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A Stochastic Finite Element Method with a Deviatoric-volumetric Split for
the Stochastic Linear Isotropic Elasticity Tensor

A. Dridger, I. Caylak, R. Mahnken

This paper presents a numerical method for solution of a stochastic partial differential equation (SPDE) for a linear
elastic body with stochastic coefficients (random variables and/or random fields). To this end the stochastic finite
element method (SFEM) is employed, which W#eBNER'’ s polynomial chaos expansion in order to decompose

the coefficients into deterministic and stochastic parts. As a special case, we consider isotropic material behavior
with two fluctuating parameters. Computational approaches involRgERKIN projection are applied to reduce

the SPDE into a system of deterministic PDEs. Furthermore, we consider normally distributed random variables,
which are assumed to be stochastically independent, and which establish the number of stochastic dimensions.
Subsequently, the resulting finite element equation is solved iteratively. Finally, in a representative example for a
plate with a ring hole we study the influence of different variances for material parameters on the variances for
the finite element results.

1 Introduction

In general, engineering structures exhibit heterogeneous materials, where adhesives, polycrystalline and compos-
ites are typical examples. The heterogeneity leads to uncertainty in the material parameters and, consequently, to
uncertainty in the mechanical response. Therefore, macroscopically heterogeneous materials should be modelled
by a stochastic rather than a deterministic approach. In addition, nowadays, hybrid materials are very popular. Due
to the different types of attachments, uncertainties may occur especially at the interfaces of the material compo-
nents. Thus, the computation of response statistics at the interfaces is one potential goal, which we want to address
in the near future. Mathematically, such systems can be described by stochastic partial differential equations
(SPDEs) with stochastic fields, which can be solved by the stochastic finite element method (SFEM).

There are two different approaches for SFEM in the literature: Firstly, the perturbation approach (Liu et al.
(1986a,b); Wang et al. (2015)) which is based on a Taylor series expansion of the system response and secondly,
as a more prominent approach, the spectral SFEM wiRelggmomial Chaos Expansidi?CE) and/oKarhunen-

Loeve (KL) expansions are introduced to represent random fields with a series of rafdonite polynomials

(Feng et al. (2016); Ghanem and Spanos (1991); Keese (2004); Luo (2006); Matthies and Keese (2005); Sudret
and Der Kiureghian (2000)). In this work, the second approach is favoured in which the stochastic input parameters
and, accordingly, the system response are expanded with the PC expansiddofiteeCarlo(MC) simulation

method (Hurtado and Barbat (1998); Papadrakakis and Papadopoulos (1996)) can also be combined to both ap-
proaches. Though characterized by its simplicity, however, it is expensive for large systems with an increasing
number of input parameters or growth of the variances. Nevertheless, it is often used to investigate the accuracy of
more advanced approaches. A detailed state-of-the-art review for stochastic finite element method can be found in
Stefanou (2009).

The aim of this work is to consider the uncertainty of a linear elastic body using the SFEM, where an adhesive
material is applied as a prototype. The uncertainty is considered by random material parameters, which are mod-
elled as stochastic variables. These variables are expanded with PCSahelkin approach is used to solve the
associated unknown coefficients of the solution. The key idea of our contribution is the split of the linear elasticity
tensor into a volumetric and a deviatoric part in order to allow the analysis of the volumetric- and the deviatoric
fluctuation. Then, from experimental data the distribution of the random variable¥puag’s modulu#’'(w) and

the shear modulugz(w), are known. Consequently; andG are expanded with PC, andGalerkin projection,
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see e.g. Ghanem and Spanos (1993); Matthies and Keese (2005), is applied to reduce the SPDE into a system of
deterministic PDEs.

In a further part of this work, normally distributed material parameters are considered as stochastically independent
input quantities for the stochastic process. To this end, two different cases are distinguished: InfECase |
andrv(w) are given as two input parameters based on experimental data. Case Il co6&ider® be given,

instead ofv(w). The objective is the calculation of the uncertain system response (displacement). Another similar
formulation to analyze the response displacement variability involving multiple uncertain material properties can
be found in Graham and Deodatis (2001). Since, in both cases, additional elastic constants are calculated in
dependence of the independent parameters, the number of stochastic dimensions is equal to the number of the
independent input parameters. Finally, the stochastic finite element matrix equation consists of three contributions,
namely the deterministic part as well as the variations of a volumetric and a deviatoric part.

An outline of this work is as follows: Section 2 summarizes the governing equations and the variational formulation
for a linear elastic body with fluctuating material parameters. Section 3 and 4 provide respectively the spatial and
the stochastic discretization. Then, in the representative example in Section 5 we consider two approaches (Case
| and Case Il) for a two parameter model of isotropic linear elasticity. To this end, we simulate a plate with a ring
hole in plane strain subjected to uniaxial tension with the SFEM. Results of the deterministic solution as well as
the influence of the distribution for the input parameters on the volumetric and deviatoric part are presented.

2 Basic Equations
2.1 Random Fields and Expected Value

For the subsequent exposition on the uncertainty of an elastic body, the following definitions are essential: Consider
the probability spac&?, &, P), where is the set of elementary evenlsjs thes-algebra an® is the probability
measure. Aandom variableZ is a measurable function

Z:Q—V 1)

whereV is an appropriate measurable space (see Lasota and Mackey (1994) for more information). As an example,
the uncertainty in the elasticity tens6r may be modelled by its definition as a function over the medium domain
R C R3 as arandom variable or more precisely, as a stochastic field Vanmarcke (1983):

C:RxQ—V, (z,w) —» C(z,w). 2

For later use, we define also the expected value for the random vafiableq.(1) as, see e.g. Lasota and Mackey
(1994),

E(Z)= [ ZdP = | Z(w)dP(w). @)
[7]

2.2 Governing Equations for an Elastic Body

In this paper we consider a linear elastic material behavior characterized by two fluctuating material input param-
eters. Therefore, as mentioned above, the elasticity teli&orw) becomes a stochastic field. In summary, based
on the known equations in continuum mechanics, the following governing equations are used:

1. V.o(z,w)=0
2. o(x,w)=C(z,w): e(z,w) 4)
3. e(z,w) = %(Vu(a:,w) + (Vu(z,w))T).

In addition to the elasticity tens@¥ we have:o is the Cauchy stress tensaris the system response- (respectively
displacement) vectog is the strain tensor an®¥f denotes the standard Nabla operator. For the position vector
x € Rholds, wherek C R? is some bounded, admissible region of the elastic body with corresponding boundary
OR. In Eq.(4.1) we neglect body forces. Dirichlet and Neumann boundary conditions are considered as

u=u0ndR,, t=0 -nondR, (5)
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with non-intersecting boundariés? = OR, U OR,, and0 = OR, N OR,,.

We remark that each system property like boundary conditions, external forces, geometry etc. may have an un-
certainty. However, in this work we focus on the parameter uncertainty for the elasticity ©@rasccording to

Eq.(2) such that the displacement vecidrr, w), the stress tenser(x,w) and the strain tensef(x, w) become
stochastic fields.

2.3 Variational Formulation

In addition to the spatial integration, a stochastic integration over the stochastic domain is introduced, thus resulting
into the following weak form:

/Q/R(Ss(:v,w)ZC(:B,w):s(a:,w)deIP’:LARgi(w)éu(w,w)daRdP. ©)

The aim is to findu € R such that for all testfunctiong Eq.(6) is satisfied. In order to decompose the determin-
istic and the purely fluctuating part the random variables are divided as

1. u(z,w) = u(x) + u(z,w)
2. e(x,w) =&(x) + e(x,w) @
3. C(z,w) = C(z) + C(z,w).

In these relations each first term represents the deterministic part (expected value) and the second term the fluctu-
ating part. With an analogous decompositionfaxfz, w) andde(x,w) Eq.(6) results into

/6?:(90)T . C(x) : &(x)dR + //5E(w,w)T . C(a) : &(x)dRdP . .
R Q R

3 4
+ //5é(w)T:é(m,w):é(m)deP + //5E(w,w)T:6’(w,w):?:(w)deIP...

Q R Q R

+ //6s($)T:C?m):E(x,w)deIP’ + //5E($aw)Tig(w):E(:c,w)de[P,,,

Q R Q R

7 8
+ 6e(x)" : C(z,w) : &(x, w)dRdP + 6&(x,w)T : C(x,w) : &(x,w)dRdP . ..
[ [

= Zféﬂ(a:)dR—i-Q/

Compared to the termk — 7 the term8 in Eq.(8) merely consists of purely fluctuating parts, and therefore will
be neglected in the sequel. For numerical solution of the weak form in Eq.(8) the SFEM is used where spatial and
stochastic discretization are applied as described next.

/ F(x)dii(z,w)dRAP.  (8)

R

3 Spatial Discretization

Upon using Voigt's matrix notation on the element domain, we have the displacement approximation

u(z,w) =Y Ni(@)u;(w) = N(z)u(w) ©)
=1
and the strain approximation
e(z,w) = B(z)u(w), (10)
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whereB is the associated derivative matrix of shape functidhs By applying the Galerkin projection, see e.g.
Hackbusch (1989); Matthies and Keese (2005), the spatial part is

/ 2)7C(z,w)B(z)dR u(w / an

0°R

K !
WhereA is the assembly operator afid is the region of one finite element. We denote
K(z,w)u(w) = f(z) (12)

as the semi-discrete form. In this contextis the number of nodes per element ands the number of elements.
Using the relations (7), Eq.(11) becomes

/ B(z)dRa / B(z)dRii(w). .

+ A" 1/ TC(a,w)B(x)dRu + A" 1/ B(z)dRu(w) ..

/ fa (13)

(Ko@) + K(z,w)) @+ @w)) = f. (14)

or in a short decomposed form

In particular, K, represents the deterministic part and respectiﬁél}ne fluctuating part:

L K@= A, [ @ CwB@k,
‘R

2 Kww)= A, [ B@Clew)B)n

Eq.(13) is the starting point for the subsequent stochastic discretization.

(15)

4 Stochastic Discretization

In order to perform the stochastic discretization we first have to introduce the multi-variate Hermite polynomials
and the polynomial chaos expansion. Similar to the spatial discretization the multi-variate Hermite polynomials
serve as ansatzfunctions for the stochastic domain.

4.1 Multi-variate Hermite Polynomials

The multi-variate Hermite polynomials are defined by, Keese (2004); Luo (2006)
0) = [ ] ha. (60), (16)
ieN
wherea = (ay,as,...) is a multi-index and = (6,60, ...) is the infinite vector of standard Gaussian random

variables. In these relatiorts,, are theprobabilistic Hermite polynomialsThe first six terms have the following
form:

ho(0) = h3(0) = 6° — 36
hi(6) =0 ha(0) = 6" — 60 + 3 (17)
ho(0) = 6% — 1 hs(0) = 6° — 106° + 156.
Due to orthogonality of the polynomials it follows, Luo (2006):
E(Hp) =1, E(HoHg) = 6ap; E(H,) =0 Va#0, (18)

whereE(H,,) denotes the expected valuef, according to Eq.(3).
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4.2 Wiener's Polynomial Chaos

The exact Polynomial Chaos Representation (PCE) of the random vaui@blén (12) is written as

w(w) = u(Ow)) = Y u Ha(0(w)), (19)
acJ
respectively
Clz,w) = Clz,0w)) = Y Cy(z)Ha(O(w)) (20)
aeJ

for the locally dependent elasticity matrix withas an infinite set of indices.

To discretize the random fields in the SPDE, a representation into a finite number of mutually independent stan-
dard normally distributed random variablés= (6,,0-,...,0,,) is applied, Matthies and Keese (2005). The
approximated representation which is important for the numerical computation is then written as

ww) = u@) = u,Ha(0) (21)
aej
Clz,w) = Clz,0) =Y Co(x)Ha(8) (22)
aej

with J as a finite set of indices, Matthies and Keese (2005). In this context, we should notg that: and

Cy(z) = C(x) applies, i.e. we obtain the expected values.

4.3 PCE of a Two Parameter Model

As a special case of linear elasticity we consider a linear elastic isotropic material described by two stochastic
independent material parameters. Furthermore, the considered material is regarded as homogeneous with respect
to the expected value, that is, the variances of the input parameters are assumed to be identical for each location.
Therefore, for the subsequent analysis we can neglect the spatial dependgfck iRurthermore we assume that

the input parameters are Gaussian which is also verified by the experimental data used in the example Hh Section

The elasticity matrix for a linear isotropic material is given as

Q = Qdev + Qvol = QGlgpv + KmT (23)
with
FE
1. G = ——— shear modulus,
2(1+v)
5 (24)
2. K = ————— bulk modulus
3(1—2v)
and
1 1
1 1
c c T c 1 1
ldev :l —gmm ’ l - 1 ) m = 0 (25)
2 1 0
2
i 0

By use of the Gaussian random variab{ggy) = Go + G16;(w) and K (w) = Ky + K;602(w) we obtain the
stochastic elasticity matrix

Q(é) =2(Go + G101)I5,, + (Ko + K105)mm”

=2GoIS,, + Komm” +2G115,, 6, + Kymm? 0, (26)
N—— N—_——
CO Ql Q2

= Qo +Q191 +Q292-
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Eq.(26) constitutes a PCE of the elasticity matrix. Since we assume the random vafadieds as normally
distributed the PCE consists of two summands, each associated with one standard Gaussian randoif} variable
For this reason we may represent their PCE withmalindices instead of multi-indices. Consequently, the system
response depends also on two standard Gaussion random variables:

E(é) = Uy + Uy 01 + Uy (27)
4.4 Galerkin Projection

Now we use the expansions (26) and (27) and apply the Galerkin projection explained in Hackbusch (1989);
Matthies and Keese (2005) on Eq.(13):

A / Hj(9) / B(x)"CoB(z)dRdPu, . .
Q

°R

AL / H(0) / B(2)"CoB(x)dR (u;01 + uy6s) dP ...
Q eR

+A.- / Hps(9) / B(z)" (C161 + Cy0) B(z)dRdPL . ..

~ A", [ #:® [ jwN@dre vsed. @
Q ‘R

By exploiting the Hermite polynomial properties of Eq.(18) with Eq.(3) and neglecting&micq.(8) it follows
for Eq.(28):

=0 — Kouy+ EKu +Kyuy+... :io;ég
B=1 — Koﬂ1+K1ﬂo :ilzg
=2 — Ku,+ Ky, =f,=0
with
L Ko= A, [ B@TCoB@R
‘R
— Me T
2. Ky = A" / B(z)"'C,B(z)dR (29)
°R
o Ne T
3. K, = A\, [ BwC,B@aR
°R
In matrix notation we obtain
Ko K1 K2 Uy io
1. Ku=f, where?2. K, K, 0 wu | =] 0 |. (30)
KQ Q Ko Ug Q
——
K u f

Eq.(30) constitutes a deterministic system of equations. Eacim Eq.(29) and Eq.(30), respectively, are obtained
as in the standard finite element method. The solution vectorEq.(30) represents the PC-coefficients for the
displacement. It is used to determine the density functiam(6f and thereby compute the statistics.
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4.5 Numerical Implementation

A common feature of the standard FEM is the banded structure of the stiffness matrix, which also holds for the
stiffness matriceg(,,, &K ; and K, in Eq.(30). However, in general this does not imply a banded structure for the
total matrixK in Eq.(30). Therefore, for large sized problems a direct solver is not practical for solutipard
consequently we use an iterative scheme wigineonditioned gradient metha follows, Saad (2003):

-1

,,; =19, — K E(En) (31)
with
O [E, 0 0
1. R(u,)=Ku,—f, 2 K=| 0 K, 0 (32)
0 0 K,

Figure 1 illustrates the iterative scheme for the linear elastic SFEM, compared to the standard linear elastic FEM.
It becomes obvious, that for the SFEM with two independent normally distributed parameters, two additionally
loops become necessary. In this way, an increase of independent parameters and/or the order of their PCE (for non-
Gaussian input parameters for example) results to an increase of the nurfdreéhe matrice€’, and respectively

K, i=1,..m.

FEM QO)QlaQQ?"')Qn SFEM

C,
ﬂ = 1
FEM i=itl FEM PTbeen

. . n = Number of
with QQ — Ko with Q'L'—l — &'_1 stochastic

dimensions

System of equations:
Kﬁlf For normally distributed input parameters —
= L K, K, K, g £
K, K, 0 v | =] 0
K, 0 K, ) 0
‘V'
u =y [terative solution

u=[uy Yy ﬂz]T

Figure 1: Comparison between FEM and SFEM

5 Representative Example

This section illustrates some stochastic properties of our two parameter model of the previous section for a plate
with a ring hole in a numerical example. The geometry, its loading and the FE-discretization are depicted in Figure
2. The loading ig = 200 N/m. For symmetry reasons only a quarter of the structure is investigated, as marked in
Figure 2.b. Note, that in this way we tacitly assume also a symmetry for the stochastic discretization.

We consider two different cases. Case | is based on the assumptiofothrags moduluandPoisson’s ratioare

two given independent parameters, which means, that the distributions (respectively the density funclio) of
andv(w) are assumed to be known. Case Il assumes a known distribution for the shear nio@uilusstead for
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Poisson’s ratio’/(w). In both cases, the additional dependent elasticity parameters are calculated in terms of the
independent parameters. The material under consideration, which provides the experimental data, is an adhesive
material. Experimental observations of this material are publishe@iamberg and Mahnken (2013) for combined
tension torsion tests.

20

20 J-— == 9 Eb_ ......... B

nodeA

a) | 3 b)

Figure 2: Plate with a ring hole: a) Geometry and b) finite element mesh of triangular elements

5.1 Case I:F and v are Stochastically Independent Parameters

We assume Young’'s modulus(w) and Poisson’s ratio(w) as stochastically independent parameters with known
density functions. One general framework for statistical analysis in this work is the generation of synthetic data.
Thus, to ensure more reliable results we use synthetic data for combined tension torsion tests, generated based
on experimental data as published irgnberg and Mahnken (2013). For this, a non-linear regression model

in combination with an autoregressive moving average process (ARMA) is used. The regression model is an
approximation of the experimental data dependent on a non-linear regression function with a finite number of
fitting parameters, whereas the ARMA model describes the residuals between the experimental data and the fitted
regression function. The resulting density functions fbandv in Figure 3 demonstrate both random variables
almost as normally distributed. Therefore we can apply the relations

1. E(Gl) =FEy+ E10¢

33
2. v(02) = v+ v10a, (33)

wheref; andf, are the corresponding Gaussian random variables and the corresponding values for the coefficients
are:
1. Ey=142TMPa E; = 145 MPa

(34)
2. vy = 0.337, v1 = 0.062.

Here, Ey and vy represent the expected values afid and v; the corresponding deviations for both random
variables.

We point out again, that the random variables in Eq.(33) can be represented by PCEs with two summands, which
is due to the normal distributions of both parameters in Figure 3.

Next, we calculate the density functions of two additional paramété¢rs and K (w) in Eqg.(24). To this end we
use a common result from statistics that for two independent random varigblkasd X, with associated density
functions fx, and fx, the distribution density of the quotielfk ,x, is then given by, see e.g. Dominique and
Aime (1999)

Fxoxa(2) = / s (=) s (1), (35)
R

Applying Eqg.(35) to Eq.(24) we obtain the shear and the bulk modulus, which are stochastically depenglent on
andv:
E(6)

K@)~ s = m

(36)
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Figure 3: Case |: Density functions for stochastically independent parameters generated from synthetic data

Figure 4 shows the corresponding density functions. Wheteéasis a Gaussian distribution, the distribution
for K is non-Gaussian. However, in the sequel for simplicity we will use a Gaussian representationtifors
resulting into

G(67) = Go + G167

' 37
2 K(8Y) = Ko+ K10, 37)
whered| andd), are the corresponding Gaussian random variables. The corresponding values are
1. Gp = 534 MP G1 = 60 MPa
0 a 1 (38)

2. Ko =149 MPa, K; = 450 MPa

Using the Gaussian random variabl@sand K and the corresponding decomposition (26), we obtain the solution
according to the iterative scheme in Eq.(31). Figure 5 shows the contour plot for the PC-coefficients of the dis-
placement vecton = [u, u; u,]T. In this contextu, represents the expected valug,the deviatoric fluctuation

andu, the volumetric fluctuation in:- andy-direction. As one can see, the fluctuating parts have a much smaller
value (by a factor oi0) then the deterministic parts (expected value).

0.01 0.001 ‘ ‘
calculated
Gaussian -----
2 0.008 41 2 00008 -
%) %)
T T
Q 0.006 4 QO 0.0006 |
> >
£ £
S 0.004 4 & 0.0004 |
© ©
Q Q
o o
a  0.002 4 & 0.0002
0 1 1 1 0 e
300 400 500 600 700 800 0 500 1000 1500 2000 2500 3000 3500
G [MPa] K [MPa]
(a) Density function for thehear modulus (b) Density function for thdulk modulus

Figure 4: Case |: Density functions for stochastically dependent parameters generated from Eq.(35) and Eq.(36),
Figure (b) also shows the simplified Gaussian density functionifowith the same variance as for the non-
Gaussian density.
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Figure 5: Case I: PC-coefficients for displacements-iandy-direction.

5.2 Case ll: E and G are Stochastically Independent Parameters

In the second case we assume Young's mod#al(is) and the shear modulys(w) as stochastically independent
input material parameters with known density functions. For this reason, Eq.(24.1) can be expressed as
% — 1. That meansy becomes dependent dnandG, since in the linear isotropic case we always have only
two independent material parameters. The resulting density functiords &md G in Figure 6 demonstrate both

random variables almost as normally distributed. Therefore, analogously to Eq. (33) we can apply the relations

1. E(6y) = Eo+ Ev6,

39
2. G(62) = Go + G106, 9
with the corresponding values
1. Ey =1427 MPa, E; = 145 MPa (40)
2. Go =545 MPa, G, =43 MPa
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0.0025 |- -
z 2 0008 ]
2 2
0.002 - N
[ [
fa) Qo  0.006 N
2 0.0015 12
3 S 0.004 | e
© L 4
8 0001 s
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0 1 1 1 I 1 0 1 1 1
800 1000 1200 1400 1600 1800 2000 300 400 500 600 700 800
E [MPa] G [MPa]
(a) Density function folyoung’s modulus (b) Density function foshear modulus

Figure 6: Case Il: Density functions for stochastically independent parameters generated from synthetic data.
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Rearranging the equations (24) results into

_ E0)

G(02)E(01) . E(6)
l.v(w) =~ 2G(0,)

(3G(62) — E(61))) ~ 3(1 —2v(D))’ “

-1, 2. K(w) = 3

Eq.(41.2) offers two approaches for determinatio&ofTo avoid the multiplication of the random variables in the
numerator and the division of the random variables in the denominator, we choose the second approach, that is, we
use the expression ofwith the independent variablds andG in order to enable the calculation &f by aid of

Eqg. (36). In addition, a comparison of the experimental density functienmfCase | and the (calculated) density
function in Case Il is possible.

Figure 7 shows the corresponding density functions. In this casdyultemodulusis almost Gaussian. The
smaller variance of< in Figure 7 (compared to Figure 4) can be explained by the fact that the variation of the
calculatedPoisson’s ratian Figure 7 (which is used for the determination/dj is smaller than for Case I. This is

a consequence of the computationafith a less distributedhear modulugs. Also, the measured valuesGfin

Case Il may be determined more precisely than thoseimiCase I, which is the reason for the higher variation of

v and subsequently fdk in Case I.

Since both quantities have a Gaussian distribution we use the representation

1. v(6)) =vo+110]

42
2. K(0) = Ko+ K10, (42)

with the corresponding values

vy = 0.33, v = 0.029

' (43)
2. Ko=1252MPa K; =220 MPa

14 0.002 ‘
calculated ——
12 - i Gaussian -----
z z
= o 0.0015 R
a 10r 1 2
[ [
o gl 1 0o
e 2 0001 g
3 °r 1 3
© ©
Qo 4L 4 2
2 O 0.0005 - i
[= 9 o
2t N
0 1 1 1 I 0 1 - L L ) I
0.1 0.2 0.3 0.4 0.5 0.6 o 500 1000 1500 2000 2500
v K [MPa]
(a) Density function ofoisson’s ratio (b) Density function obulk modulus

Figure 7: Case Il: Density functions for stochastically dependent parameters generated from Eq.(35) and Eq.(41);
(b) also shows the simplified Gaussian density functionAowith the same variance as for the non-Gaussian
density.

Figure 8 shows the contour plot for the PC-coefficients of the displacement veetdn,, u; u,]7.

5.3 Comparison of Case | and Case Il

Table 1 presents the number of iterations for the preconditioned gradient method summarized in the equations
(31). The tolerance for the accuracy |@R(u)|| was chosen atl = 5 - 1072 for both cases. As can be seen,

15 iterations become necessary for Case | in order to achieve the same tolerance as for Cagd litevikions.

The reason for this is the large deviation of the independent paramet¢rand the resulting deviation on the
dependent parameters. Case Il consideisstead ofv as an input parameter. The experimental values afe

much more accurate and the deviation is minor. As a consequence, less iterations become necessary.

176



VR
KRARER
NSRS K
1% A"“E‘ <7

I
KD
VAV
N

>
<>
V.Y

A

A,
KBTI
NI
VAVAVAVAVAVVAVAVAN

<]

/N

QVvAvAVa Y vavavy
ARIIROO
VALY AN AT
4&;:;55‘ XNOK
<>

S
<

N7
A
Vi
4y,

Vav.
NAVAY
L\
YAV

¥

%
X
Y,

NN/
R0
1%
N
AYAVAY
<]
vt
PaVAVAVZ4)
VA
TAVAVAVA
o
4
$>
XK
VAYAY
V)
3
N

ViV,
VOVAY
O
PATARY
AV
N
T
e
IR
X
ZAVAN
YAVAV
VAVAYVAY
A

\VAVAVAS 4>

I\

K
oA
PR
) DA
K

Vi

NN
s
P
X
)
Kl
VAVAVA

V4
VAV

AVAVAY

W

Figure 8: Case Il: PC-coefficients for displacements-imndy-direction.

Iterations Case | Case ll
1 2.119622607¢ — 01  2.1196226079¢ — 01
2 4.780679675¢ — 02  2.773368156e¢ — 02

10 1.447632680e — 06 7.686034244e — 09
11 3.978522991e — 07  1.180290246e — 09
12 1.093495508e — 07
13 3.005583969e — 08
14 8.261535020e — 09
15 2.270964000e — 09

Table 1: Residuals of the preconditioned gradient method for Case | and Case#bitls - 10~°

In the following we compare the displacement density functions of ab¢hown in Figure 2.b) for both cases in
x-direction. After the computation af = [u, u; u,]’ we are able to express it in the form (27). By numerical
calculation or by analyticatonvolutionwe obtain the density functions for nodein x-direction shown in Figure

9. As becomes apparent, with large variance in the input parameters the calculated solution also obtains a large
variance. That is,bad” (or insufficient) measured values for the input parameters (in this casé.fy lead to a

more scattered solution.

In summary the comparison of both cases illustrates the advantage of independent parameters with an accurate
distribution with smaller variance over less accurate distributions with higher variance with respect to the iterative
solution behavior and reliability.

T T
1200 - Casel: Ev 1
Case ll: EG —=—

1000 -

600 -

Probability Density

0 L L I L L Il
-0.004 -0.0035 -0.003 -0.0025 -0.002 -0.0015 -0.001 -0.0005
Uy [mm]

Figure 9: Comparison of density functions for Case | and Case Il for dohexr-direction
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6 Conclusion and Outlook

We have presented a general approach for solving stochastic partial differential equations (SPDES) in the linear
elastic case with the stochastic finite element method (SFEM). To this end the SPDE is discretized in the spatial
domain (with the standard finite element method) and in the stochastic domain. For discretization in the stochastic
domain we use the Polynomial Chaos Expansion (PCE) which divides the random fields in deterministic and
stochastic parts. The final equation system is build for two stochastic independent Gaussian input parameters.
This equation system consists of three stiffness matri€gsk’; and K, resulting from the decomposition of

the elasticity matri>xC' in a deviatoric and a volumetric part. Het,, describes the deterministic part (expected
value), K, the deviatoric fluctuation anff’, the volumetric fluctuation. We compare two different cases for input
parameters. In Case | we assume the distributioroafng’s modulug’ andPoisson’s ratior to be known and
independent. Case Il considers the distribution ofshear modu- lugs to be known instead af. In both cases,

further dependent parameters are calculated in terms of the independent parameters.

In the representative example, the experimental values forCase |l are less accurate compared-tin Case

I, which ensues a larger variance for the density function @k forG. As a result, the density function of the
displacement vectan has a larger variance for Case Il as for Case I. The contour plots of the PC-coefficients for
the displacements resulting from the numerical simulationpléte with a ring holdllustrate the expected values

and the fluctuation o as a consequence of the fluctuation for the respective independent parameters. In summary
we conclude, that a larger variance in the indepenent parameters results into a larger variance of the FE-results.

Since we have independent experimental measurements, the input parameters are considered as stochastically
independent. However, in general they might correlate with each other. This possibility will be considered in
future work where we will expand the procedure of this paper to the nonlinear case. Correlation coefficients of
paired input parameters (which are given by experimental data) will be determined in order to get an accurate
solution. Our further attempt is to focus on hybrid materials where we will have different material spatial domains.
The goal is, eventually to compute statistics of the solution, e.g. compute probabilities, to exceed some threshold
at an interface.
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