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Propagation of Plane Waves in a Generalized
Thermo-magneto-electro-elastic Medium

Baljeet Singh, Aarti Singh, Nidhi Sharma

Abstract. In the present paper, the governing equations of a generalized thermo-magneto-electro-elastic medium
are formulated in the x-z plane. The plane wave solution of these equations indicates the existence of three quasi
plane waves, namely, quasi-P, quasi-T and quasi-SV waves. The thermo-magneto-electro-elastic medium is mod-
eled withLiNbO3 for computing the speeds of these plane waves. Effects of the frequency, thermal relaxation
time, electric coupling coefficient, magnetic coupling coefficient and angle of propagation on the speeds of these
plane waves are observed and shown graphically.

1 Introduction

Layered materials and composites have components which display some degree of piezoelectric coupling effects.
Piezoelectric materials have been applied in various fields including geophysics, electronics, communication, in-
strumentation and nondestructive evaluation and testing of materials. For general discussions of piezoelectric
effects, the standard books by Cady (1964), Tiersten (1969), Auld (1973) and Rosenbaum (1988) are referred.
Piezoelectric guided waves have been studied by Gazis (1960), Bleustein (1968), Nasser (1983), Nayfeh and Chien
(1992 a, b) and Nie et al (2009). Piezoelectric materials are integrated with the structural systems to form a class of
smart structures and are embedded as layers or fibres into multi functional composites. Various novel and practical
applications in many fields of technology have been promoted due to the better recognition and knowledge of the
complex phenomena behind the propagation of elastic waves in structural elements. For example, diagnostics of
structural elements is one such field, where the use of elastic waves increases rapidly every year. Applications of
elastic waves in a global sense for diagnosing structural elements are still at an early stage. Piezoelectric mate-
rials constitute another important research topic with respect to SHM applications. Piezoelectric transducers are
often used to excite and receive ultrasonic guided waves due to their low cost and an easy integration into existing
structures. Important contributions are listed in Nayfeh (1995), Liu and Xi (2002), Ostachowicz et al. (2012),
Giurgiutiu (2014) and Willberg et al. (2015).

In the classical theory of thermoelasticity given by Biot (1956), the thermal wave propagates with an infinite speed.
The non-classical theories of generalized thermoelasticity were introduced in the literature in an attempt to elim-
inate the shortcomings of the classical dynamical thermoelasticity. For example, Lord and Shulman (1967), by
incorporating a flux-rate term into Fourier’s law of heat conduction, formulated a generalized theory which in-
volves a hyperbolic heat transport equation admitting a finite speed for thermal signals. Green and Lindsay (1972),
by including temperature rate among the constitutive variables, developed a temperature-rate-dependent thermoe-
lasticity that does not violate the classical Fourier law of heat conduction, when the body under consideration has a
centre of symmetry and this theory also predicts a finite speed for the heat propagation. Chandrasekharaiah (1986)
referred to this wavelike thermal disturbance as the ’second sound’. The Lord and Shulman theory of generalized
thermoelasticity was further extended by Dhaliwal and Sherief (1980) to include the anisotropic case. Hetnarski
and Ignaczak (1999) presented a survey on the representative theories in the range of generalized thermoelasticity.

Magneto-electro-elastic materials display coupling behavior among electric, magnetic and mechanical fields. Magneto-
electro-elastic materials have various applications due to their ability of converting energy from one kind to the
other. These materials have been used in lasers, supersonic devices, microwave and infrared applications. Prob-
lems related to the wave propagation in thermo-elastic or magneto-thermo-elastic solids using these generalized
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theories have been studied by several authors (Paria, 1962; Nayfeh and Nemat-Nasser, 1971, 1972;, Roychoudhuri
and Chatterjee, 1990; Hsieh, 1990; Ezzat, 1997; Sherief and Yossef, 2004; Baksi and Bera, 2005; and Das and
Kanoria, 2009).

Thermo-magneto-electro-elastic materials are extensively used as electric packaging, sensors and actuators. Wave
propagation in thermo-magneto-electro-elastic solid is of much importance due to wide use of piezoelectric and
piezomagnetic materials in aerospace, automobile industries, etc. The theory of thermo-magneto-electro-elasticity
was developed due to the significant contributions by various authors, for example, Kaliski (1965), Coleman and
Dill (1971), Amendola (2000), Li (2003) and Aouadi (2007). This paper is motivated by the linear theory of
thermo-magneto-electro-elasticity developed by Aouadi (2007). In this paper, the time-harmonic plane waves in
a generalized thermo-magneto-electro-elastic medium are investigated. The speeds of these plane waves are com-
puted numerically by takingLiNbO3 as an example of the model. The dependence of wave speeds of these plane
waves on the frequency, thermal relaxation time, electric coupling coefficient, magnetic coupling coefficients and
angle of propagation is shown graphically.

2 Basic Equations

A body is considered that occupies the regionV of the Euclidean three-dimensional space at some instant and is
bounded by the piece-wise smooth surfaceV . The reference configurationV and a fixed system of rectangular
Cartesian axesOxi(i = 1, 2, 3) are taken to describe the motion of the body. Aouadi (2007) developed the gov-
erning equations for thermo-magneto-electro-elasticity for heat-flux dependent theory of Lebon (1982). Following
Coleman and Dill (1971), Amendola (2000) and Li (2003), he formulated linearized constitutive equations. The
field equations of thermo-magneto-electro-elasticity are generalized in context of Lord and Shulman (1967) theory
as
the equations of motion

σji,j + Fi = ρüi, (1)

the equations of the electric and magnetic fields

Di,i = ρ0, Bi,i = σ, (2)

the energy equation

ρT0η̇ = qi,i + ρh, (3)

the constitutive equations

σij = cijklekl + Fijkζk + λijkEk − aijT, (4)

Dk = −λkijeij + αkiζi + γkiEi + pkT, (5)

Bk = −Fkijeij + Akiζi + αkiEi + mkT, (6)

ρη = aijeij + mkζk + pkEk + cT, (7)

KijT,j = qi + τ0q̇i, (8)

and the geometrical equations

eij =
1
2
(ui,j + uj,i), Ei = −ψ,i, ζi = −φ,i (9)

whereFi, ρ0 andσ are the body force, electric charge density, and electric current density, respectively;ρ is the
mass density;h is the heat supply;ui, ψ andφ are the displacement vector, the electric potential, and the mag-
netic potential, respectively;σij , Dk, Bk andη are stress tensor, the dielectric displacement vector, the magnetic
intensity, and the entropy density, respectively;eij , Ei, ζi andT are strain tensor, electric field, magnetic field, and
temperature change to a reference temperatureT0, respectively;Kij is the conductivity tensor;cijkl, γkj , Akj , c,
λijk, Fijk, αkj , aij , pi andmi are constitutive coefficients connecting various fields like mechanical, magnetic,
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thermal and electric fields andτ0 is relaxation time. Latin subscripts range over the integers(1, 2, 3) summation
over and subscripts preceded by a comma denote partial differentiation with respect to the corresponding Cartesian
coordinate. The superposed dot denotes the partial differentiation with respect to timet. The constitutive parame-
ters satisfy the following symmetry conditions
cijkl = cklij = cjikl, λijk = λkij = λkji, Fijk = Fkij = Fkji,

aij = aji, γij = γji, αij = αji, Aij = Aji, Kij = Kji. (10)

3 Governing Equations in thex-z Plane

We consider a homogeneous and transversely isotropic thermo-magneto-electro-elastic medium of an infinite ex-
tent with Cartesian coordinate system(x, y, z), which is previously at a uniform temperature. We assume that the
medium is transversely isotropic in such a way that the planes of isotropy are perpendicular to thez-axis. The
origin is taken on the plane surface andz-axis is taken normally into the medium(z ≥ 0). The present study is
restricted to the plane strain parallel to thex-zplane with the displacement vectoru = (u1, 0, u3). In this section,
the equations of a transversely isotropic, homogeneous and linear thermo-magneto-electro-elastic medium in the
x-zplane are formulated after canceling the dependency of the y-direction as well as the derivative with respect to
y. With the help of the symmetry conditions (10) and the equations (4) to (9), the equations (1) to (3) reduce to the
following system of five partial differential equations inu1, u3, φ, ψ andT in absence of body forces, electric
charge density, electric current density and heat supply

c11
∂2u1

∂x2
+ c31

∂2u3

∂x∂z
− F11

∂2φ

∂x2
− 2F31

∂2φ

∂x∂z
− λ11

∂2ψ

∂x2

−2λ31
∂2ψ

∂x∂z
− a1

∂T

∂x
+ c55(

∂2u1

∂z2
+

∂2u3

∂x∂z
) = ρ

∂2u1

∂t2
, (11)

c55(
∂2u3

∂x2
+

∂2u1

∂x∂z
) − F31

∂2φ

∂x2
− λ31

∂2ψ

∂x2
+ c31

∂2u1

∂x∂z

+c33
∂2u3

∂z2
− F33

∂2φ

∂z2
− λ33

∂2ψ

∂z2
− a3

∂T

∂z
= ρ

∂2u3

∂t2
, (12)

λ11
∂2u1

∂x2
+ λ31(2

∂2u1

∂x∂z
+

∂2u3

∂x2
) + λ33

∂2u3

∂z2
+ α1

∂2φ

∂x2

+α3
∂2φ

∂z2
+ γ1

∂2ψ

∂x2
+ γ3

∂2ψ

∂z2
− p1

∂T

∂x
− p3

∂T

∂z
= 0, (13)

F11
∂2u1

∂x2
+ F31(2

∂2u1

∂x∂z
+

∂2u3

∂x2
) + F33

∂2u3

∂z2
+ A1

∂2φ

∂x2

+A3
∂2φ

∂z2
+ α1

∂2ψ

∂x2
+ α3

∂2ψ

∂z2
− m1

∂T

∂x
− m3

∂T

∂z
= 0, (14)

T0[a1
∂2u1

∂x∂t
+ a3

∂2u3

∂z∂t
− m1

∂2φ

∂x∂t
− m3

∂2φ

∂z∂t
− p1

∂2ψ

∂x∂t
− p3

∂2ψ

∂z∂t

+c
∂T

∂t
] =

K1

1 + τ0
∂

∂t

∂2T

∂x2
+

K3

1 + τ0
∂

∂t

∂2T

∂z2
, (15)

where
c11 = c1111, c33 = c3333, c55 = c3113 = c1331, c31 = c3311 = c1133,
λ11 = λ111, λ31 = λ311, λ33 = λ333, γ1 = γ11, γ3 = γ33,
F11 = F111, F33 = F333, a1 = a11, a3 = a33, α1 = α11, α3 = α33,
A1 = A11, A3 = A33, K1 = K11, K3 = K33.

4 Plane Wave Propagation

It is assumed that thex-zplane has an infinite extension. Now, we seek the two-dimensional plane wave solutions of
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Table 1: Physical constants ofLiNbO3

ρ(Kgm−3) c11(Nm−2) c33(Nm−2) c55(Nm−2) c31(Nm−2)

4.647 × 103 2.03 × 1011 2.424 × 1011 0.595 × 1011 0.752 × 1011

λ11(Cm−2) λ33(Cm−2) λ31(Cm−2) γ1 γ3

1.13 1.33 0.23 85.2 28.7

F11(Kg) F33(Kg) F31(Kg) A1(NA−2) A3(NA−2)

0.2 × 10−2 0.15 × 10−2 0.1 × 10−2 0.005 0.004

K1(Wm−1K−1) K3(Wm−1K−1) c(Jkg−1K−1) a1(K−1) a3(K−1)

4 4.2 0.633 13.3 × 10−6 10.3 × 10−6

α1(Cm−1A−1) α3(Cm−1A−1) p1(NC−1K−1)

0.02 0.03 0.133

p3(NC−1K−1) m1(Nm−1A−1K−1) m3(Nm−1A−1K−1)

0.103 0.006 0.004

equations (11) to (15) in thex−z plane assuming that the independent variables can be described by the following
harmonic functions as

{u1, u3 T, φ, ψ} = {ū1, ū3 T̄ , φ̄, ψ̄}eιk(sin θx+cos θz−vt), (16)

whereθ is angle of propagation,k is wavenumber,v is wave speed,(sin θ, cos θ) is the projection of the wave
normal ontox − z plane. and̄u1, ū3 T̄ , φ̄, ψ̄ are constants. Using equation (16) in equations (11) to (15), we
obtain a homogeneous system of five equations inū1, ū3 T̄ , φ̄, ψ̄. The system has non-trivial solution if the
determinant of the coefficients ofū1, ū3 T̄ , φ̄, ψ̄ vanishes, i.e.,

Aζ3 + Bζ2 + Cζ + D = 0, (17)

whereζ = ρv2 and the the expressions forA, B, C andD are given in Appendix.
The dispersion equation (17) is a cubic equation inv2 with complex coefficients. The three rootsvi

2, (i = 1, 2, 3)
of equation (17) correspond to quasi-P(qP ), quasi-T(qT ) and quasi-SV(qSV ) waves, respectively. Further,
vi = Re(vi) + iIm(vi) holds so thatRe(vi) represent the wave speeds of plane waves.

If we neglect magnetic and thermal fields, the equation (17) reduces to

D4ζ
2 − [D4(D1 + D2) + D3

2 + L2
2]ζ

+[D1D2D4 + D1D3
2 − D4L1

2 − 2D3L1L2 + D2L2
2] = 0, (18)

which gives the speeds of quasi-P and quasi-SV waves in a transversely isotropic electro-elastic media.

If we neglect electric, magnetic and thermal fields, the equation (17) reduces to

ζ2 − (D1 + D2)ζ + (D1D2 − L1
2) = 0, (19)

which gives the speeds of quasi-P and quasi-SV waves in a transversely isotropic elastic media.

5 Numerical Results and Discussion

Following Weis and Gaylord (1985), the relevant physical constants ofLiNbO3 at T0 = 298K are considered as
in Table 1.
Using a Fortran code of the Cardan method, the equation (17) is solved numerically for wave speeds ofqP, qT

andqSV waves. The wave speeds ofqP, qT andqSV are shown graphically against the frequency(ω), thermal
relaxation time(τ0), electric coupling coefficient(λ11), magnetic coupling coefficient(F11) and angle of propa-
gation(θ) in Figures 1 to 7.

5.1 Effect of Frequency

The wave speeds ofqP, qT andqSV are plotted against the frequency(2Hz ≤ ω ≤ 8Hz) in Fig. 1, when the
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Figure 1: Variations of the speeds of theqP , the qT and theqSV waves against the frequency(ω) when the
propagation angle isθ = 45o and the thermal relaxation time isτ0 = 0.005 s
.

angle of propagation isθ = 45o and the thermal relaxation time isτ0 = 0.005s. For ω = 2Hz, the speeds of
qP, qT andqSV waves are2.482×104ms−1, 1.159×104ms−1 and1.717×104ms−1, respectively. The speeds of
qP, qT andqSV increase with the increase in the frequency and attain values5.272×104ms−1, 2.522×104ms−1

and2.824 × 104ms−1, respectively forω = 8Hz.

5.2 Effect of Thermal Relaxation

The wave speeds ofqP, qT andqSV are plotted against the thermal relaxation time(0 ≤ τ0 ≤ 0.5s) in Fig. 2,
when the angle of propagation isθ = 45o and the frequency isω = 5Hz. For τ0 = 0, the speeds ofqP, qT and
qSV waves are4.113 × 104m.s−1, 2.024 × 104ms−1 and2.340 × 104ms−1, respectively. The speeds ofqP, qT
andqSV decrease with the increase in relaxation time and finally attain values1.606×104ms−1, 0.278×104ms−1

and0.375 × 104ms−1, respectively forτ0 = 0.5s.

5.3 Effect of Electric Coupling

The wave speeds ofqP, qT andqSV are plotted against the electric coupling coefficient(0 ≤ λ11 ≤ 2Cm−2) in
Fig. 3, when the angle of propagation isθ = 45o, the frequency isω = 5Hz and the thermal relaxation time is
τ0 = 0.005s. Forλ11 = 0, the speeds ofqP, qT andqSV waves are4.1085 × 104ms−1, 1.9775 × 104ms−1 and
2.3547 × 104ms−1, respectively. The speeds ofqP andqT waves increase very slightly with the increase in the
electric coupling coefficient(λ11), whereas the speed ofqSV wave decreases very slightly.

5.4 Effect of Magnetic Coupling

The wave speeds ofqP, qT and qSV are plotted against the magnetic coupling coefficient(0 ≤ F11 ≤ 1 ×
10−2Kg) in Fig. 4, when the angle of propagationθ = 45o, the frequencyω = 5Hz and the thermal relaxation
timeτ0 = 0.005s. ForF11 = 0, the speeds ofqP, qT andqSV waves are4.186×104ms−1, 2.056×104ms−1 and
2.277 × 104ms−1, respectively. The speeds ofqP andqT waves decrease with the increase in magnetic coupling
coefficient(F11), whereas the speed ofqSV wave increases.
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Figure 2: Variations of the speeds of theqP , theqT and theqSV waves against the thermal relaxation timeτ0,
when the frequency isω = 5Hz and the propagation angle isθ = 45o

.
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Figure 3: Variations of the speeds of theqP , theqT and theqSV waves against the electrical coupling coefficient
(λ11), when the thermal relaxation time isτ0 = 0.005s, the frequency isω = 5Hz and the propagation angle is
θ = 45o

.
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Figure 4: Variations of the speeds of theqP , theqT and theqSV waves against the magnetic coupling coefficient
(F11), when the thermal relaxation time isτ0 = 0.005s, the frequency isω = 5Hz and the angle of propagation is
θ = 45o

.
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Figure 5: Variations of speeds ofqP wave against angle of propagation(θ), when thermal relaxation timeτ0 =
0.005s and frequencyω = 5Hz
.

5.5 Effect of Angle of Propagation

The wave speed ofqP wave in a Transversely Isotropic Thermo-Magneto-Electro-Elastic(TITMEE) medium is
plotted against the angle of propagation(0o ≤ θ ≤ 90o) in Fig. 5, when the frequency isω = 5Hz and the thermal
relaxation time isτ0 = 0.005s. For θ = 0o, the speed ofqP waves is4.262 × 104ms−1. The speeds of theqP
wave first decreases with the increase in the angle of propagation and attain its minimum value4.050 × 104ms−1

at θ = 68o. Thereafter, the speed ofqP wave wave increases tillθ = 90o. This variation is compared with those
for Transversely Isotropic Electro-Elastic(TIEE) and Transversely Isotropic Elastic(TIE) cases to observe the
effect of electric, magnetic and thermal coupling on the speed ofqP wave at each angle of propgation. The speed
of theqP wave is found larger at decimal places in TIEE as compared to TIE medium. However in figure 5, the
variations for TIE and TIEE have been shown by same curve. The wave speed of theqT wave inTITMEE
medium is plotted against the angle of propagation(0o ≤ θ ≤ 90o) in Fig. 6, when the frequency isω = 5Hz
and the thermal relaxation time isτ0 = 0.005s. For θ = 0o, the speed of theqT wave is2.098 × 104ms−1 .
The speed of theqT waves first decreases with the increase in angle of propagation and attain its minimum value
1.935 × 104ms−1 at θ = 68o. Thereafter, the speed of this wave increases tillθ = 90o. This wave does not
appear in TIE and TIEE cases. The wave speed of theqSV wave inTITMEE is plotted against the angle of
propagation(0o ≤ θ ≤ 90o) in Fig. 7, when frequencyω = 5Hz and thermal relaxation timeτ0 = 0.005s.
For θ = 0o, the speed ofqSV wave is2.316 × 104ms−1. The speed of theqSV wave first increases with the
increase in angle of propagation and attain its maximum value2.364 × 104m.s−1 at θ = 58o and then decreases
till grazing incidence. This variation is compared with those for Transversely Isotropic Electro-Elastic(TIEE)
and Transversely Isotropic Elastic(TIE) cases to observe the effect of electric, magnetic and thermal coupling on
speed ofqSV wave at each angle of incidence. The speed ofqP wave is found larger at decimal places in TIEE as
compared to TIE medium. However in figure 7, the variations for TIE and TIEE have been shown by same curve.

6 Conclusion

The governing equations of a generalized thermo-magneto-electro-elastic media are derived in the x-z plane. The
plane wave solution of the governing equations indicates the existence of three quasi plane waves, namely, theqP ,
theqT and theqSV waves, respectively. The mechanical and thermal fields in the medium are mainly responsible
for the existence of the three quasi-plane waves. The electric and magnetic fields in the medium just modify the
speeds of these plane waves. The wave speeds of these plane waves are computed numerically forLiNbO3. From
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Figure 6: Variations of the speeds of theqT wave against the angle of propagation(θ), when the thermal relaxation
time isτ0 = 0.005s and the frequency isω = 5Hz
.
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Figure 7: Variations of the speeds of theqSV wave against the angle of propagation(θ), when the thermal relax-
ation time isτ0 = 0.005s and the frequency isω = 5Hz
.
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numerical results and discussion, it is observed that the wave speed of plane waves are affected significantly by the
change in the frequency, the thermal relaxation time and the electric and magnetic parameters. The wave speeds
of these plane waves also depend on the angle of propagation. This paper may be useful for researchers and engi-
neers who solve practical problems involving propagation of elastic waves in structural elements made of isotropic
materials or laminated composites.

Appendix

The expressions forA, B, C andD are given as

A = c̄(D4D7 − D2
5) + P̄ (PD7 − MD5) − M̄(PD5 − MD4),

B = D8(D4D7 − D2
5) − c̄[(D1 + D2)(D4D7 − D2

5) + 2L2L3D5 − L2
2D7 − L2

3D4

− D2
3D7 + 2D3D5D6 − D4D

2
6] − P̄ [(D1 + D2)(PD7 − MD5)

− a3 cos θ(D3D7 − D5D6) − D6(PD6 − MD3) − a1 sin θ(L2D7 − L3D5)
+ L3(ML2 − PL3)] + M̄ [(D1 + D2)(PD5 − MD4) + a3 cos θ(D3D5 − D4D6)
− D3(MD3 − PD6) + a1 sin θ(L2D5 − L3D4) − L2(ML2 − PL3)]
+ ā3T0 cos θ[a3 cos θ(−D4D7 + D2

5) + D3(PD7 − MD5)
− D6(PD5 − MD4)] + ā1T0 sin θ[a1 sin θ(−D4D7 + D2

5)
+ L2(PD7 − MD5) − L3(PD5 − MD4)],
C = D8[(D1 + D2)(D4D7 − D2

5) + L2
2D7 − 2L2L3D5 + L2

3D4 + D2
3D7

− 2D3D5D6 + D4D
2
6] + c̄[(D1D2 − L2

1)(D4D7 − D2
5)

− 2L1L2D3D7 + 2L1L3D3D5 + 2L1L2D5D6 − 2L1L3D4D6 + L2
2D2D7

− 2L2L3D2D5 + L2
2D

2
6 − 2L2L3D3D6 + L2

3D2D4

+ L2
3D

2
3 + D1D

2
3D7 − 2D1D3D5D6 + D1D4D

2
6]

+ P̄ [(D1D2)(PD7 − MD5) + a3 cos θD1(D3D7 − D5D6)
+ D1D6(PD6 − MD3) − L2

1(PD7 − MD5)
− a3 cos θL1(L2D7 − L3D5) + L1D6(ML2 − PL3) − a1 sin θL1(D3D7 − D5D6)
+ a1 sin θD2(L2D7 − L3D5) + a1 sin θD6(L2D6 − L3D3)
+ L1L3(MD3 − PD6) − D2L3(ML2 − PL3) − a3 cos θL3(L2D6 − L3D3)]
− M̄ [(D1D2)(PD5 − MD4) + a3 cos θD1(D3D5 − D4D6)
− D1D3(MD3 − PD6) − L2

1(PD5 − MD4) − a3 cos θL1(L2D5 − L3D4)
+ L1D3(ML2 − PL3) − a1 sin θL1(D3D5 − D4D6)
+ a1 sin θD2(L2D5 − L3D4) + a1 sin θD3(L2D6 − L3D3)
+ L1L2(MD3 − PD6) − D2L2(ML2 − PL3) − a3 cos θL2(L2D6 − L3D3)]
+ ā3T0 cos θ[a3 cos θD1(D4D7 − D2

5) − D1D3(PD7 − MD5)
+ D1D6(PD5 − MD4) − a1 sin θL1(D4D7 − D2

5)
− a1 sin θD3(L2D7 − D5L3) + a1 sin θD6(L2D5 − L3D4) + L1L2)(PD7 − MD5)
+ a3 cos θL2(L2D7 − L3D3) − L2D6(ML2 − PL3)
− L1L3(PD5 − MD4) − a3 cos θL3(L2D5 − L3D4) + D3L3(ML2 − PL3)]
+ ā1T0 sin θ[a3 cos θL1(−D4D7 + D2

5)
− L1D3(PD7 − MD5) + L1D6(PD5 − MD4) + a1 sin θD2(D4D7 − D2

5)
+ a1 sin θD3(D3D7 − D5D6) − a1 sin θD6(D3D5 − D4D6)
− L2D2(PD7 − MD5) − a3 cos θL2(D3D7 − D5D6)
+ L2D6(MD3 − PD6) − L3D2(PD5 − MD4)
+ a3 cos θL3(D3D5 − D4D6) − L3D3(MD3 − PD6)],
D = −(D8D1D2 + L2

1)(D4D7 − D2
5) − 2L1L2D3D7 + 2L1L3D3D5

− 2L1L3D4D6 + 2L1L2D5D6 + L2
2D2D7 − 2L2L3D2D5

+ L2
2D

2
6 − 2L2L3D3D6 + L2

3D2D4

+ L2
3D

2
3 + D1D

2
3D7 − 2D1D3D5D6 + D1D4D

2
6,

and

L1 = (c31 + c55) sin θ cos θ, L2 = 2λ31 sin θ cos θ + λ11 sin2 θ,
L3 = 2F31 sin θ cos θ + F11 sin2 θ,
D1 = c11 sin2 θ + c55 cos2 θ, D2 = c55 sin2 θ + c33 cos2 θ,
D3 = λ31 sin2 θ + λ33 cos2 θ, D4 = γ1 sin2 θ + γ3 cos2 θ,
D5 = α1 sin2 θ + α3 cos2 θ, D6 = F31 sin2 θ + F33 cos2 θ,

D7 = A1 sin2 θ + A3 cos2 θ, D8(τ0 −
ι

ω
) = K1 sin2 θ + K3 cos2 θ,
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P = p1 sin θ + p3 cos θ, M = m1 sin θ + m3 cos θ, P̄ =
P

ρ
, M̄ =

M

ρ
,

ā3 =
a3

ρ
, ā1 =

a1

ρ
, c̄ =

c

ρ
.
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