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Modeling Silicon under Contact Loading Conditions: Aspects of
Non-Associated Flow

M. Budnitzki, M. Kuna

Technologically relevant abrasive machining techniques (lapping, sawing, grinding) for silicon (Si) are based on
(sub-)surface crack formation triggered by contact events. Therefore, the understanding of the inelastic deforma-
tion of Si under contact (indenter-)loading is essential to improve machining results. It has been long established
that Si undergoes a series of stress driven phase transitions under compression. During subsequent pressure re-
lease part of the transformation strain is recovered. The present paper highlights the importance of the direction
of inelastic flow for modeling (partially) reversible stress induced phase transitions in materials such as silicon. A
phenomenological constitutive model for Si under contact loading, which captures both the cd−Si → β−Si tran-
sition upon compression and the β−Si → a−Si transition upon rapid decompression has been recently presented
(Budnitzki and Kuna, 2012). It is shown that indentation experiments are particularly well suited to determine
material parameters for this model. Further, material parameters obtained from indentation experiments with
Berkovich indenter are confirmed to be valid for the numerical simulation of Knoop indentation, thus verifying a
certain predictive capability of the constitutive model.

1 Introduction

The material removal mechanism of technologically relevant abrasive machining techniques for silicon (Si), such
as lapping, sawing and grinding, is chipping due to (sub-)surface crack formation triggered by contact events. The
evolution of the lateral crack system responsible for the formation of chips is governed by residual stresses (Lawn,
1993, Ch. 8.1.3). Therefore, the understanding of the inelastic deformation of Si under contact (indenter-)loading
is essential to improving machining results.

It is known that Si undergoes a series of stress driven phase transitions upon compression and subsequent pressure
release. As many as 12 distinct crystalline or amorphous phases of Si have been experimentally observed at various
stress levels (Domnich and Gogotsi, 2002; Hu et al., 1986; Mcmahon and Nelmes, 1993; Mcmahon et al., 1994).
Gerk and Tabor (1978) suggested that the cd-Si → β-Si transition is the governing deformation mechanism for
silicon under indenter loading. In this semiconductor to metal transition, diamond-cubic Si (cd-Si, space group
Fd3m) transforms to the β-tin structure (β-Si, space group I41/amd), leading to ∼ 20% densification (Hu et al.,
1986). This will be referred to as forward transformation. Upon release of pressure the initial diamond-cubic
structure is not restored, but replaced by a mixture of different crystalline phases for slow, and amorphous silicon
(a-Si) for fast unloading respectively. This will be referred to as reverse transformation. It is therefore clear that
isochoric plasticity models employed by some authors (Zhang and Mahdi, 1996; Yoshino et al., 2001; Bhagavat and
Kao, 2007; Wang et al., 2007) are but a rough approximation of the inelastic behavior of Si, leading to an incorrect
prediction of the residual stresses after unloading, which are the driving force for lateral crack propagation.

Several constitutive models for silicon that consider volume changes during phase transformation exist in literature.
The group of Kiriyama et al. (2009) used a multilinear “elastic” model with tangent moduli depending on the direc-
tion of loading in order to fit the force displacement (F − U ) hysteresis obtained in nanoindentation experiments.
However, thermomechanical consistency of this approach is questionable. In addition, such a model can neither
capture the effect of multiaxiality on the phase transition nor the independent evolution of volumetric and devi-
atoric inelastic strains. The incremental model introduced by Vodenitcharova and Zhang (2003, 2004) employed
ellipsoidal yield/transformation surfaces with an associated flow rule to account for dilatancy effects. However,
they did not incorporate the continuous β-Si → a-Si phase transition upon decompression, but rather included
discrete jumps in the inelastic volumetric strain in order to account for pop-in/out events. Due to the limitations
of this approach, the experimental F − U curve could only be fitted by choosing unrealistic values for the elastic
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constants (E = 80 GPa, ν = 0.17). The commonly known polycrystalline averages for Si are E = 163 GPa,
ν = 0.23 (Cook, 2006). Further, the model overestimates the size of the transformation zone (Vodenitcharova and
Zhang, 2004). In none of the above publications it was attempted to verify the obtained material parameters by
simulating an independent load case, which the constitutive models were not explicitly fitted to.

To overcome the deficiencies mentioned above, a novel thermomechanical constitutive model for silicon that cap-
tures the cd-Si → β-Si transition during contact loading (forward transformation) as well as the β-Si → a-Si
transition during rapid unloading (reverse transformation) was introduced by Budnitzki and Kuna (2012). Its main
constitutive equations are summarized in Sections 4 and 5.

The aim of the present paper is twofold: first, to discuss the mostly neglected aspect of reverse phase transformation
(β-Si → a-Si) during unloading with particular emphasis on the importance of the direction of inelastic flow
(see Sec. 3), and second, to propose a strategy for the successful identification of material parameters for the
constitutive model of Budnitzki and Kuna (2012). Subsequently, we show that the material parameters identified
from BERKOVICH indentation experiments have general validity (see Sec. 7).

2 Thermomechanics Framework

The isothermal portion of the materials’ behavior is fully defined by specifying a thermodynamic state function
E (σ,α) and a dissipation function D (σ, α̇,α), where σ denotes the stress and α a set of internal variables.
The corresponding generalized stresses (or thermodynamic forces) are defined as χ := ∂E (σ,α) /∂α. If non-
associated flow is considered, D has to be a function of σ (Ziegler and Wehrli, 1987). However, in the following
argumentation σ is a passive variable and therefore dropped for brevity.

For rate-independent materials, D is first-order homogeneous in α̇. Further, assuming maximal rate of entropy
production, which is also known as principle of maximal rate of dissipation and equivalent to Ziegler’s orthogonal-
ity principle (Ziegler and Wehrli, 1987; Ziegler, 1983), it can be shown (Han and Reddy, 1999) that the generalized
stresses are given by χ ≡ ∂D (α̇,α) /∂α̇ and are constrained to a closed convex set K = {χ : Φ (χ,α) ≤ 0}
called the elastic region. No dissipation occurs when χ is in the interior of K. The Legendre-Fenchel trans-
form D∗ (χ,α) = supα̇[χα̇− D (α̇,α)] of the dissipation function D (α̇,α) is the indicator function of K, i.e.
D∗ (χ,α) ≡ IK . From the properties of the Legendre-Fenchel transform immediately follows

α̇ ∈ ∂χD∗ (χ,α) ≡ ∂IK =: NK(χ,α) , (1)

where ∂χ(·) is called the subdifferential with respect to χ and NK(χ,α) denotes the cone of outward normals of
K. For any regular point on the limit surface Φ(χ,α) = 0 the cone NK(χ,α) reduces to the unique outward
normal, i.e.

α̇ = λ̇
∂Φ (χ,α)

∂χ
(2)

for some λ̇ > 0 [see e.g. Han and Reddy (1999)]. The relationship with the limit surface in true stress space
F (σ,α) is established by χ = ∂E (σ,α) /∂α, i.e

F (σ,α) = Φ

(
∂E (σ,α)

∂α
,α

)
= 0 . (3)

The internal state variables are commonly chosen as α = {εtr, ξ}, where εtr is the transformation strain tensor.
The relationship between ξ̇ and λ̇ is immediately established by (2). Hence, the phase content of the dense phase
ξ plays the role of a consistency parameter, such that the classical Kuhn-Tucker conditions are

ξ̇ ≥ 0 , Φf ≤ 0 , ξ̇Φf = 0 ; (4)

ξ̇ ≤ 0 , Φr ≤ 0 , ξ̇Φr = 0 . (5)

Here Φf (χ,α) and Φr (χ,α) are the limit surfaces for forward and reverse transformation respectively. The
model is completed by requiring

0 ≤ ξ ≤ ξ̂ , (6)

where ξ̂ is the maximal achievable phase content. For materials, such as Si, exhibiting a change in density during
the phase transformation, the phase content is directly proportional to the volumetric transformation strain ν tr :=
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− tr (εtr), such that ξ = ν tr/ν̂ tr, where ν̂ tr is the maximal achievable volumetric transformation strain. Finally, the
introduction of the deviatoric transformation strain γ tr := εtr+ 1

3ν
tr1 allows to conveniently reformulate the choice

of internal variables to α = {γ tr, ν tr}. The associated thermodynamic forces are χ = {χ′, χp} with χ′ being the
deviatoric and χp the volumetric parts, respectively.

3 On the Importance of the Direction of Flow

Although the diamond-cubic structure is not restored after unloading a sharp contact in Si, part of the transforma-
tion strain is recovered during the β-Si → a-Si transition. The effect of the direction of inelastic flow on the strain
recovery during unloading is investigated in this section. In the following, ∥A∥ :=

√
A : A denotes the norm of a

second order tensor A and A′ := A− 1
3 tr (A) denotes its deviator. Further, the notation Aq :=

√
2
3∥A

′∥ is used.

3.1 An Illustrative Example

As the precise shape of the limit functions only plays a minor role in this discussion, the well-understood Drucker-
Prager limit function is used for illustration, i.e. Fµ (σ,α) = σq +3κp−Yµ(ξ) with µ ∈ {f, r}, where κ > 0 is a
constant, p denotes the hydrostatic pressure and Yµ(ξ) plays the role of a limit stress. This choice already has the
main features of the limit functions introduced in Sec. 5, particularly their pressure dependence. For simplicity,
the associated case is discussed here and rate equation (2) takes the form

ε̇tr = ξ̇
∂Fµ(σ,α)

∂σ
= ξ̇

(
3

2

σ′

σq
− κ1

)
=: ξ̇N (σ) . (7)

Consider a closed, tripartite loading path that connects a series of stress states S0
π1−→ S1

π2−→ S2
π3−→ S0:

(π1) the load is increased proportionally until the limit surface is reached and further until completion of the
semiconductor to metal (cd-Si → β-Si) transition

(π2) the stress state is shifted to another point on the limit surface; as the phase transformation has already been
completed, this process is purely elastic

(π3) the load is decreased proportionally, until the initial stress state is reached

This is schematically illustrated in Fig. 1. It should be emphasized that step (π2) is indeed elastic. Since no
’reorientation’ is incorporated into Eq. (7), all state variables are frozen after completion of the forward trans-
formation as a consequence of inequality (6). During loading, the existence of this additional constraint is the
essential feature distinguishing phase transformation from a conventional plasticity formulation. For the sake of
completeness, it is worth noting that an elastic relocation to a different point on the limit surface is possible even

(a) Drucker-Prager limit surfaces. For illustration purposes the
forward- and reverse-transformation limit surfaces are chosen
to coincide [Yf (ξ) ≡ Yr(ξ)].

p

σq

S0

S1

S2
π2

π1

π3

ε̇
tr

ε̇
tr

(b) Cross-section of the limit surfaces for forward (solid) and
reverse transformation (dotted) containing the hydrostatic axis
and loading paths (p− σq plane).

Figure 1: Conical limit surfaces and loading paths in stress space.
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while the transformation is not complete, by choosing a path tangential to the limit surface. This corresponds to
neutral loading.

The total inelastic strain over a full loading-unloading cycle, i.e. the residual transformation strain after completion
of the reverse transformation

εtr
t ≡ γ tr

t − 1

3
ν tr

t 1 =

∮
ξ̇N (σ) dt =

3∑
i=1

∫
πi

ξ̇N (σ) dt (8)

is expected to be smaller than the transformation strain after completion of the cd-Si → β-Si transformation, i.e.∥∥γ tr
t

∥∥ 6
∥∥∥γ tr

∣∣
S1

∥∥∥ , (9a)

ν tr
t 6 ν tr

∣∣
S1

. (9b)

In the case of proportional loading along π1 the flow direction N (σ) =: Nf will remain unaltered throughout the
loading process, i.e. ε̇tr

π1
= ξ̇Nf and hence ∆εtr

π1
= ∆ξfNf . Similarly, ∆εtr

π3
= ∆ξrN r. On the intermediate

loading path no inelastic deformation occurs, i.e. ∆εtr
π2

= 0. Therefore, the total inelastic strain is computed to be
εtr

t = ∆ξfNf +∆ξrN r.

A rather enlightening loading path is illustrated in Fig. 1. A sample is uniaxially loaded along π1 until completion
of the semiconductor to metal transformation at S1. Then, via π2, the hydrostatic stress is increased beyond the
intersection of the limit surface with the p-axis and deviatoric stress is applied; subsequently, the stress is relaxed
onto the limit surface for reverse transformation at S2. Finally, the stress is returned to the initial state S0 via π3,
transforming the β-Si phase into a-Si. Hence, ∆ξf = −∆ξr =: ∆ξ, resulting in

εtr
t = ∆ξ (Nf −N r) . (10)

From Fig. 1(b) it is immediately clear that tr (N r) = tr (Nf ), while N ′
r = −N ′

f . Therefore, Eq. (10) reduces
to

εtr
t = 2∆ξN ′

f = 2 γ tr
∣∣
S1

(11)

⇒
∥∥γ tr

t

∥∥ = 2
∥∥∥γ tr

∣∣
S1

∥∥∥ (12)

i.e. after the reverse transformation the volumetric inelastic strain indeed vanishes, while the deviatoric inelastic
strain doubles, which is in contradiction to (9a). This example is fairly general. For cylindrical limit surfaces the
path π̃2 would replace π2 [see Fig. 1(a)], leaving the rest of the argumentation unchanged.

3.2 Discussion

The discovered discrepancy is caused by the model’s failure to account for reorientation effects in the dense phase
as well as to properly relate the direction of inelastic flow in unloading to the current transformation strain.

Similar problems occur in the constitutive modeling of the superelastic response of shape memory alloys (SMAs).
In this community several approaches to this issue have been published [see e.g. Auricchio et al. (2007) or Panico
and Brinson (2007)]. However, it should be noted that these efforts are mostly restricted to pressure independent,
isochoric phase transitions, which is appropriate for SMAs, but not for materials such as silicon.

However, it is clear that for a purely volumetric reverse transformation the equal sign in (9a) holds. In this case εtr
t

will be independent of the point on the limit surface S2 at which unloading takes place. Further, fixing the direction
of inelastic flow reduces the number of parameters in the model, thus simplifying the identification procedure. This
approach was used in the work of Budnitzki and Kuna (2012).

4 A Constitutive Model for Silicon

A detailed description of the proposed constitutive model has been published elsewhere (Budnitzki and Kuna,
2012). Hence, only a brief account of the constitutive equations is given here.
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If, as a simplifying assumption, no distinction between the enthalpies of the different phases is made, the state
function can be written as

E (σ,α) = E el(σ) + σ :

(
γ tr − 1

3
ν tr1

)
+ E h (ν tr)+ Iν̂ tr(ν tr) . (13)

Here E el is the elastic portion of the GIBBS free enthalpy and E h is responsible for transformation hardening. The
symbol Iν̂ tr(ν tr) denotes the indicator function of the interval [0, ν tr].

It is assumed that energy is dissipated during the motion of phase boundaries, i.e. when the phase content ξ or, as
discussed above, the volumetric transformation strain ν tr change. This can be written as

D (α̇,α) = µ
(
p, ν tr, s

)
ν̇ tr > 0 , (14)

where s := sign (ν̇ tr), i.e. s = +1 for forward and s = −1 for reverse transformation. To control the direction of
inelastic flow, the dissipation function is supplemented with the kinematic constraint

C (σ,α, α̇) := ν̇ tr +

√
2

3
β
(
p, ν tr, s

)
∥γ̇ tr∥ = 0 . (15)

It can be shown that the resulting limit functions in the space of thermodynamic forces are

Φf (σ,χ,α) = χq − |β
(
p, ν tr,+1

)
|
[
µ
(
p, ν tr,+1

)
− χp

]
= 0 , (16a)

Φr (σ,χ,α) = |β
(
p, ν tr,−1

)
|
[
µ
(
p, ν tr,−1

)
− χp

]
− χq = 0 . (16b)

The limit functions in principle stress space are obtained from (16) using Equations (3) and (13)

Ff (σ,α) = σq − |β
(
p, ν tr,+1

)
|
{
µ
(
p, ν tr,+1

)
−
[
p− pY

(
ν tr)]}

=: σq − µ̃
(
p, ν tr,+1

)
, (17a)

Fr (σ,α) = |β
(
p, ν tr,−1

)
|
{
µ
(
p, ν tr,−1

)
−
[
p− pY

(
ν tr)]}− σq

=: µ̃
(
p, ν tr,−1

)
− σq , (17b)

where pY (ν tr) := −∂E h(ν tr)
∂ν tr . The direction of inelastic flow is determined from (2) resulting in

γ̇ tr = λ̇
∂Φ(·) (σ,χ,α)

∂χ′ =
˙̂
λ

√
3

2

χ′

∥χ′∥
, (18a)

ν̇ tr = λ̇
∂Φ(·) (σ,χ,α)

∂χp
=

˙̂
λ
∣∣β (

p, ν tr, s
)∣∣ , (18b)

where ˙̂
λ is a rescaled consistency parameter with sign

(
˙̂
λ
)

= sign (ν̇ tr). The description of the constitutive

behaviour is completed by specifying the functions µ̃ (p, ν tr, s) and β (p, ν tr, s).

5 Choice of Functional Forms for the Limit Surfaces

Experimental results suggest to choose hyperboloids of revolution aligned along the hydrostatic axis and closed
in compression as limit surfaces [see (Budnitzki and Kuna, 2012) for further discussion]. For this case Sec. 3.2
implies that the direction of inelastic flow during cd-Si → β-Si transformation can be used as a fitting parameter to
match experimental results, whereas the β-Si → a-Si transformation should be kept purely volumetric to prevent
undesired model behavior in non-proportional loading.

Considering the expressions for the limit functions given by Eqs. (17), an appropriate choice for µ̃ is

µ̃
(
p, ν tr, s

)
:=

b

a

√
([p− pY (ν tr)−H(−s)d]− a)

2 − a2 , (19)

where H is the unit-step function and a, b and d are shape parameters. The resulting surface for forward transfor-
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(a) BERKOVICH indenter tip. (b) KNOOP indenter tip.

Figure 2: Micrographs of indenter tips obtained using laser confocal microscopy.

mation intersects the hydrostatic axis at p = pY (ν tr) := pY0 + hν tr. For this case β (p, ν tr, s) is chosen as

β
(
p, ν tr,+1

)
:=

b′

a

p− pY (ν tr)− a√
([p− pY (ν tr)]− a)

2 − a2
, (20)

which, depending on the choice of b′, results in associated (b′ = b) or non-associated flow. It can be easily shown
that dissipation is non-negative throughout the loading process if b

b′ ≥ 1.

During reverse transformation, the constraint Cr(σ,α, α̇) := ∥γ̇ tr∥ = 0 is assumed. This condition can be
obtained from (15) in the limit β (p, ν tr,−1) → ∞, or, using definition (20), b′ → ∞. It can be seen from Eqs. (17)
and (19), that the shape of the limit surface in principal stress space remains unaffected, as the hyperboloid is only
shifted by d along the hydrostatic axis.

6 Experimental Procedures

The experimental force-displacement curves have been obtained using the UNAT (Asmec GmbH) nanoindenter
with BERKOVICH and KNOOP indenter tips, respectively. High resolution optical micrographs of the indenter tips
(see Fig. 2) have been acquired using the confocal laser scanning microscopy (CLSM) technique. Imaging has
been performed with Olympus Lext OLS4000 microscope. The obtained surface profiles have been used to verify
the face angles of both indenter tips. In addition, the area function of the BERKOVICH indenter was independently
determined using two reference materials.

The experimental curves shown in Figs. 3 and 5(b) have been obtained from indentations in a (100) single crystal
silicon wafer and represent an average of 10 force-displacement curves respectively. The load was applied at a rate
of 2 mN/s.

7 Numerical Results and Discussion

The numerical implementation of the novel constitutive model as a user material subroutine (UMAT) in the com-
mercial finite element (FE) code ABAQUS/Standard as well as its response for homogeneous loading conditions
have been presented in a previous work (Budnitzki and Kuna, 2012). The constitutive behavior is fully deter-
mined by 8 parameters: The YOUNG’s modulus Y , the POISSON’s ratio ν, the transformation initiation pressure
under hydrostatic loading pY0, the corresponding linear hardening modulus h, the constants a, b, b′ that determine
the shape of the limit surfaces and flow potential as well as the parameter d that prescribes the onset of reverse
transformation in unloading. The POISSON’s ratio, the transformation initiation pressure as well as the hardening
modulus could be established from literature data, while E, b, b′, and d were determined by fitting an axisymmetric
model with a rigid sphero-conical indenter tip to experimentally obtained force displacement (F −U ) curves from
nanoindentation with BERKOVICH indenter (Budnitzki and Kuna, 2012). The values are summarized in Tab. 1.
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Figure 3: Experimental and simulated F − U curves.

model parameter value
E 136.59 GPa
ν 0.23
pY0 11.30 GPa
h 3.92 GPa
a 0.50 GPa
b
a 1.04
b′

a 0.99
d 4.80 GPa

Table 1: Model parameters.

The resulting fit of the experimental curve can be seen in Fig. 3. A curve obtained using ideal VON MISES plastic-
ity (with elastic constants E = 133.25 GPa, ν = 0.23 and yield stress σY = 5.64 GPa) is shown for comparison
in order to highlight the importance of reverse phase transformation for the correct simulation of indentation in
silicon.

To assess the quality and - to a certain degree - the uniqueness of the obtained description it is helpful to consider
the effect of the individual parameters on the shape of the simulated F − U curve. The YOUNG’s modulus (or, to
be more specific, the so called reduced modulus Er) can be obtained independently of the inelastic properties in
accordance with the Oliver and Pharr (1992) procedure by evaluating the slope of the F − U curve at the point of
load reversal. Hence, its effect can be clearly separated.

The effects of the parameters b and b′, which characterize the shape of the limit surface for phase transition and the
flow potential respectively, are illustrated in Figs. 4(a) and 4(b). An increase of b increases the maximal force at
prescribed displacement δ̂, while simultaneously decreasing the residual depth of the indent. Changes in b′ affect
the residual depth, while leaving the maximum force almost at a constant value. Thus the main features of the force
displacement curve can be adjusted independently. The parameter d determines the point at which the unloading
curve begins to deviate from the elastic one. This allows for additional minor corrections of the residual depth after
full unloading.

The above considerations show that indentation experiments with sharp indenter are particularly well suited to
determine material parameters for the discussed constitutive model. As a result of this separation of effects, it
can be expected that the obtained set of model parameters is specific to the material only and independent of the
particular load case it was fitted to. To support this statement the numerical simulation of a KNOOP indentation
experiment with parameters obtained from BERKOVICH indentation was performed. The KNOOP indenter is a very
blunt, 4-sided pyramid with a rhombic base [see Fig. 2(b)] that leads to a stress state in the material, which differs
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(a) Variation of b.
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(b) Variation of b′.

Figure 4: Effect of the parameters b and b′ on the simulated force displacement (F − U ) curves for BERKOVICH
indentation.
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(a) FE mesh for KNOOP indentation simula-
tions.

0.03 0.06 0.09 0.12 0.15 0.18 0.21

Displacement (in µm)

0

5

10

15

20

25

30

35

F
o
rc
e
(i
n
m
N
)

experiment

present model

(b) Experimental and simulated KNOOP indentation curves.

Figure 5: Simulated of KNOOP indentation experiments.

strongly from the one caused by the 3-sided BERKOVICH pyramid. Therefore, it can be considered appropriate for
verification purposes.

Due to the elongated shape of the KNOOP indenter tip an axisymmetric model is inappropriate. Therefore, a
quarter 3D FE-model was used [see Fig. 5(a)]. A sufficiently large region of the silicon sample was meshed with
hexahedral elements C3D8 and embedded into an elastic half-space implemented with infinite elements CIN3D8.
Displacements were fixed at the infinite boundary. The indenter was modeled with rigid elements R3D3 and R3D4.
The obtained force displacement curve is shown in Fig. 5(b) along with the experimental reference curve. A very
reasonable match is obtained, which verifies the predictive capability of the constitutive model.

8 Summary and Conclusion

It has been discussed that for modeling (partially) reversible, stress induced phase transformations the direction of
inelastic flow - especially during reverse phase transformation - cannot be chosen arbitrarily. This is important in
order to prevent erratic model behavior in non-proportional loading. However, it has been demonstrated that no
problems occur if the inelastic flow during reverse transformation is purely volumetric.

Further, it has been shown that indentation experiments with sharp indenter are particularly suited for determining
model parameters for the constitutive model of Budnitzki and Kuna (2012). This was verified by the successful
numerical simulation of an independent experiment that the model was not explicitly fitted to.
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