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Propagation of Plane Waves in a Generalized
Thermo-magneto-electro-elastic Medium

Baljeet Singh, Aarti Singh, Nidhi Sharma

Abstract. In the present paper, the governing equations of a generalized thermo-magneto-electro-elastic medium
are formulated in the x-z plane. The plane wave solution of these equations indicates the existence of three quasi
plane waves, namely, quasi-P, quasi-T and quasi-SV waves. The thermo-magneto-electro-elastic medium is mod-
eled with Li NbO3 for computing the speeds of these plane waves. Effects of the frequency, thermal relaxation
time, electric coupling coefficient, magnetic coupling coefficient and angle of propagation on the speeds of these
plane waves are observed and shown graphically.

1 Introduction

Layered materials and composites have components which display some degree of piezoelectric coupling effects.
Piezoelectric materials have been applied in various fields including geophysics, electronics, communication, in-
strumentation and nondestructive evaluation and testing of materials. For general discussions of piezoelectric
effects, the standard books by Cady (1964), Tiersten (1969), Auld (1973) and Rosenbaum (1988) are referred.
Piezoelectric guided waves have been studied by Gazis (1960), Bleustein (1968), Nasser (1983), Nayfeh and Chien
(1992 a, b) and Nie et al (2009). Piezoelectric materials are integrated with the structural systems to form a class of
smart structures and are embedded as layers or fibres into multi functional composites. Various novel and practical
applications in many fields of technology have been promoted due to the better recognition and knowledge of the
complex phenomena behind the propagation of elastic waves in structural elements. For example, diagnostics of
structural elements is one such field, where the use of elastic waves increases rapidly every year. Applications of
elastic waves in a global sense for diagnosing structural elements are still at an early stage. Piezoelectric mate-
rials constitute another important research topic with respect to SHM applications. Piezoelectric transducers are
often used to excite and receive ultrasonic guided waves due to their low cost and an easy integration into existing
structures. Important contributions are listed in Nayfeh (1995), Liu and Xi (2002), Ostachowicz et al. (2012),
Giurgiutiu (2014) and Willberg et al. (2015).

In the classical theory of thermoelasticity given by Biot (1956), the thermal wave propagates with an infinite speed.
The non-classical theories of generalized thermoelasticity were introduced in the literature in an attempt to elim-
inate the shortcomings of the classical dynamical thermoelasticity. For example, Lord and Shulman (1967), by
incorporating a flux-rate term into Fourier's law of heat conduction, formulated a generalized theory which in-
volves a hyperbolic heat transport equation admitting a finite speed for thermal signals. Green and Lindsay (1972),
by including temperature rate among the constitutive variables, developed a temperature-rate-dependent thermoe-
lasticity that does not violate the classical Fourier law of heat conduction, when the body under consideration has a
centre of symmetry and this theory also predicts a finite speed for the heat propagation. Chandrasekharaiah (1986)
referred to this wavelike thermal disturbance as the 'second sound’. The Lord and Shulman theory of generalized
thermoelasticity was further extended by Dhaliwal and Sherief (1980) to include the anisotropic case. Hetnarski
and Ignaczak (1999) presented a survey on the representative theories in the range of generalized thermoelasticity.

Magneto-electro-elastic materials display coupling behavior among electric, magnetic and mechanical fields. Magneto-
electro-elastic materials have various applications due to their ability of converting energy from one kind to the
other. These materials have been used in lasers, supersonic devices, microwave and infrared applications. Prob-
lems related to the wave propagation in thermo-elastic or magneto-thermo-elastic solids using these generalized
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theories have been studied by several authors (Paria, 1962; Nayfeh and Nemat-Nasser, 1971, 1972;, Roychoudhuri
and Chatterjee, 1990; Hsieh, 1990; Ezzat, 1997; Sherief and Yossef, 2004; Baksi and Bera, 2005; and Das and
Kanoria, 2009).

Thermo-magneto-electro-elastic materials are extensively used as electric packaging, sensors and actuators. Wave
propagation in thermo-magneto-electro-elastic solid is of much importance due to wide use of piezoelectric and
piezomagnetic materials in aerospace, automobile industries, etc. The theory of thermo-magneto-electro-elasticity
was developed due to the significant contributions by various authors, for example, Kaliski (1965), Coleman and
Dill (1971), Amendola (2000), Li (2003) and Aouadi (2007). This paper is motivated by the linear theory of
thermo-magneto-electro-elasticity developed by Aouadi (2007). In this paper, the time-harmonic plane waves in

a generalized thermo-magneto-electro-elastic medium are investigated. The speeds of these plane waves are com-
puted numerically by takind.: NbO3 as an example of the model. The dependence of wave speeds of these plane
waves on the frequency, thermal relaxation time, electric coupling coefficient, magnetic coupling coefficients and
angle of propagation is shown graphically.

2 Basic Equations

A body is considered that occupies the regiomf the Euclidean three-dimensional space at some instant and is
bounded by the piece-wise smooth surf&€e The reference configuratiori and a fixed system of rectangular
Cartesian axe®x;(i = 1,2, 3) are taken to describe the motion of the body. Aouadi (2007) developed the gov-
erning equations for thermo-magneto-electro-elasticity for heat-flux dependent theory of Lebon (1982). Following
Coleman and Dill (1971), Amendola (2000) and Li (2003), he formulated linearized constitutive equations. The
field equations of thermo-magneto-electro-elasticity are generalized in context of Lord and Shulman (1967) theory
as

the equations of motion

05 + Fy = puiy, 1)

the equations of the electric and magnetic fields

D;; = po, Bii=o, (2)
the energy equation
pTon = qii + ph, (3)
the constitutive equations
0ij = cijriers + FijrCr + Nije By — ai T, 4)
Dy = —Apijei; + oG + iy + piT, (5)
By, = —Fyijeij + A + ani By + my T, (6)
pn = aijeij + meCy + prEy + T, (7)
Ki;Tj = qi + ToGi, (8
and the geometrical equations
1
eij = 5(%; ‘uji), Ei=—vi, (=—0¢; 9)

whereF};, pp ando are the body force, electric charge density, and electric current density, respegtiigetie
mass densityh is the heat supplyy;, v» and¢ are the displacement vector, the electric potential, and the mag-
netic potential, respectively;;;, Dy, B), andn are stress tensor, the dielectric displacement vector, the magnetic
intensity, and the entropy density, respectively; E;, (; andT are strain tensor, electric field, magnetic field, and
temperature change to a reference temperafyreespectively;k;; is the conductivity tenso;;x, Vi, Ak, ¢,

Xijks Fiji, oge aij, ps @andm,; are constitutive coefficients connecting various fields like mechanical, magnetic,
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thermal and electric fields ang is relaxation time. Latin subscripts range over the integ&rs, 3) summation

over and subscripts preceded by a comma denote partial differentiation with respect to the corresponding Cartesian
coordinate. The superposed dot denotes the partial differentiation with respect to Tingeconstitutive parame-

ters satisfy the following symmetry conditions

Cijkl = Cklij = Cjikls Mijk = Mkij = Mkjis Fijk = Frij = Frji,

Qij = Qjiy Vij = Vji, Qij = iy Aij = Ajiy, Kij = Kji. (10)

3 Governing Equations in thex-z Plane

We consider a homogeneous and transversely isotropic thermo-magneto-electro-elastic medium of an infinite ex-
tent with Cartesian coordinate systém y, z), which is previously at a uniform temperature. We assume that the
medium is transversely isotropic in such a way that the planes of isotropy are perpendiculag-tixihie The

origin is taken on the plane surface an@xis is taken normally into the mediuf@ > 0). The present study is
restricted to the plane strain parallel to the plane with the displacement vectar= (u1, 0, u3). In this section,

the equations of a transversely isotropic, homogeneous and linear thermo-magneto-electro-elastic medium in the
x-zplane are formulated after canceling the dependency of the y-direction as well as the derivative with respect to
y. With the help of the symmetry conditions (10) and the equations (4) to (9), the equations (1) to (3) reduce to the
following system of five partial differential equationsin, us, ¢, v andT in absence of body forces, electric
charge density, electric current density and heat supply

0%y 0%us 0%¢ 9%¢ 0%
gy L 3155 Fuaxg 21*—'31(9 9 *)\11@
32w oT 82u1 82U3 82u1
-2\ — 11
N or0:  “ar T g2 T ara.) TP o (11)
82U3 82u1 82(1) 621/} 821&1
55( Ox? * axaz) B Fgl@ B )\31@ +cal 0x0z
8%3 82(,25 82’¢ oT 82U3
JrC:sk%TZ2 - F33@ - /\33@ a3 =P an (12)
0%uq ?u; O%us 0%us 0%
Miges +haga+ 55 F gy ey,
8% 0%y 0% oT oT
+053@ JF’Ylw JF’YB@ — P15 or — P35 Ey =0, (13)
(92 5‘2u1 8%3 82 (9 ¢
P +Paga + 50 + Fugs +Aigs
9%¢ 0% 0% oT 8T
A _— = 14
TG TG Tasgg TG, —mag s =0, (14)
T [a 32u1 +a 82U3 —m 82¢ _m 82¢ B 327/1 - 821/}
N0t T Cazat "ozt Cazot Plozor Pozot
oT K 0T K3 0T 15
o) = 1+ 7 aay62+1+78827 (o)
¢ 0ot
where

€11 = C1111, €33 = €3333, C55 = C3113 = C1331, C31 = C3311 = C1133,
A1 = A111, A3r = A311, A3z = A333, V1 =711, V3 = V33,

Fi1 = Fii1, Fz3 = F333, a1y = a1, a3 =asz, oy = gy, O3 = 33,
Ay = A, Az = Asz, K1 = K1, K3 = Kss.

4 Plane Wave Propagation

Itis assumed that thezplane has an infinite extension. Now, we seek the two-dimensional plane wave solutions of
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Table 1: Physical constants 6i NbO3

p(Kgm=3) c11(Nm~=2) c3z(Nm™2) cs5s(Nm=2)  c31(Nm™2)
4.647 x 10° 2.03 x 10" 2.424 x 10! 0.595 x 10" 0.752 x 10'!
A11(Cm=?) A33(Cm=2) A31(Cm=2) " Y3
1.13 1.33 0.23 85.2 28.7
Fi1(Kg) Fi3(Kg) F31(Kg) A (NA?)  A3(NAD)
0.2 x 1072 0.15 x 102 0.1 x 1072 0.005 0.004
Ki(Wm=t1K=1) Ks(Wm—tK=1) c(Jkg71K1) a; (K1) az(K—1)
4 4.2 0.633 13.3x107% 10.3 x 107
a;(Cm~1A~1) az(Cm~1A~Y) p1(NCTIK™1)
0.02 0.03 0.133
p3(NCIK=Y)  my(Nm TATIK=1)  mg(Nm 1A-TK™1)
0.103 0.006 0.004

equations (11) to (15) in the— z plane assuming that the independent variables can be described by the following
harmonic functions as

{Ul, us T7 ¢a 1/)} = {ah d3 T> (;57 ,(Z}}ellk(sin@.’t-‘rCOSQZ—Ut)’ (16)

whered is angle of propagatiork is wavenumbery is wave speed(sin 6, cos 8) is the projection of the wave
normal ontoz — z plane. andi,, us T, &, v are constants. Using equation (16) in equations (11) to (15), we
obtain a homogeneous system of five equations,inus T, ¢, 1. The system has non-trivial solution if the
determinant of the coefficients af, w3 T, ¢, v vanishes, i.e.,

A+ B +C¢+ D=0, (17)

where¢ = pv? and the the expressions fdr B, C and D are given in Appendix.

The dispersion equation (17) is a cubic equation?nwith complex coefficients. The three roatg, (i = 1,2, 3)
of equation (17) correspond to quasi4P), quasi-T(¢7") and quasi-SM¢SV') waves, respectively. Further,
v; = Re(v;) + iIm(v;) holds so thaRRe(v;) represent the wave speeds of plane waves.

If we neglect magnetic and thermal fields, the equation (17) reduces to
Dy¢? — [Dy(Dy + Do) + D3 + Ly?J¢

+[D1D3Dy + D1 D3? — DyLy? — 2D3L1 Ly + Dy L] = 0, (18)
which gives the speeds of quaBiand quasiSV waves in a transversely isotropic electro-elastic media.
If we neglect electric, magnetic and thermal fields, the equation (17) reduces to

¢ = (D14 D2)¢ + (D1Dy — Li?) = 0, (19)

which gives the speeds of quaRBiand quasiSV waves in a transversely isotropic elastic media.
5 Numerical Results and Discussion
_Following Weis and Gaylord (1985), the relevant physical constania 8505 at T, = 298K are considered as
Inul—,?nbgljealI.:ortran code of the Cardan method, the equation (17) is solved numerically for wave spgedd of
and¢SV waves. The wave speeds@P, ¢T' andgSV are shown graphically against the frequefiey, thermal
relaxation time(7y), electric coupling coefficient\;;), magnetic coupling coefficierfi;;) and angle of propa-
gation(6) in Figures 1 to 7.
5.1 Effect of Frequency

The wave speeds @fP, ¢T and¢SV are plotted against the frequen@Hz < w < 8Hz) in Fig. 1, when the
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Figure 1: Variations of the speeds of th&, the ¢7" and theqSV waves against the frequency) when the
propagation angle & = 45° and the thermal relaxation timeis = 0.005 s

angle of propagation i8 = 45° and the thermal relaxation time 1§ = 0.005s. Forw = 2H z, the speeds of
qP, qT andgSV waves ar@.482 x 10*ms~1, 1.159 x 10*ms~! and1.717 x 10*ms !, respectively. The speeds of
qP, T andqSV increase with the increase in the frequency and attain valags x 10*ms~1,2.522 x 10*ms~!
and2.824 x 10*ms~1, respectively forw = 8H z.

5.2 Effect of Thermal Relaxation

The wave speeds @fP, T and¢SV are plotted against the thermal relaxation tifie< 7o < 0.5s) in Fig. 2,
when the angle of propagationds= 45° and the frequency isv = 5Hz. Forr, = 0, the speeds of P, ¢T and
qSV waves aret.113 x 10*m.s71,2.024 x 10*ms~! and2.340 x 10*ms~1, respectively. The speeds @P, ¢T
andqSV decrease with the increase in relaxation time and finally attain valaeéx 10*ms—1,0.278 x 10*ms—!
and0.375 x 10*ms~1, respectively fory = 0.5s.

5.3 Effect of Electric Coupling

The wave speeds qfP, ¢T andqSV are plotted against the electric coupling coefficightc \;; < 2Cm~2) in

Fig. 3, when the angle of propagationdis= 45°, the frequency isv = 5Hz and the thermal relaxation time is
7o = 0.005s. ForA;; = 0, the speeds afP, ¢T andgSV waves aret.1085 x 10*ms~1,1.9775 x 10*ms—! and
2.3547 x 10*ms~!, respectively. The speeds @P andqT waves increase very slightly with the increase in the
electric coupling coefficient\;;), whereas the speed @6V wave decreases very slightly.

5.4 Effect of Magnetic Coupling

The wave speeds afP, ¢T" and ¢SV are plotted against the magnetic coupling coefficight< Fi; < 1 x
1072Kg) in Fig. 4, when the angle of propagatién= 45°, the frequencys = 5H 2 and the thermal relaxation
timery = 0.005s. For Fy; = 0, the speeds afP, g7 andgSV waves aret. 186 x 10*ms—!, 2.056 x 10*ms~! and
2.277 x 10*ms~1, respectively. The speeds @P andqT waves decrease with the increase in magnetic coupling

coefficient(Fy;), whereas the speed @6V wave increases.

203



4.2

3.5
~ 2.8
;i 2.1
3 1.4

0.7

0.0

0.0 0.1 0.2 0.3 04 0.5
Thermal relaxation time (sec)

Figure 2: Variations of the speeds of th®, the¢T" and theqSV waves against the thermal relaxation time
when the frequency is = 5H z and the propagation anglefis= 45°
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Figure 3: Variations of the speeds of thE, theqT" and thegSV waves against the electrical coupling coefficient

(A1), when the thermal relaxation timeig = 0.005s, the frequency isv = 5Hz and the propagation angle is
0 = 45°
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Figure 5: Variations of speeds gf wave against angle of propagatit#), when thermal relaxation tims, =
0.005s and frequencyw = 5H z

5.5 Effect of Angle of Propagation

The wave speed @fP wave in a Transversely Isotropic Thermo-Magneto-Electro-El&#id@ M EE) medium is
plotted against the angle of propagatioA < 6 < 90°) in Fig. 5, when the frequency is = 5H z and the thermal
relaxation time isry = 0.005s. Forf = 0°, the speed of P waves is4.262 x 10*ms~—!. The speeds of thgP

wave first decreases with the increase in the angle of propagation and attain its minimurh M&due 10*m.s 1

atd = 68°. Thereafter, the speed gP wave wave increases til = 90°. This variation is compared with those

for Transversely Isotropic Electro-Elasti€' I E F) and Transversely Isotropic Elasti€' ] E') cases to observe the
effect of electric, magnetic and thermal coupling on the speed’ofiave at each angle of propgation. The speed

of the ¢ P wave is found larger at decimal places in TIEE as compared to TIE medium. However in figure 5, the
variations for TIE and TIEE have been shown by same curve. The wave speeddf thave inTITMFEFE
medium is plotted against the angle of propagaftigh < 6 < 90°) in Fig. 6, when the frequency is = 5Hz

and the thermal relaxation time 1§ = 0.005s. Forf = 0°, the speed of thgT wave is2.098 x 10*ms~! .

The speed of theT waves first decreases with the increase in angle of propagation and attain its minimum value
1.935 x 10*ms~! atd = 68°. Thereafter, the speed of this wave increasegti#: 90°. This wave does not
appear in TIE and TIEE cases. The wave speed ofyié wave inTITM EFE is plotted against the angle of
propagation(0° < 6 < 90°) in Fig. 7, when frequency = 5Hz and thermal relaxation time, = 0.005s.

For§ = 0°, the speed of SV wave is2.316 x 10*ms~!. The speed of theSV wave first increases with the
increase in angle of propagation and attain its maximum V2@t x 10%m.s~! atf = 58° and then decreases

till grazing incidence. This variation is compared with those for Transversely Isotropic Electro-EBSfitF)

and Transversely Isotropic Elasti€' I ) cases to observe the effect of electric, magnetic and thermal coupling on
speed of;SV wave at each angle of incidence. The speegfoivave is found larger at decimal places in TIEE as
compared to TIE medium. However in figure 7, the variations for TIE and TIEE have been shown by same curve.

6 Conclusion

The governing equations of a generalized thermo-magneto-electro-elastic media are derived in the x-z plane. The
plane wave solution of the governing equations indicates the existence of three quasi plane waves, najfely, the
theqT and thegSV waves, respectively. The mechanical and thermal fields in the medium are mainly responsible
for the existence of the three quasi-plane waves. The electric and magnetic fields in the medium just modify the
speeds of these plane waves. The wave speeds of these plane waves are computed numeridatipfor-rom
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Figure 6: Variations of the speeds of #iE wave against the angle of propagat{@), when the thermal relaxation
time isTy = 0.005s and the frequency is = 5H z
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Figure 7: Variations of the speeds of &1 wave against the angle of propagati@h, when the thermal relax-
ation time isrg = 0.005s and the frequency is = 5Hz
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numerical results and discussion, it is observed that the wave speed of plane waves are affected significantly by the
change in the frequency, the thermal relaxation time and the electric and magnetic parameters. The wave speeds
of these plane waves also depend on the angle of propagation. This paper may be useful for researchers and engi-
neers who solve practical problems involving propagation of elastic waves in structural elements made of isotropic
materials or laminated composites.

Appendix
The expressions fad, B, C' andD are given as

A =¢&D4D7 — D2) + P(PD7 — MDs) — M(PDs — MDy),

B = Dg(D4D7 — D) — &|(Dy + D2)(DyD7 — D2) + 2Ly Ly D5 — L3D; — LD,
— D2D; 4 2D3DsDg — DyDZ] — P|(Dy + D3)(PD7 — MDs)

— a3 COS 9(D3D7 — D5D6) — DG(PDG — MD3) — ay sin 9(L2D7 — L3D5)

+ L3(ML2 — PLg)] + M[(Dl + DQ)(PD5 — MD4) + as cos 0(D3D5 — D4D6)
— D3(MD3 — PDG) +ax sin 9(L2D5 - L3D4) - LQ(MLQ — PLg)]

+ a3Ty cos Olaz cos §(—Dy D7 + D2) + D3(PD7 — M Ds)

- DG(PD5 - MD4)] + leO sin@[al sin 9(—D4D7 + D?))

+ Ly(PD7 — MDs) — Ls(PDs — MDy)),

C = Ds[(Dy + Dy)(DyD7 — D2) + L2D7 — 2Ly L3Ds + L2D, + D3D-
—2D3Ds5Dg + D4D2] + ¢[(D1 Dy — L2)(DyD7 — D?)

—2L1LyD3D7 + 2Ly L3D3D5 + 2L1 Lo D5 D — 2L1 L3 Dy Dg + L3 D2 Do

— 2LyL3DyDs + L3D2 — 2Ly L3D3Dg + L2Dy Dy

+ L2D2 + D1 D2D; — 2D D3DsDg + Dy D, D2]

+ P[(D1D5)(PD7 — M Ds) + a3 cos §D1(D3D7 — D5 Dg)

+ D1Dg(PDg — MD3) — L2(PD7 — MDs)

— a3 COoS 9L1(L2D7 — L3D5) + LlDG(MLQ — PLg) — ax sin 9L1(D3D7 — D5D6)
+ ay sin 9D2(L2D7 — L3D5) + ay sin 9D6(L2D6 — L3D3)

+ Lng(MDg - PDS) - DQLg(MLQ - PLg) — a3 CoS 9L3(L2D6 - L3D3)]

— M[(D1D2)(PD5 — MD4) + as cos 9D1 (D3D5 — D4D6)

— Dng(MDg — PDﬁ) — L%(PD5 — MD4) — a3 COS 9L1(L2D5 — L3D4)

+ Lng(MLQ — PLg) — a1 sin 9L1(D3D5 — D4D6)

+ ay sin 9D2(L2D5 — L3D4) + ay sin 9D3(L2D6 — L3D3)

+ LlLQ(MDg - PDG) - D2L2(ML2 - PLg) — a3 CoS 9L2<L2D6 — L3D3>]

+ a3 Ty cos Olaz cos D1 (Dy D7 — D2) — D1 D3(PD7 — M Ds)

+ DlDG(PDg, — MD4) — ai sin 0L1(D4D7 - D%)

— ax sin 0D3(L2D7 — D5L3) + a; sin QDG(L2D5 — L3D4) + L1L2)(PD7 — M.D5)
+ as cos 9L2(L2D7 — LdDd) — L2D6(ML2 — PLg)

— L1L3(PD5 — MD4) — a3 CoS 9L3(L2D5 - L3D4) + D3L3(ML2 — PLg)]

+ a1 Ty sin Ofaz cos 0Ly (— Dy D7 + D2)

— Lng(PD7 — MD5) + L1D6(PD5 — MD4) +a; sin 0D2(D4D7 — D%)

+ a sin 0D3(D3D7 - D5D6) — aq sin 9D5(D3D5 — D4D6)

— L2D2(PD7 — M.DE,) — a3 COS 0L2(D3D7 — D5D6)

+ L2D6(MD3 — PDG) — LSDQ(PD5 — MD4)

+ ag cos 9L3(D3D5 — D4D6) — L3D3(MD3 — PDG)],

D = —(DgD1 D, + L?)(D4D7 — DE) — 2Ly Ly D3 D7 + 2Ly L3D3Ds

— 2Ly L3D4Dg + 2Ly Ly D5 Dg 4+ L2Dy D7 — 2Ly L3 Dy Ds

+ L2D2 — 2Ly L3Ds D + L3Dy Dy

+ L2D2 + Dy D2D; — 2D, D3 D5 Dg + D1 D4 D2,

and

Ly = (c31 4 ¢55)sinfcos@, Lo =231 sinfcos + Ay sin? 6,

Ls = 2F5 sinf cos 0 + Fq sin? 0,

Dy = ¢118in2 0 + ¢55 c0s2 0, Dy = cx58in2 0 + ¢35 cos? 6,

D3 = \3q sin? 6 + A3z cos2, Dy = sin? 6§ + 3 cos? 8,

D5 = Q1 SiIl2 0 + a3 COS2 0, DG = F31 SiIl2 0 + F33 COS2 9,

D; = Ay sin?0 + A cos®6, Dg(ro — i) = Ky sin?6 + K;cos? 0,
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_ P _ M
P =pisinf + p3gcos@, M =mysinf +mgcosh, P=—, M = —,
- as a ¢ P 4
a3 = —, @1 = —, C= —.
P P P
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