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Modeling of Multicomponent Reactive Systems

D. Anders, K. Weinberg

In recent engineering applications reaction-diffusion systems obtain more and more importance for the produc-
tion and design of functional materials. Therefore, in this contribution spinodal decomposition in multicomponent
systems subjected to chemical reactions is studied. To this end, the classical Cahn-Hilliard phase field model is
extended by additional contributions from chemical reactions. After deriving the reaction-diffusion model in a
thermodynamically consistent way, for the first time a numerical simulation of a ternary chemically reactive phase
separating system is presented.

1 Introduction into Reaction-Diffusion Systems

Clearly, chemical reactions play a crucial role in our every-day life. Indeed, there is a multifaceted range of
chemical reactions such as oxidation/corrosion of metals, combustion, chemical reactions in human metabolism
or photochemical reactions like photosynthesis just to mention a few of them. The main feature about chemical
reactions is their competency to generate substances which usually have properties different from their reactants.
This property can be exploited for structural optimization of multicomponent systems susceptible to chemical reac-
tions. To us chemical reactions are a special matter of interest because they are able to influence the microstructure
in multicomponent functional systems. It is commonly known that the microstructural arrangement determines
the macroscopic material behavior. In this context, the evolving microstructure profoundly affects the structural
properties, life expectation and reliability of the whole system. For this reason, our goal is to provide an insight
into the effect of chemical reactions on microstructure by studying so-calledreaction-diffusionsystems. As the
name implies, a reaction-diffusion system is driven by diffusion phenomena and local chemical reactions. To un-
derstand the processes in reaction-diffusion systems, it is therefore crucial to introduce the essential conceptions
of chemical reactions and their kinetics. Subsequently, we will couple diffusion and chemical reactions to arrive at
the framework of phase-separating reaction-diffusion systems.

1.1 Chemical Reactions and Fundamentals of their Kinetics

A chemical reaction is formally defined as a process that induces an interconversion of chemical species. Clas-
sically, chemical reactions are subdivided intoelementary reactionsand stepwise/composite reactions. While
elementary reactions form a class of simplest reactions, stepwise/composite reactions encompass at least one reac-
tion intermediate involving at least two consecutive elementary reactions, see (Müller, 1994, p. 1167).
By definition, the symbolic representation of a chemical reaction is given in such a manner that the reactant entities
are constituted on the left hand side and the product entities are written on the right hand side. The coefficients
multiplying the chemical symbols and formulae of entities are the so-called stoichiometric coefficients. Different
symbols are used to connect the reactants and products with the following meanings:

• The symbol→ is used for a stoichiometric relation with a net forward reaction.

• The symbol� specifies a stoichiometric relation with a reaction in both directions.

• The symbol
 is employed for the stoichiometric relation of an equilibrated chemical reaction.

See also (Green Book, 1993, p. 45) for further reference. For example, let us consider a typical binary chemical
reaction

nAA + nBB
J
→ nCC + nDD, (1)
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in which nA moles of molecules of typeA andnB moles of molecules labeledB react to producenC moles
of molecules of typeC andnD moles of molecules labeledD. In this example the coefficientsni represent the
stoichiometric coefficients for moleculesA, B, C andD, respectively. The (positive) parameterJ represents
here the reaction rate of the respective chemical reaction. The reaction rate is employed to give information on
the kinetics of a chemical reaction. For example, corrosion (oxidation) of alloys under the atmosphere is a slow
reaction which can take many years, whereas combustion is an extremely fast reaction.
The abovementioned reaction rateJ is usually addressed by a phenomenological rate law, which expresses thatJ
depends on the amount of each reactant in a reacting mixture, giving for our model reaction (1) the rate equation:

J = k [A]α [B]β , (2)

where[A] and [B] express the amount concentration of the speciesA andB, respectively. The positive propor-
tionality constantk, independent of[A] and[B], is referred to as rate constant/coefficient. The constant exponents
α andβ are independent of concentration and time, cf. (Müller, 1994, p. 1147). According to (Cross and Green-
side, 2009, p. 111) the exponents in the rate equation of an elementary reaction are given by the corresponding
stoichiometry factors. If we regard our exemplary reaction (1) as an elementary reaction this will mandateα = nA

andβ = nB . Please note that in generalα andβ cannot be identified with the respective stoichiometric coefficients
of the balanced stoichiometric relation. All parameters of the rate equation have to be determined experimentally.
In the scope of this work we will focus on elementary equilibrium/opposed reactions of type

n1A1 + n2A2 + . . . + nmAm
J ′


 n′
1C1 + n′

2C2 + . . . + n′
mCm, (3)

whereJ ′ denotes the overall reaction rate which follows from the difference between the forward and backward
reaction rates according to

J ′ = k+1

m∏

i=1

[Ai]
ni − k−1

m∏

i=1

[Ci]
n′

i . (4)

Here we introducedk+1 as the rate coefficient characterizing the reaction that consumes the speciesAi for i =
1, . . . , m; k−1 characterizes the rate coefficient for the backward reaction, which consumes the quantitiesCi and
in return it producesAi (for i = 1, . . . , m). Now we have presented the basic conceptions and equations to capture
the kinetics of elementary chemical reactions, which will be employed in the derivation of the evolution equations
for reaction-diffusion systems.

1.2 Thermodynamical Model for Reaction-Diffusion Systems

In this section we will follow ideas from de Groot and Mazur (1962) and use the previously obtained results for
chemical reactions to couple them to diffusion phenomena. As outlined in (Cross and Greenside, 2009, p. 111)
the evolution of concentration in a multicomponent reaction-diffusion system is driven by two competitive mech-
anisms, namely chemical reactions and diffusion processes. According to the results from the previous section,
chemical reactions alter the local concentrations of their reactants and products following a concentration depen-
dent rate law. However, diffusion decreases spatial gradients of concentration profiles, in such a manner that a
mass transport takes place from regions of high concentration to regions of smaller concentration values.
Mathematically these competing mechanisms are captured within generalized phenomenological evolution equa-
tions for multicomponent systems consisting ofn components, which undergor reactions according to

ρ
dck

dt
= −∇ ∙ Jk +

r∑

j=1

vkjJ̄j , (k = 1, . . . n) , in Ω × [0, T ] (5)

with ρ =
n∑

k=1

ρk andck =
ρk

ρ
. (6)

Note thatd (•) /dt = ∂ (•) /∂t + v ∙ ∇ (•) denotes the substantial time derivative with the barycentric velocity
field v. In Eq. (5)ρ denotes the total mass density andρk is the mass density of thekth component. The scalar
fieldsck characterize the mass fractions (concentration) of the respective components. In general, Eq. (5) expresses
the conservation of mass, where the temporal evolution of the concentration fieldsck is affected by an interplay
between the corresponding diffusive mass currentJk and a source term

∑r
j=1 vkjJ̄j due to chemical reactions. In

our notationJ̄j denotes a generalized chemical reaction rate of thejth reaction.
Please note that an application of the mass concentration as evolution variable to describe the local composition
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of our system demands the classical reaction rateJ , which is originally formulated in molar concentrations, to
be adjusted in its dimension in order to fit Eq. (5). The prerequisite calculations will be performed in a later part
of this passage. The coefficientvkj divided by the molecular massMk of componentk is proportional to the
stoichiometric coefficient of thekth chemical substance in thejth chemical reaction. By convention, coefficients
vkj are counted positive ifkth chemical substance is produced within thejth chemical reaction; and negative if the
kth substance is consumed in reactionj.
Since mass conservation has to be guaranteed in each separate chemical reaction, it holds

n∑

k=1

vkj = 0, (j = 1, 2, . . . , r) . (7)

For mathematical reasons it is convenient to normalize the coefficientsvkj in such a manner that for the reactants
(k = 1, 2, . . . , qj) of each reactionj it holds

qj∑

k=1

vkj = −1, (j = 1, 2, . . . , r) . (8)

In view of the mass conservation (7) and the normalization (8) we obtain a normalization for the products(k = qj + 1,
qj + 2, . . . , n) given by

n∑

k=qj+1

vkj = 1, (j = 1, 2, . . . , r) . (9)

In the scope of this manuscript we will only consider incompressible reaction-systems, which do not change their
volume in chemical reactions. Under these restrictions the total mass densityρ is constant in time and therefore we
may rewrite the kinetic quantities of chemical reactions in terms of (mass) concentration. To this end we employ
the relation

[Xi] =
ρi

Mi
=

ρci

Mi
, (10)

where[Xi] is the molar concentration of theith component (in units ofmol/m3), ρi denotes the partial density of
componenti (in units ofkg/m3) andMi is the respective molar mass of constituenti (in units ofkg/mol). An
application of (10) yields with the true stoichiometric coefficientsnkj and the conventional reaction ratesJj

nkj =
ajvkj

Mk
andJj =

J̄j

aj
, (11)

where the proportionality constantsaj (in units of kg/mol) can be deduced from the normalization conditions (8)
and (9) as

aj =
n∑

k=qj+1

nkjMk = −
qj∑

k=1

(−nkj) Mk. (12)

According to the usual sign convention the stoichiometric coefficients of reactants are counted as negative, to
indicate that the corresponding substances are consumed during reaction. Now we are able to employ the rate
equation (4) to obtain a general expression for the reaction rate of each elementary reaction considered in our
reaction-diffusion system

Jj = k+1,j

qj∏

k=1

[Xk]nkj − k−1,j

n∏

k=qj+1

[Xk]nkj . (13)

In contrast to the convention in Eq. (12), there is no negative sign in the exponent of the product of reactants results.
In this way it is guaranteed that the exponents in our rate law are always positive as it was introduced in the general
formalism (4). By means of relations (11), (12) and (13) we are able to give a consistent representation of the
generalized chemical reaction ratēJj and the scaled stoichiometric coefficientsvkj .
Let us now take into account that in the case of generalized Fickian diffusion the diffusive mass currentJk of
componentk is given by

Jk = −ρM∇μk = −ρM∇

(
δF

δck

)

, (14)

107



whereM is the mobility tensor andμk denotes the chemical potential with respect to thekth component. The
system’s Helmholtz free energy is given by

F (c1, c2, . . . , cn, T ) =
∫

Ω

(
Ψcon + Ψint

)
dΩ (15)

involving a configurational and interfacial energy contribution. For a multiphase mixture the configurational free
energy densityΨcon is given by

Ψcon(T, p, c1, . . . , cn) =
n∑

i=1

g0
i (T, p) ci + θ (T )

n∑

i=1

ci ln ci +
1
2

∑

1≤i,j≤n
i 6=j

cicjχ
(0)
ij , (16)

whereg0
i (T, p) are the Gibbs free energy densities of the pureith component and the second part accounts for en-

ergy contributions from the entropy of mixing. The entropy contribution is multiplied by the temperature depended
material parameterθ. The first two energy contributions represent the classical Lewis-Randall ideal solution model.
For the consideration of reasonable solutions, which generally show a non-ideal behavior, it is crucial to include
the third term into the energy representation involving a Porter’s type excess energy contribution (see O’Connell
and Haile, 2005).
The interfacial free energy densityΨint accounts for the nonlocal effect of surface tension which is related to
surface energy density contained within the interfacial regions between different phases. It is formally given by

Ψint =
n∑

i=1

κi

2
‖∇ci‖

2
, (17)

where the material parametersκi are related to surface energy densityγ and thicknessl of the interfacial lay-
ers between the domains of each phase. Finally, the evolution equations for chemically active multicomponent
reaction-diffusion systems read

ρ
dck

dt
= ∇ ∙ (ρM∇μk) +

r∑

j=1

vkjJ̄j , (k = 1, . . . n) , in Ω × [0, T ] . (18)

The boundary conditions are given in the usual manner, such that

Jk ∙ n = 0 and∇ck ∙ n = 0, (k = 1, . . . n) , on∂Ω × [0, T ] , (19)

wheren is the unit outward normal on∂Ω. As initial boundary condition, we employ

ck (x, 0) = ck,0 (x) (20)

The introduced formulation of evolution equations expressing mass continuity for reaction-diffusion systems (18)
may also be found in a similar form in de Groot and Mazur (1962).

2 Computational Studies of Multicomponent Reaction-Diffusion Systems

In the sequel, we will demonstrate computational studies of a representative ternary system subjected to an interfa-
cial chemical reaction coupled with diffusion phenomena such as phase separation and microstructural coarsening.
Such a kind of chemical reaction was experimentally studied by Horiuchi et al. (1997) to adjust morphologies in
ternary immiscible polymer blends.
To keep the computational cost at a reasonable level we will consider here only one representative system, which
suffices to illustrate the essential physics underlying the phenomena in chemically activated phase-separating ma-
terials. Following the spirit of Glotzer et al. (1995) we focus in this work on solid mixtures which are quenched
into a thermodynamically unstable state simultaneously undergoing an elementary chemical reaction. However,
the operative chemical reaction is regarded as an externally induced/controlled processes due to external fields, e.g.
irradiation.

Although computational studies of binary reaction-diffusion systems can be employed to show the basic traits of
chemically reactive systems as done by Glotzer et al. (1995), they are rather academic because chemical reactions
usually involve multiphase mixtures. In our considerations we regard an evolution scenario within an unstable
ternary system consisting of speciesA, B andC, which is simultaneously subjected to the bimolecular reaction

nAA + nBB
k+1



k−1

nCC, (21)
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wherek+1 andk−1 are according to our notation the rate coefficients of the forward reactionnAA+nBB → nCC
and the backward reactionnCC → nAA+nBB, respectively. The corresponding reaction rateJ1 reads according
to the general form (4)

J1 = k+1 [A]nA [B]nB − k−1 [C]nC . (22)

The microstructural evolution of this ternary mixture is captured by the temporal evolution of the mass fractions
c1 := cA andc2 := cB . The mass concentrationc3 of componentC follows from the overall mass conservation
law

c1 + c2 + c3 = 1 ⇔ c3 = 1 − (c1 + c2) .

According to the general evolution equations for multiphase reaction-diffusion systems (18) we obtain the ternary
evolution equations

∂c1

∂t
= ∇ ∙ (M∇μ1) − nAMAk̄+1c

nA
1 cnB

2 + nAMAk̄−1 (1 − (c1 + c2))
nC , (23)

∂c2

∂t
= ∇ ∙ (M∇μ2) − nBMB k̄+1c

nA
1 cnB

2 + nBMB k̄−1 (1 − (c1 + c2))
nC , (24)

∂c3

∂t
= ∇ ∙ (M∇μ3) + nCMC k̄+1c

nB
1 cnA

2 − nCMC k̄−1c
nC
3 . (25)

Since the concentration profilec3 can be calculated from the concentrationsc1 and c2, we need only to solve
Eqs. (23) and (24). Please note that we employ here an averaged overall mobility tensorM that captures the
kinetics of the diffusion contribution within the evolution equations. The coefficientsk̄+1 andk̄−1 denote scaled
rate coefficients, which follow from the normalization conditions (8) and (9).
For the numerical solution of the ternary evolution equations (23)-(25) we employ a B-spline based finite element
approach for spatial discretization and a classical Crank-Nicholson scheme for temporal discretization. To get
a profound insight into the mathematical details on the application of these discretization schemes the authors
refer to their original papers on the treatment of similar Cahn-Hilliard type phase-field equations (cf. Anders and
Weinberg, 2011a; Anders et al., 2011; Anders and Weinberg, 2011b).

Without loss of generality we assume for the diffusion dominated contributions an averaged, isotropic and constant
mobility given byM = M ∙I. The gradient coefficientsκi of the individual phases are regarded as almost equal and
they are represented by an overall gradient coefficientκ. For the multicomponent configurational energy density
Ψcon in Eq. (16) and the system parametersM , κ we employ the following dimensionless parameter set

M = 1, κ = 2.5 ∙ 10−5, θ (T ) = 0.35, χ
(0)
12 = χ

(0)
13 = χ

(0)
23 = 1.2. (26)

These material parameters represent a thermodynamically unstable mixture which will decompose into three equi-
librium phases. The corresponding shape of the configurational energy within the Gibbs triangle is illustrated in
Fig. 1. This figure shows that the configurational energy has three local minima, which can be connected by a
common tangent plane. The locus of these minima characterizes the composition of the equilibrium phases.
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Figure 1: Contour plot and illustration of the shape of the configurational energy densityΨcon. The blue color indicate low
energy values and the red color marks high energy values.
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Unfortunately, we suffer here from a lack of experimental reference data for the parameters of the chemical reac-
tion. For this reason, we choose here rather academic stoichiometric coefficients

nA = nB = nC = 1. (27)

We assume that the molecular masses of substancesA andB are similar(MA ≈ MB) as it is often the case for
chemically reactive polymer blends. From the computational point of view the individual molar masses are simply
included into the scaled rate coefficients

k̄′
+1 := MAk̄+1 = MB k̄+1 andk̄′

−1 := MAk̄−1 = MB k̄−1. (28)

In our simulations we make use of equal forward and backward reaction rates according to

k̄′
+1 = k̄′

−1 = 600. (29)

Please keep in mind that our model is actually capable to reproduce other settings for chemical reactions.

Let us now come to the computational results for our representative ternary reaction-diffusion system. Here it
should be emphasized that simulations of multicomponent reaction-diffusion systems are not common. To our
knowledge, there exist no published computational studies of ternary chemically reactive phase-separating sys-
tems so far.
Our simulation initiates from a homogeneous state with slightly perturbed concentration profilesc̄A,0 = c̄1,0 ≈
0.22, c̄B,0 = c̄2,0 ≈ 0.21 and c̄C,0 = c̄3,0 ≈ 0.57. The system is arranged outside the chemical equilibrium.
In the course of time, the system’s microstructural evolution is dominated by the tendency to reach the chemical
equilibrium, as it is also the case for the binary reaction-diffusion system. This trend is illustrated in the overall
concentration evolution of the substancesA, B andC in Fig. 2. We observe here a complete rearrangement of the
system’s composition. While the overall concentration ofC decreases, the concentrations ofA andB considerably
increase with time. The equilibration of chemical reactions takes place in the time interval oft = 0 up tot = 0.01.
This temporal interval is dyed in dark gray in Fig. 2. The later evolution stages are dominated by classical coars-
ening effects.
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Figure 2: Temporal evolution of the overall concentrationsc̄1 = c̄A, c̄2 = c̄B andc̄3 = c̄C of the chemical speciesA, B and
C, respectively.

The morphologies observed during our computational studies exhibit the so-calledcapsule formation, where
phases are encapsulated by a thin layer of another phase, see Figs. 3 and 4. The simulated micrographs indi-
cate that the initially homogeneous ternary mixture at first rearranges into chemical equilibrium before separation
into three equilibrium phases takes place. Due to the altered overall average concentrations of substancesA, B
andC, the evolving microstructure is dominated by a lamellar pattern. This structure is induced by the two equiv-
alentA-rich andB-rich major phases. In the computational micrographs theA-rich phase is characterized by light
brown domains and theB-rich phases are dyed in neon green, see Figs. 3 and 4. The thirdC-rich equilibrium
phase (reddish domains) represents here the minor phase, which accumulates at the interfacial regions between
the A- andB-rich lamellae. The reason for this accumulation ofC-type matter at the interfaces leading to an
encapsulation of the major phases is fully induced by chemical reactions. Since we simulate diffusion phenomena
subjected to a chemical reaction which requires matter ofA andB in order to produceC, the chemical reaction is
concentrated at the interfacial regions, whereA andB simultaneously occur. In the bulk regions, where there is a
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constantly high amount ofA and a lack ofB and vice versa, the chemical reaction is complicated by a lack of one
reactant. This special kind of morphology formation was experimentally observed by Horiuchi et al. (1997).

t = 0 t = 0.01 t = 0.025

Figure 3: Morphology evolution in a ternary reaction-diffusion system at early stages.

t = 0.05 t = 0.1 t = 0.16

Figure 4: Morphology evolution in a ternary reaction-diffusion system at later stages.

Other computational studies with different initial settings indicated that the obtained results are invariant under
modifications of the initial concentration. Classical non reactive phase-separating mixtures usually exhibit a mi-
crostructural formation which inherently depends on their initial configuration. For chemically active systems this
is actually not the case. It shows that the microstructure of multicomponent systems can be forced by chemical
reactions out of its original arrangement into a capsule formation or other types of microstructural formation.

3 Summary

In this work a thermodynamically consistent model for multicomponent phase-separating reaction-diffusion sys-
tems is presented. Our approach takes into account the complete coupling between chemical reactions and diffusion
events on the microscopic level. The performed simulation results corroborate the idea that chemical reactions may
be used as an effective tool to exert control on the microstructure in functional materials. It shows that our model
is basically capable to reproduce the experimentally observed microstructural evolution in ternary polymer blends
driven by interfacial reactions, as shown in Horiuchi et al. (1997).
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