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A Comparative Analysis of Linear and Nonlinear Kinematic Hardening
Rules in Computational Elastoplasticity

Fabio De Angelis

In this work a comparative analysis is presented between the linear and the nonlinear kinematic hardening assump-
tions for material modelling in the elastoplastic regime. For the simulation of typically adopted nonlinear kinematic
hardening laws a solution procedure is considered which is able to preserve a quadratic rate of asymptotic con-
vergence. Numerical computations and results are reported which allow to compare for different simulations the
suitability of the assumptions of linear versus nonlinear kinematic hardening rules for elastoplastic materials. By
considering different types of material properties the reported analysis gives indications on the conditions under
which such assumptions can be considered efficacious.

1 Introduction

Over the last decades computational plasticity has achieved a deep mathematical and numerical understanding
through the investigations of many researchers who have worked in the field. For a comprehensive account see,
among others, Simo and Hughes (1998), Zienkiewicz and Taylor (2005) and Wriggers (2008). For rate-independent
plasticity the assumption of a linear kinematic hardening behaviour (Prager (1949)) is frequently adopted in the lit-
erature. This assumption is quite advantageous since it provides numerical integration algorithms characterized by
computational efficiency and a symmetric tangential stiffness matrix. However in recent years in the literature the
use of nonlinear kinematic hardening rules has been proposed in order to properly and more accurately reproduce
the experimental behaviour of materials, see, e.g., Armstrong and Frederick (1966), Dafalias and Popov (1975),
Chaboche (1989), McDowell (1992), Lubliner et al. (1993), Auricchio and Taylor (1995). In particular this holds
for the simulation of complex loading conditions, see for instance Chaboche and Cailletaud (1996) and Auricchio
and Taylor (1995).

When a fast and robust numerical integration algorithm is required, the implementation of nonlinear kinematic
hardening rules for plasticity models is not a trivial task to be accomplished. At present the research for fast and
robust numerical integration algorithms for the simulation of nonlinear kinematic hardening models and complex
loading conditions is an active topic of research in the literature. In this respect precursory proposals have been pre-
sented by, among others, Doghri (1993), Auricchio and Taylor (1995), Hopperstad and Remseth (1995), Chaboche
and Cailletaud (1996). The current state of the art includes the contributions of many researchers who are actively
working in this field and on the related topics. A physical approach to the formulation of constitutive laws based
on nonlinear rheological models in finite thermoviscoplasticity has been proposed by Lion (2000). Lubarda and
Benson (2002) proposed a numerical integration algorithm for the combined isotropic kinematic hardening plas-
ticity with the Armstrong Frederick evolution equation for the back stress. A finite strain elastoplastic constitutive
model capable to describe nonlinear kinematic hardening and nonlinear isotropic hardening has been presented by
Wallin et al. (2003). Dettmer and Reese (2004) illustrated the theoretical and numerical modelling of Armstrong
Frederick kinematic hardening in the finite strain regime. Tsakmakis and Willuweit (2004) discussed and com-
pared the possible extensions of the Armstrong Frederick rule to finite deformations and implemented the models
in a finite element code. A deformation gradient based kinematic hardening model has been introduced by Wallin
and Ristinmaa (2005). Since the residual stresses are a manifestation of the distortion of the crystal lattice, a
corresponding deformation gradient was introduced to represent this distortion. Menzel et al. (2005) proposed an
algorithmic treatment of the phenomenological framework to capture anisotropic geometrically nonlinear inelas-
ticity by considering the coupling of viscoplasticity with continuum damage. Hakansson et al. (2005) illustrated a
comparative analysis of isotropic hardening and kinematic hardening in thermoplasticity. A computational mod-
elling of inelastic large ratcheting strains has been described by Johansson et al. (2005). Svendsen et al. (2006)
illustrated a thermodynamical approach to the modelling and simulation of induced elastic and inelastic material
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behavior and an application of the concept of evolving structure tensors to the modelling of initial and induced
anisotropy at large deformation. Artioli et al. (2007) presented two second order numerical schemes for the von
Mises plasticity with a combination of linear isotropic and nonlinear kinematic hardening. The derivation and the
numerical implementation of a material model for nonlinear kinematic and isotropic hardening has been proposed
by Vladimirov et al. (2008), where the kinematic hardening component represents a continuum extension of the
rheological model of Armstrong Frederick kinematic hardening. Wang et al. (2008) illustrated the formulation and
initial application of a phenomenological model for hardening effects in metals subject to non-proportional loading
histories characterized by one or more loading-path changes. Barthel et al. (2008) presented a phenomenological
model whose structure is motivated by polycrystalline modelling that takes into account the evolution of polarized
dislocation structures on the grain level as the main cause of the induced flow anisotropy on the macroscopic level.
The application of a model that combines both isotropic and kinematic hardening and utilizes a new algorithm
based on the exponential map has been illustrated by Vladimirov et al. (2009). The derivation and numerical im-
plementation of a material model for plastic anisotropy and nonlinear kinematic and isotropic hardening has been
discussed by Vladimirov et al. (2010). Vladimirov et al. (2011) investigated the influence of kinematic hardening
behaviour and plastic anisotropy in the context of continuum thermodynamics and a multiplicative formulation of
elastoplasticity. Schwarze et al. (2011) illustrated a finite element formulation incorporating a material model for
plastic anisotropy with Armstrong Frederick kinematic hardening and isotropic hardening. Pietryga et al. (2012)
proposed a constitutive model for anisotropic metal plasticity that takes into account isotropic hardening, kine-
matic hardening and distortional hardening. For a comprehensive account and a review of some plasticity and
viscoplasticity constitutive theories with linear and nonlinear kinematic hardening see, e.g., Chaboche (2008).

In this work attention is focused on a comparative analysis between the linear and the nonlinear kinematic harden-
ing rules in elastoplasticity. Indications regarding the application of linear versus nonlinear kinematic hardening
assumptions are presented for different material properties. A numerical algorithm which preserves a quadratic
rate of convergence is used for the computational modelling of typically adopted nonlinear kinematic hardening
laws. Numerical applications and computational results are reported in order to show the effectiveness of the al-
gorithmic procedure. The adoption of the assumptions of linear and nonlinear kinematic hardening rules is made
and a comparative analysis of the two models is illustrated for different types of material parameters. The reported
analysis allows to have better indications on the conditions under which such assumptions can be considered as
effective. In addition the performed analysis also provides useful indications on the degree of discrepancy that
the two assumptions imply in the simulation and analysis of elastoplastic structural problems for different types of
material properties.

2 The Continuum Problem

Let Ω ⊂ <n, 1 ≤ n ≤ 3, be the reference configuration of the bodyB with particles labelled by their position
vectorx ∈ Ω relative to a Cartesian reference frame. LetT ⊂ <+ be the time interval of interest. We denote with
V the space of displacements,D the strain space andS the dual stress space. We also denote byu : Ω ×T → V
the displacement field and byσ : Ω × T → S the stress field. The compatible strain field is defined asε(u) =
∇s(u) : Ω ×T → D, where∇s is the symmetric part of the gradient. The hypothesis of small strains is assumed
to hold so that the total strainε ∈ D is additively split into an elastic partεe and a plastic partεp, resulting
ε = εe + εp. The constitutive elastic relation between the elastic strainεe ∈ D and the stressσ ∈ S is governed
by an elastic operatorE , and its inverseE−1, so thatσ = E(εe), andεe = E−1(σ). Assuming linear elasticity the
elastic operatorE and its inverseE−1 are linear and will be denoted byE andE−1. Thus the constitutive elastic
relations specialize toσ = Eεe and εe = E−1σ. The elastic energyW : D → < and the complementary
elastic energyW∗ : S → < in case of linear elasticity are expressed in the quadratic formsW(εe) = 1

2 〈Eεe, εe 〉

andW∗(σ) = 1
2 〈σ,E−1σ 〉, whereE is the elastic stiffness and the symbol〈 . , . 〉 denotes a non-degenerate

bilinear form on dual spaces. We define the kinematic internal variableα ∈ X × < and the dual static internal
variableχ ∈ X ′ ×< as

α =

[
αkin

αiso

]

, χ =

[
χkin

χiso

]

, (1)

whereαkin ∈ X andχkin ∈ X ′ are introduced to model kinematic hardening,αiso ∈ < andχiso ∈ < model
isotropic hardening andX andX ′ are dual spaces. Accordingly, the hardening matrixH = diag[Hkin, H iso]
is introduced, whereHkin andHiso denote the kinematic and isotropic hardening moduli, so that the static and
kinematic internal variables are linked by the relationχ = Hα. A yield function f (σ, χkin, χiso) defines the
convex elastic domain asC = {(σ, χkin, χiso) ∈ S × X ′ × < : f (σ, χkin, χiso) ≤ 0}. An important class of
plastic hardening materials arises when the yield function is expressed asf (σ, χkin, χiso) = F (σ − χkin) −
χiso − yo, whereyo is a material parameter. Furtherly, we consider a formulation within the framework provided

165



by the generalized standard material model (Halphen and Nguyen (1975)). Accordingly, a suitable definition of the
internal variables and of the generalized yielding function is considered for modelling elastoplastic phenomena.
Generalized strains and stresses are introduced as

ε̃ =

[
ε
o

]

, ε̃e =

[
εe

α

]

, ε̃p =

[
εp

−α

]

, σ̃ =

[
σ
χ

]

, (2)

and take into account actual strains and stresses and kinematic and static internal variables. The generalized
variables are defined in product spaces, respectivelyD̃ = D × X × < and S̃ = S × X ′ × < and for their
rapresentation is equivalently used the notationε̃ = (ε,o) andσ̃ = (σ, χ). A generalized convex elastic domain
C̃ ⊆ S̃ is introduced to define the admissibility condition on the generalized stressσ̃ asC̃ = {σ̃ ∈ S̃ : f̃ (σ̃) ≤ 0},
wheref̃ : S̃ → < is a convex generalized yield function. Consequently, the duality products between generalized
variables are introduced as〈σ̃, ε̃ 〉 = 〈σ, ε 〉, 〈σ̃, ε̃e

〉 = 〈σ, εe 〉 + 〈χ, α 〉, 〈σ̃, ε̃p
〉 = 〈σ, εp 〉 − 〈χ, α 〉,

and they are defined by the duality products between the corresponding elements ofS andD and between the
corresponding elements ofX ′ × < andX × <. For a comprehensive treatment see, among others, Lemaitre and
Chaboche (1990).

3 Constitutive Model in Plasticity

The constitutive formulations of plasticity problems may be efficiently considered within the context of the theory
of continuum thermodynamics with internal variables, see for instance Halphen and Nguyen (1975). For a survey
account we refer, e.g., to Germain et al. (1983), and Lemaitre and Chaboche (1990). In an internal variable
formulation of plasticity an important role is played by the form of the evolutive equations. A generalized way
to consider this problem has been proposed by assuming that evolution equations are expressed in terms of a
potential. This formulation has been illustrated in detail by Halphen and Nguyen (1975) and Germain et al. (1983).
The thermodynamic potential provides the description of the thermodynamic forces conjugate to the state variables
and allows the formulation of the evolutive laws of the state variables which represent the irreversible process.

The maximum plastic dissipation principle supplies the expression of the dissipation function

D( ˙̃εp) = sup
τ̃∈ ˜C

{〈 τ̃ , ˙̃εp
〉} = sup

(τ ,q)∈ ˜C
{〈τ , ε̇p

〉 − 〈q, α̇ 〉}, (3)

whereτ̃ = (τ ,q) has been used to denote the generic generalized stress state, whileσ̃ = (σ, χ) has been used
to indicate the value at solution. For the given generalized plastic strain rate˙̃εp, the Lagrangian of the plastic
constitutive problem with hardening is introduced as

L̃p(τ̃ , δ̇) = −〈 τ̃ , ˙̃εp
〉 + δ̇f̃ (τ̃ ) − t<+(δ̇) = −〈τ , ε̇p

〉 + 〈q, α̇ 〉 + δ̇f̃ (τ ,q) − t<+(δ̇), (4)

wheret<+(δ̇) denotes the convex indicator function (Hiriart-Urruty and Lemaréchal (1993)) of the set of non-
negative real numbers<+

t<+(δ̇)
def
=

{
0 if δ̇ ≥ 0

+∞ if δ̇ < 0.
(5)

Hereδ̇ indicates the generic Lagrange multiplier, whileγ̇ denotes the value at the solution point, with the meaning
of a plastic multiplier. The solution of the maximum plastic dissipation problem (3) is given by the point(σ̃, γ̇) ∈
S̃ ×<+ which fulfills the Kuhn-Tucker optimality conditions

0 ∈
[
∂τ̃ L̃

p(τ̃ , δ̇)
]

(σ̃,γ̇) ⇔ ˙̃εp ∈ γ̇∂ f̃ (σ̃)

0 ∈
[
∂ δ̇L̃

p(τ̃ , δ̇)
]

(σ̃,γ̇) ⇔ f̃ (σ̃) ∈ ∂ t <+(δ̇),
(6)

and by making explicit the terms related to the generalized variables the solution is given by

0 ∈
[
∂τ L̃p(τ ,q, δ̇)

]
(σ,χ,γ̇) ⇔ ε̇p ∈ γ̇∂σ f̃ (σ, χ)

0 ∈
[
∂qL̃p(τ ,q, δ̇)

]
(σ,χ,γ̇) ⇔ −α̇ ∈ γ̇∂χ f̃ (σ, χ)

0 ∈
[
∂ δ̇L̃

p(τ ,q, δ̇)
]

(σ,χ,γ̇) ⇔ f̃ (σ, χ) ∈ ∂ t <+(δ̇).

(7)
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Figure 1: Loading program in tension-compression with increasing mean stress.
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Figure 2: Comparative analysis between linear kinematic hardening (LKH) and nonlinear kinematic hardening
(NLKH) in plasticity for chromium-nickel stainless steel X5CrNi 18∙9. Loading conditions in tension-compression
with loading program reported in Fig.1.

Relation (6)1 is the normality law of the generalized plastic flow for the plasticity problem with hardening and by
expliciting the generalized variables it supplies the flow law (7)1 for the plastic strain and the evolutive law (7)2

for the internal variables. Furtherly, since it resultsN<+(δ̇) = ∂t<+(δ̇) (see, e.g., Hiriart-Urruty and Lemaréchal
(1993)), equations (6)2 and (7)3 can be expressed as

f̃ (σ̃) = f̃ (σ, χ) ∈ N<+(δ̇), (8)

which is an equivalent expression for the loading/unloading conditions in the complementarity form

f̃ (σ̃) = f̃ (σ, χ) ≤ 0, γ̇ ≥ 0, γ̇ f̃ (σ̃) = γ̇ f̃ (σ, χ) = 0. (9)

For hardening plasticity the principle of maximum plastic dissipation supplies

〈(τ̃ − σ̃), ˙̃εp
〉 ≤ 0, ∀ τ̃ ∈ C̃, (10)

and, given the definition of a normal cone to the convex setC̃ (Hiriart-Urruty and Lemaŕechal (1993)), it follows

˙̃εp ∈ N ˜C
(σ̃), (11)

which represents the normality law in plasticity with hardening, with the physical meaning for the generalized
plastic strain rate to belong to the normal cone to the generalized convex elastic domainC̃ at σ̃. We now observe
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Figure 3: Loading program with increasing levels of loading.
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Figure 4: Comparative analysis between linear kinematic hardening (LKH) and nonlinear kinematic hardening
(NLKH) in plasticity for chromium-nickel stainless steel X5CrNi 18∙9. Loading conditions with increasing levels
of loading and with loading program reported in Fig.3.

thatN ˜C
(σ̃) = ∂ t ˜C

(σ̃), where the indicator functiont ˜C
(σ̃) (Hiriart-Urruty and Lemaŕechal (1993)) of the

convex generalized elastic domaiñC is defined as

t ˜C
(σ̃)

def
=

{
0 if σ̃ ∈ C̃

+∞ if σ̃ 6∈ C̃.
(12)

Accordingly, the normality law in plasticity with hardening can be formulated as

˙̃εp ∈ ∂ t ˜C
(σ̃), (13)

which is an equivalent form of the flow rule in terms of generalized variables. The advocated internal variable treat-
ment proves to be ideally suited to derive a complete variational formulation of the structural model in plasticity
and viscoplasticity, see, e.g., DeAngelis (2000).

4 Computational Formulation of the Evolutive Laws in Elastoplasticity with Hardening

From a computational point of view it is convenient to consider an additive decomposition of the stress tensor into
the deviatoric and spherical partsσ = s + p1, where the pressure isp = 1

3 tr(σ), the spherical part isp1,
the rank two identity tensor is denoted by1 and the stress deviator is represented bys = devσ = σ − p1.
Similarly, the strain tensor is decomposed into the deviatoric and volumetric partsε = e + 1

3 θ 1, where θ
is the change in volume ande = devε = ε − 1

3 θ 1 represents the strain deviator. The linear elastic relation
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between the volumetric part of the stress and the volumetric part of the strain is formulated asp = K θ where
K denotes the bulk modulus. The elastic relation between the deviatoric stress and the elastic deviatoric strain is
s = 2G ee = 2G[e − ep], whereG denotes the shear modulus and, by assuming small strain elastoplasticity, the
deviatoric part of the total strain is additively decomposed into an elastic and a plastic parte = ee + ep. The
relative stress is denoted byΣ = s − β, whereβ represents the deviatoric back stress. A J2 material model
behaviour is considered in the sequel and, accordingly, a von Mises yield criterion is adopted in the form

f (σ, β, κ) = ‖devσ − β‖ − κ(χiso) = ‖s − β‖ −

√
2
3
(σyo + χiso) ≤ 0, (14)

whereκ(χiso) =
√

2
3 σy =

√
2
3 (σyo + χiso) is the current radius of the yield surface in the deviatoric plane and

σyo is the uniaxial yield stress of the virgin material. The static internal variable related to isotropic hardening
is expressed asχiso = Hisoē

p, and the dual kinematic internal variableēp denotes the equivalent (accumulated)

plastic strainēp =
∫

0

t√
2
3‖ė

p‖d t. The deviatoric plastic strain rate supply the evolutive flow law for the

constitutive equation in associative plasticity

ėp = γ̇
∂f
∂σ

= γ̇
∂f
∂Σ

= γ̇ n, (15)

in which γ̇ is the plastic multiplier and the second rank tensorn is expressed asn = Σ
‖Σ‖ , and it is characterized

by unit norm. The accumulated equivalent plastic strain rate is expressed as˙̄ep =
√

2
3 γ̇. By assuming linear

kinematic hardening behaviour the back stress rate is expressed in the form originally proposed by Prager (1949)

β̇ =
2
3

Hkin ėp, (16)

where it has been assumedHkin = 2
3 HkinI. In the assumption of a nonlinear kinematic hardening behaviour

in the literature it is often adopted the model originally proposed by Armstrong and Frederick (1966) (see e.g.
Chaboche (1989)), which can be expressed as

β̇ =
2
3

Hkin ėp − Hnl ˙̄epβ, (17)

whereHnl is a non-dimensional material dependent parameter characterizing nonlinear kinematic hardening be-
haviour. In equation (17) the second term represents a recall term and forHnl = 0 the linear kinematic hardening
behaviour is reproduced. A better approximation consists in adding several models such as (17) with different
recall constants (Chaboche (1989), Chaboche (2008))

β =
M∑

i=1

βi, β̇i =
2
3

Hkin,i ė
p − Hnl,i

˙̄epβi. (18)

For numerical integration algorithms in computational plasticity a comprehensive treatment of the subject is pro-
vided by, among others, Simo and Hughes (1998) and Zienkiewicz and Taylor (2005). A general solution procedure
holding for general yield criteria is provided by, e.g., Alfano et al. (2001).

5 Comparative Analysis of Linear and Nonlinear Kinematic Hardening Modelling

In this section a comparative analysis between the linear and the nonlinear kinematic hardening assumptions is
illustrated and discussed. The search for fast and robust integration methods relative to nonlinear kinematic hard-
ening models is nowadays an active topic of investigation between researchers. In this paper a solution procedure
which preserves the quadratic rate of asymptotic convergence is used. The aim of the present paper is focused on
the investigation of the comparative analysis of linear and nonlinear kinematic hardening rules for different ma-
terial properties. A more detailed description of the adopted algorithmic solution procedure and the development
of a consistent tangent operator for nonlinear kinematic hardening plasticity is described thoroughly in DeAngelis
(2012). For the numerical tests we use a three-dimensional finite element, based on a mixed approach and imple-
mented into the Finite Element Analysis Program FEAP (Zienkiewicz and Taylor (2005)). In the simulations the
load is enforced on a cubic specimen of side length equal to 5, by prescribing a uniform displacement on the top
boundary of the specimen and with the appropriate boundary conditions. The sample is modelled with only one
element. In simulating the material constitutive behaviour the computational tests are performed for different types
of material parameters so that in each case the effectiveness of the adoption of linear versus nonlinear kinematic
hardening can be properly evaluated.
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Figure 5: Comparative analysis between linear kinematic hardening (LKH) and nonlinear kinematic hardening
(NLKH) in plasticity for carbon steel Ck 15. Loading conditions in tension-compression with loading program
reported in Fig.1.

5.1 Computational Results: Chromium-Nickel Stainless Steel X5CrNi 18∙9

In the first simulation test we consider the material properties which identify the chromium-nickel stainless steel
X5CrNi 18∙9 (see, e.g., Hartmann et al. (1997)). The material properties are: elastic modulusE = 208000 MPa,
Poisson’s ratioν = 0.3, yield limit σyo = 170 MPa, kinematic hardening modulusHkin = 41080 MPa, nonlinear
kinematic hardening parameterHnl = 525, isotropic hardening modulusHiso = 0 MPa. On the top boundary of
the specimen a vertical displacement is prescribed and set equal touo = 0.001. The proportional load coefficient
p(t) describes the evolution with time, by amplifying the prescribed displacement. Accordingly, the loading history
is given by the relationu(t) = p(t)uo. A simulation of the material behaviour is performed by assigning a loading
program in tension-compression with increasing mean stress and with loading history illustrated in Figure 1. The
related stress-strain curves are reported in Figure 2, where a comparative analysis of the linear kinematic hardening
behaviour (LKH) and the nonlinear kinematic hardening behaviour (NLKH) is illustrated. Another test for the
simulation of the material behaviour is performed by assigning a loading program with increasing levels of loading
and with loading history illustrated in Figure 3. The stress-strain curves for this loading condition are illustrated
in Figure 4, where it is possible to evaluate the different assumptions of linear and nonlinear hardening models
on the material constitutive behaviour. A comparative analysis of the different assumptions of a linear kinematic
hardening rule (LKH) and a nonlinear kinematic hardening rule (NLKH) in elastoplasticity is shown in Figure 4,
where the differences between the two assumptions on the kinematic hardening rule are clearly illustrated.

5.2 Computational Results: Carbon Steel Ck15

In this section we consider a simulation test in which the material properties identify the plain carbon steel Ck15
(see, e.g., Dettmer and Reese (2004) and Luhrs et al. (1997)). The material properties are: elastic modulusE =
208000 MPa, Poisson’s ratioν = 0.3, yield limit σyo = 300 MPa, kinematic hardening modulusHkin = 1900
MPa, nonlinear kinematic hardening parameterHnl = 8.5, isotropic hardening modulusHiso = 0 MPa. On the
top boundary of the test specimen a prescribed vertical displacement is assigned and set equal touo = 0.01. A
proportional load coefficientp(t) describes the evolution with time of the prescribed displacement and defines the
loading history according to the relationu(t) = p(t)uo. The simulation of the material behaviour is performed
by assigning a loading program in tension-compression with loading history illustrated in Figure 1. The related
stress-strain curves are reported in Figure 5. A comparative analysis of the different assumptions of a linear
kinematic hardening rule (LKH) and a nonlinear kinematic hardening rule (NLKH) for this plain carbon steel
can be made from the observation of Figure 5. A second test for the simulation of the material behaviour is
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Figure 6: Comparative analysis between linear kinematic hardening (LKH) and nonlinear kinematic hardening
(NLKH) in plasticity for carbon steel Ck 15. Loading conditions with increasing levels of loading and with loading
program reported in Fig.3.

performed by assigning a loading history illustrated in Figure 3 with increasing levels of loading. For this type of
loading condition the stress-strain curves are reported in Figure 6, where the discrepancies between the different
hardening rule assumptions on the material constitutive behaviour can be evaluated. The comparative analysis and
the differences between the assumptions of a linear kinematic hardening rule (LKH) and a nonlinear kinematic
hardening rule (NLKH) in elastoplasticity are clearly illustrated in Figure 6.

6 Conclusions

In this work typical linear and nonlinear hardening laws for elastoplasticity have been investigated. A comparative
analysis between the assumptions of linear versus nonlinear kinematic hardening behaviour has been presented
with illustrative numerical simulations. In fact in finite element applications of large scale elastoplastic structural
analysis the linear kinematic hardening rule is usually adopted since this assumption ensures a symmetric tangent
stiffness matrix and computationally efficient solution procedures. However, in the literature it has been discussed
the opportunity of adopting nonlinear kinematic hardening rules in order to properly simulate experiments on
real materials. The computational implementation and research for fast and effective numerical procedures for
nonlinear kinematic hardening rules is not trivial especially for large structural simulations and complex loading
conditions which involve large computing times.

In the present article a comparative analysis of the linear and the nonlinear kinematic hardening rules has been
performed for different material properties in order to have a better comprehension of the suitability of applying the
different assumptions in the appropriate modelling of the material behaviour. Numerical tests and computational
results have been performed for different types of material parameters in order to understand in which case the
adoption of more complex kinematic hardening rules is considered to be advisable or necessary. Another purpose
of the present analysis is to be able to evaluate in a broad sense the type of disagreement or lack of conformity of
the two different assumptions on the kinematic hardening rule for different material properties.

Consequently, a comparative analysis between the adoption of linear versus nonlinear kinematic hardening rules
has been illustrated for different material properties and for different loading conditions. The performed compar-
ative analysis allows to have a better understanding on the conditions under which the different assumptions on
the hardening rules are considered adequate and favorable. In addition the performed analysis also gives useful
insights on the degree of discrepancy that the two different hardening rule assumptions imply in the simulation of
elastoplastic structures subject to complex loading conditions.
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Hartmann, S.; Luhrs, G.; Haupt, P.: An efficient stress algorithm with applications in viscoplasticity and plasticity.
International Journal for Numerical Methods in Engineering, 40, (1997), 991–1013.
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