, which provides the experimental data, is an adhesive
material. Experimental observations of this material are published in Nörenberg and Mahnken (2013) for combined
tension torsion tests.

a)

x

y
[mm]

220

20

t̄

t̄ b)
nodeA

Figure 2: Plate with a ring hole: a) Geometry and b) finite element mesh of triangular elements

5.1 Case I:E and ν are Stochastically Independent Parameters

We assume Young’s modulusE(ω) and Poisson’s ratioν(ω) as stochastically independent parameters with known
density functions. One general framework for statistical analysis in this work is the generation of synthetic data.
Thus, to ensure more reliable results we use synthetic data for combined tension torsion tests, generated based
on experimental data as published in Nörenberg and Mahnken (2013). For this, a non-linear regression model
in combination with an autoregressive moving average process (ARMA) is used. The regression model is an
approximation of the experimental data dependent on a non-linear regression function with a finite number of
fitting parameters, whereas the ARMA model describes the residuals between the experimental data and the fitted
regression function. The resulting density functions forE andν in Figure 3 demonstrate both random variables
almost as normally distributed. Therefore we can apply the relations

1. E(θ1) = E0 + E1θ1

2. ν(θ2) = ν0 + ν1θ2,
(33)

whereθ1 andθ2 are the corresponding Gaussian random variables and the corresponding values for the coefficients
are:

1. E0 = 1427 MPa, E1 = 145 MPa

2. ν0 = 0.337, ν1 = 0.062.
(34)

Here, E0 and ν0 represent the expected values andE1 and ν1 the corresponding deviations for both random
variables.

We point out again, that the random variables in Eq.(33) can be represented by PCEs with two summands, which
is due to the normal distributions of both parameters in Figure 3.

Next, we calculate the density functions of two additional parametersG(ω) andK(ω) in Eq.(24). To this end we
use a common result from statistics that for two independent random variablesX1 andX2 with associated density
functionsfX1 andfX2 the distribution density of the quotientfX1/X2 is then given by, see e.g. Dominique and
Aime (1999)

fX1/X2(z) =
∫

R

|t|fX1(zt)fX2(t)dt. (35)

Applying Eq.(35) to Eq.(24) we obtain the shear and the bulk modulus, which are stochastically dependent onE
andν:

G(ω) ≈
E(θ1)

2(1 + ν(θ2))
, K(ω) ≈

E(θ1)
3(1 − 2ν(θ2))

. (36)
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Figure 3: Case I: Density functions for stochastically independent parameters generated from synthetic data

Figure 4 shows the corresponding density functions. WhereasG has a Gaussian distribution, the distribution
for K is non-Gaussian. However, in the sequel for simplicity we will use a Gaussian representation forK, thus
resulting into

1. G(θ′1) = G0 + G1θ
′
1

2. K(θ′2) = K0 + K1θ
′
2

(37)

whereθ′1 andθ′2 are the corresponding Gaussian random variables. The corresponding values are

1. G0 = 534 MPa, G1 = 60 MPa

2. K0 = 1459 MPa, K1 = 450 MPa.
(38)

Using the Gaussian random variablesG andK and the corresponding decomposition (26), we obtain the solution
according to the iterative scheme in Eq.(31). Figure 5 shows the contour plot for the PC-coefficients of the dis-
placement vectoru = [u0 u1 u2]

T . In this contextu0 represents the expected value,u1 the deviatoric fluctuation
andu2 the volumetric fluctuation inx- andy-direction. As one can see, the fluctuating parts have a much smaller
value (by a factor of10) then the deterministic parts (expected value).
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Figure 4: Case I: Density functions for stochastically dependent parameters generated from Eq.(35) and Eq.(36),
Figure (b) also shows the simplified Gaussian density function forK with the same variance as for the non-
Gaussian density.
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Figure 5: Case I: PC-coefficients for displacements inx- andy-direction.

5.2 Case II:E and G are Stochastically Independent Parameters

In the second case we assume Young’s modulusE(ω) and the shear modulusG(ω) as stochastically independent
input material parameters with known density functions. For this reason, Eq.(24.1) can be expressed asν =
E
2G − 1. That means,ν becomes dependent onE andG, since in the linear isotropic case we always have only
two independent material parameters. The resulting density functions forE andG in Figure 6 demonstrate both
random variables almost as normally distributed. Therefore, analogously to Eq. (33) we can apply the relations

1. E(θ1) = E0 + E1θ1

2. G(θ2) = G0 + G1θ2

(39)

with the corresponding values

1. E0 = 1427 MPa, E1 = 145 MPa

2. G0 = 545 MPa, G1 = 43 MPa.
(40)
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Figure 6: Case II: Density functions for stochastically independent parameters generated from synthetic data.
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Rearranging the equations (24) results into

1. ν(ω) ≈
E(θ1)
2G(θ2)

− 1, 2. K(ω) ≈
G(θ2)E(θ1)

3(3G(θ2) − E(θ1)))
≈

E(θ1)

3(1 − 2ν(θ̂))
. (41)

Eq.(41.2) offers two approaches for determination ofK. To avoid the multiplication of the random variables in the
numerator and the division of the random variables in the denominator, we choose the second approach, that is, we
use the expression ofν with the independent variablesE andG in order to enable the calculation ofK by aid of
Eq. (36). In addition, a comparison of the experimental density function ofν in Case I and the (calculated) density
function in Case II is possible.

Figure 7 shows the corresponding density functions. In this case, thebulk modulusis almost Gaussian. The
smaller variance ofK in Figure 7 (compared to Figure 4) can be explained by the fact that the variation of the
calculatedPoisson’s ratioin Figure 7 (which is used for the determination ofK) is smaller than for Case I. This is
a consequence of the computation ofν with a less distributedshear modulusG. Also, the measured values ofG in
Case II may be determined more precisely than those ofν in Case I, which is the reason for the higher variation of
ν and subsequently forK in Case I.

Since both quantities have a Gaussian distribution we use the representation

1. ν(θ′1) = ν0 + ν1θ
′
1

2. K(θ′2) = K0 + K1θ
′
2

(42)

with the corresponding values

1. ν0 = 0.33, ν1 = 0.029

2. K0 = 1252 MPa, K1 = 220 MPa.
(43)
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Figure 7: Case II: Density functions for stochastically dependent parameters generated from Eq.(35) and Eq.(41);
(b) also shows the simplified Gaussian density function forK with the same variance as for the non-Gaussian
density.

Figure 8 shows the contour plot for the PC-coefficients of the displacement vectoru = [u0 u1 u2]
T .

5.3 Comparison of Case I and Case II

Table 1 presents the number of iterations for the preconditioned gradient method summarized in the equations
(31). The tolerance for the accuracy of||R(u)|| was chosen astol = 5 ∙ 10−9 for both cases. As can be seen,
15 iterations become necessary for Case I in order to achieve the same tolerance as for Case II with11 iterations.
The reason for this is the large deviation of the independent parameterν(ω) and the resulting deviation on the
dependent parameters. Case II considersG instead ofν as an input parameter. The experimental values ofG are
much more accurate and the deviation is minor. As a consequence, less iterations become necessary.
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Figure 8: Case II: PC-coefficients for displacements inx- andy-direction.

Iterations Case I Case II
1 2.119622607e − 01 2.1196226079e − 01
2 4.780679675e − 02 2.773368156e − 02
...

...
...

10 1.447632680e − 06 7.686034244e − 09
11 3.978522991e − 07 1.180290246e − 09
12 1.093495508e − 07
13 3.005583969e − 08
14 8.261535020e − 09
15 2.270964000e − 09

Table 1: Residuals of the preconditioned gradient method for Case I and Case II withtol = 5 ∙ 10−9

In the following we compare the displacement density functions of nodeA (shown in Figure 2.b) for both cases in
x-direction. After the computation ofu = [u0 u1 u2]

T we are able to express it in the form (27). By numerical
calculation or by analyticalconvolutionwe obtain the density functions for nodeA in x-direction shown in Figure
9. As becomes apparent, with large variance in the input parameters the calculated solution also obtains a large
variance. That is,,,bad” (or insufficient) measured values for the input parameters (in this case forν(ω)) lead to a
more scattered solution.

In summary the comparison of both cases illustrates the advantage of independent parameters with an accurate
distribution with smaller variance over less accurate distributions with higher variance with respect to the iterative
solution behavior and reliability.
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6 Conclusion and Outlook

We have presented a general approach for solving stochastic partial differential equations (SPDEs) in the linear
elastic case with the stochastic finite element method (SFEM). To this end the SPDE is discretized in the spatial
domain (with the standard finite element method) and in the stochastic domain. For discretization in the stochastic
domain we use the Polynomial Chaos Expansion (PCE) which divides the random fields in deterministic and
stochastic parts. The final equation system is build for two stochastic independent Gaussian input parameters.
This equation system consists of three stiffness matricesK0, K1 andK2 resulting from the decomposition of
the elasticity matrixC in a deviatoric and a volumetric part. Here,K0 describes the deterministic part (expected
value),K1 the deviatoric fluctuation andK2 the volumetric fluctuation. We compare two different cases for input
parameters. In Case I we assume the distribution ofYoung’s modulusE andPoisson’s ratioν to be known and
independent. Case II considers the distribution of theshear modu- lusG to be known instead ofν. In both cases,
further dependent parameters are calculated in terms of the independent parameters.

In the representative example, the experimental values forν in Case II are less accurate compared toG in Case
I, which ensues a larger variance for the density function ofν as forG. As a result, the density function of the
displacement vectoru has a larger variance for Case II as for Case I. The contour plots of the PC-coefficients for
the displacements resulting from the numerical simulation of aplate with a ring holeillustrate the expected values
and the fluctuation ofu as a consequence of the fluctuation for the respective independent parameters. In summary
we conclude, that a larger variance in the indepenent parameters results into a larger variance of the FE-results.

Since we have independent experimental measurements, the input parameters are considered as stochastically
independent. However, in general they might correlate with each other. This possibility will be considered in
future work where we will expand the procedure of this paper to the nonlinear case. Correlation coefficients of
paired input parameters (which are given by experimental data) will be determined in order to get an accurate
solution. Our further attempt is to focus on hybrid materials where we will have different material spatial domains.
The goal is, eventually to compute statistics of the solution, e.g. compute probabilities, to exceed some threshold
at an interface.
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