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Diffuse Cohesive Energy in Plasticity and Fracture

G. Del Piero, G. Lancioni and R. March

In this paper we anticipate some results of a work in progress(Del Piero et al., 2012), in which the phenomena of
fracture and yielding are described by a cohesive energy model, and fracture is regarded as a consequence of an
extreme localization of the inelastic deformation. We firststudy a local model, which is successful in describing a
number of aspects of the experimentally observed response,but fails to describe the phenomenon of strain soften-
ing. Indeed the model’s prediction is that, just after its appearance, the inelastic deformation localizes, growing in
an uncontrolled way and determining a catastrophic rupture. A more gradual growth is obtained by introducing a
non-local energy term. Some numerical experiments show thegreat flexibility of the improved model: depending
on the analytical shape assumed for the cohesive energy, thenon-local model describes different types of response,
such as yielding without fracture, ductile fracture with and without strain softening, and brittle fracture.

1 Introduction

The interest in variational models for fracture mechanics was originated by the paper (Francfort and Marigo,
1998), based on Griffith’s theory of brittle fracture (Griffith, 1920). In this theory, fractures are represented
as discontinuities of the displacement field along singularsurfaces. The same representation is adopted in the
cohesive energy models, introduced in (Barenblatt, 1962) and (Dugdale, 1960) to describe the ductile fracture
modes which prevail in small-size bodies. In the cohesive energy models, fracture is preceded by a regime of
large inelastic deformations, concentrated on the fracture surface. According to the analytic shape assumed for
the cohesive energy, very different responses, such as plastic behavior, damage, brittle and ductile fracture, can be
obtained, see (Del Piero and Truskinovsky, 2009).

There is a third fracture mode, in which the inelastic deformation initially spreads over a portion of the volume,
called theprocess zone. Due to the progressive weakening of the material in this zone, the deformation eventually
localizes on a fracture surface. A first description of this fracture mode was obtained by including in the energy
balance the work done by the plastic deformation (Irwin, 1957). In recent variational approaches, the weakening
of the material is attributed either to yielding (Dal Maso and Toader, 2010) or to damage (Babadjian, 2011),
(Pham et al., 2010). In the present paper, which anticipatessome results of a forthcoming paper (Del Piero et al.,
2012), a description in terms of plasticity comes out, somehow unexpectedly, from the assumptions made on the
shape of the energy. As discussed in the same paper, an appropriate modification of these assumptions leads to the
damage model treated in (Pham et al., 2010).

We consider the one-dimensional case of a bar subject to given axial displacementsu at the endpoints. For it we
assume that, at every pointx of the bar’s axis, the axial deformationu′(x) is the sum of an elastic partǫ(x) and of
an inelastic partγ(x). We also assume that the energy of the bar is the sum of an elastic part and a cohesive part,
with volume densitiesw andθ, respectively

∫ l

0

(

w(ǫ(x)) + θ(γ(x))
)

dx .

Finally, while the elastic part of the energy is totally reversible, the cohesive part is assumed to be dissipative.

With this simple model, we proceed by incremental energy minimization. With respect to the originalglobal
minimizationof (Francfort and Marigo, 1998), there are two important changes. The first is that the minimization
is now local instead of global, and the second is that it isincremental. Both improvements, already present in the
concentrated cohesive energy model of (Del Piero and Truskinovsky, 2009), were made possible by the recent
progress in the physical understanding and mathematical modelling of rate-independent evolutionary problems.
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The essentials of incremental energy minimization and a comparison with other current solution methods can be
found in the lecture notes (Mielke, 2011).

In the model for fracture described above, the result of incremental energy minimization is an accurate description
of the bar’s response, from the onset of inelastic deformation up to rupture. Some typical features of elastic-plastic
response, such as yield condition, hardening rule, elasticunloading, are recovered as necessary conditions for an
energy minimum.

The model is not completely satisfactory, since it fails to describe thesoftening responsewhich precedes the
ultimate rupture. Before rupture, the experiments show a more or less important regime in which the force-
elongation response curve has a negative slope. This softening regime has the effect of increasing the ductility,
with the consequence that the body can sustain a larger load without breaking.

The softening response is captured by adding to the energy a non-local term proportional to the square of the
derivative of the inelastic deformation

∫ l

0

(

w(ǫ(x)) + θ(γ(x))
)

dx+
1

2
α

∫ l

0

γ′
2
(x) dx

with α a positive material constant. This procedure is known as thesingular perturbationmethod. It is also called
theVan der Waals - Cahn Hilliardmethod, due to the well known applications to the capillarity of fluids in (Van
der Waals, 1873), and to phase transitions in (Cahn and Hilliard, 1958). More recent (Gurtin and Anand, 2005) is
the application to crystal plasticity.

In both models, local and non-local, the localization of theinelastic strain occurs when the cohesive energy density
θ is concave near the origin, that is, whenθ′′(0) < 0. But, while in the local model the localization is immediately
followed by rupture, in the non-local model a regime of inelastic deformation takes place. In this case, different
types of response become possible. They are determined by the ratio between the lengthl of the bar and the
material constant

li = π

√

α

−θ′′(0) ,

which has the physical meaning of aninternal lengthof the material. Indeed, for sufficiently low values ofl/li
the model predicts a totally ductile response, with the inelastic deformation growing all over the body and with
no catastrophic failure. For higher values ofl/li, the final rupture is preceded by a non-localized work-hardening
regime and, for still higher values, by a localized softening regime. For fixedli and varyingl, this reflects the well
knownsize effectof fracture mechanics.

2 The Local Model

Consider a bar of lengthl, with constant cross section, free of external loads, and subject to the axial displacements

u(0) = 0 , u(l) = βl (1)

at the endpoints. The bar’s deformation is measured by the derivative u′ of the axial displacementu, and we
assume that, at each pointx of the bar’s axis,u′(x) can be decomposed into the sum of an elastic partǫ(x) and an
inelastic partγ(x)

u′(x) = ǫ(x) + γ(x) . (2)

The pair of functions(ǫ, γ) will be called aconfigurationof the bar. We assume that the strain energy of the bar is
the sum of two terms, the elastic strain energy and the cohesive energy, with volume densitiesw andθ, respectively,

E(ǫ, γ) =

∫ l

0

w(ǫ(x)) dx +

∫ l

0

θ(γ(x)) dx , (3)

and that the axial forceσ is related to the elastic deformation by the constitutive equation

σ(x) = w′(ǫ(x)) . (4)
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The functionw is assumed to be strictly convex, andθ is assumed to be strictly increasing. Finally, we assume
thatw can be stored, whileθ is totally dissipated. This requires that, in every deformation processt 7→ u(t), the
cohesive power be non-negative at allx and for allt:

θ′(γ(x, t)) γ̇(x, t) ≥ 0 .

Forθ is strictly increasing, thedissipation inequality

γ̇(x, t) ≥ 0 (5)

must be satisfied at allx and for allt.

2.1 Equilibrium

A perturbation of a configuration(ǫ, γ) is a pair(δǫ, δγ) such thatδǫ(x) = ǫ̇(x) andδγ(x) = γ̇(x), for some
deformation processt 7→ (ǫ(t), γ(t)) starting from(ǫ, γ). The dissipation inequality then impliesδγ(x) ≥ 0 at
every pointx of the bar.

In a variational approach, the equilibrium configurations are identified with the pairs(ǫ, γ) for which the first
variation of the energy

δE(ǫ, γ, δǫ, δγ) =

∫ l

0

(

w′(ǫ(x)) δǫ(x) + θ′(γ(x)) δγ(x)
)

dx (6)

is non-negative for arbitrary perturbationsδǫ and for all perturbationsδγ which preserve the length of the bar and
satisfy the conditionδγ(x) ≥ 0 for all x. It is shown in (Del Piero et al., 2012) that an equilibrium configuration
is characterized by the two following conditions:

(i) the axial forceσ and the elastic deformationǫ, which are related by the constitutive equation (4), are constant
all over the bar,

(ii) the axial force is bounded from above by

σ ≤ θ′(γ(x)) ∀x ∈ (0, l) . (7)

For an equilibrium configuration, the set of all points of thebar at which inequality (7) is strict

E =
{

x ∈ (0, l) | σ < θ′(γ(x))
}

is theelastic zone, and the complementary setJ = (0, l) \ E , at which (7) holds as an equality, is theinelastic
zone.

In the language of Plasticity, the equilibrium condition (7) is a yield condition, and θ′(γ(x)) is a yield limit,
depending on the punctual values of the inelastic deformationγ. Note that, in the present variational approach, this
limit is not assumed a priori, but is obtained as a necessary condition for equilibrium.

Among all equilibrium configurations, of interest are thosewhich are global or local energy minimizers. A neces-
sary condition for an energy minimum is the non-negativeness of the second variation. It is proved in (Del Piero
et al., 2012) that this occurs only if

θ′′(γ(x, t)) ≥ 0 (8)

almost everywhere in the inelastic zoneJ . In the same paper it is proved that a slightly stronger condition is
sufficient for astrong local minimum, that is, for a local minimum in the class of all perturbations δγ such that

sup
x∈(0,l)

|δγ(x)| < η

for some fixedη > 0.
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2.2 Quasi-Static Evolution

For a given loading processβ = β(t), assume that the equilibrium configurationǫ(t), γ(x, t) at timet is known,
and that we wish to determine the equilibrium configuration at time t+ τ . This can be done by incremental energy
minimization. That is, by considering the expansion

E(ǫ(t+ τ), γ(x, t+ τ)) = E(ǫ(t), γ(x, t)) + τ Ė(ǫ(t), γ(x, t)) +
1

2
τ2Ë(ǫ(t), γ(x, t)) + o(τ2) , (9)

and minimizing for sufficiently smallτ > 0. On the right-hand side, the zero-order term is known. Then a
first-order approximation is obtained by minimizing the functionalĖ(ǫ(t), γ(x, t)). Note that, by (1) and (2),

βl =

∫ l

0

u′(x) dx =

∫ l

0

(ǫ(x) + γ(x)) dx ,

so that, by the constancy ofǫ(x) in an equilibrium configuration,

γ̄
.
=

1

l

∫ l

0

γ(x) dx = β − ǫ . (10)

Then, by time differentiation of (3) and by the constitutiveequation (4),

Ė(ǫ(t), γ(x, t)) = lσ(t) β̇(t) +

∫ l

0

(

θ′(γ(x, t))− σ(t)
)

γ̇(x, t) dx . (11)

On the right side everything is known exceptγ̇, and the integrand function is non-negative by the equilibrium
condition (7) and the dissipation inequality (5). Then the minimum ofĖ(t) is achieved when the integrand function
is zero. This fact, together with inequalities (5) and (7), determines the Kuhn-Tucker conditions

γ̇(x, t) ≥ 0 , θ′(γ(x, t))− σ(t) ≥ 0 ,
(

θ′(γ(x, t))− σ(t)
)

γ̇(x, t) = 0 , (12)

for all x in (0, l). The third condition, called the complementarity condition, states thaṫγ(x, t) must be zero at all
points of the elastic zoneE = E(t). It is remarkable that this assumption of classical Plasticity is obtained here as
a necessary condition for incremental energy minimization.

No further information can be obtained from the first-order minimization. Indeed, if the complementarity condition
holds then the integral term in (11) becomes equal to zero, and the minimum ofĖ is equal tolσ(t)β̇(t). To
determineγ̇(x, t) in the inelastic zone, it is necessary to consider the second-order approximation of the functional
(9). This leads to the minimization of the second-order termË(ǫ(t), γ(x, t)) in the expansion of the energy. It is
shown in (Del Piero et al., 2012) that this minimization determines a second set of Kuhn-Tucker conditions

γ̇(x, t) ≥ 0 , θ′′(γ(x, t)) γ̇(x, t)− σ̇(t) ≥ 0 ,
(

θ′′(γ(x, t)) γ̇(x, t)− σ̇(t)
)

γ̇(x, t) = 0 (13)

for all x in J (t). The first condition is again the dissipation inequality. The second is a relation between the incre-
ments of the force and of the inelastic deformation in the inelastic zone. In it, equality denotes the permanence ofx
in the inelastic zone, and strict inequality denotes the return ofx inside the elastic zone. The third is theconsistency
condition, which says thaṫγ(x) must be zero whenx returns inside the elastic zone. Again, some assumptions of
classical Plasticity are obtained here as necessary conditions for second-order incremental minimization.

2.3 Evolution from the Natural Configuration

Consider a loading processt 7→ β(t) with β̇(t) > 0 for all t ≥ 0, starting from the natural configuration
(ǫ(0) , γ(x, 0)) = (0, 0), at t = 0. For this process, there is a time interval(0, tc) at which the evolution is
purely elastic, that is,

γ(x, t) = 0 ∀x ∈ (0, l) , ǫ(t) = β(t) , σ(t) = w′(β(t)) . (14)

This elastic regime ends at the timetc at whichβ reaches the critical value

βc = β(tc) = (w′)−1(θ′(0)) . (15)
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At time tc, inequality (7) is satisfied as an equality. Then all points of the bar switch from the elastic to the inelastic
zone, and a regime of inelastic deformation begins. The subsequent evolution strongly depends on the sign of
θ′′(0).

If θ′′(0) > 0, becausėγ(x, t) has to be positive for somex, from the complementarity condition(13)3 it follows
thatσ̇(t) is positive. Then, by inequality(13)2, γ̇(x, tc) has the constant value

γ̇(x, tc) =
σ̇(tc)

θ′′(0)
. (16)

Thenγ(x, t) is constant at the instants immediately followingtc. This conclusion holds for allt > tc, as long as
θ′′(γ(t)) keeps a positive value. Therefore, we have the homogeneous evolution

γ̇(x, t) =
σ̇(t)

θ′′(γ(t))
= ¯̇γ(t) .

Together with the relations

ǫ̇(t) = β̇(t)− ¯̇γ(t) , σ̇(t) = w′′(ǫ(t)) (β̇(t)− ¯̇γ(t)) , (17)

which follow from (10) and (4), respectively, this relationdetermines the incremental force-elongation response

σ̇(t) =
θ′′(γ(t))w′′(ǫ(t))

θ′′(γ(t)) + w′′(ǫ(t))
β̇(t) . (18)

As long asθ′′(γ(t)) remains positive, the slopėσ/β̇ of the response curve(σ, β) is positive. That is, the response
is work-hardening.

This conclusion holds only for processes withβ̇(t) > 0 for all t. Indeed, from(17)2 and from the complementarity
condition(13)3 it follows that

w′′(ǫ(t)) β̇(t) γ̇(x, t) = (θ′′(γ(t)) + w′′(ǫ(t))) ¯̇γ(t) γ̇(x, t) . (19)

Because the parenthesis on the right-hand side is positive,for β̇ ≤ 0 it must beγ̇(x, t) = 0 at allx, that is, elastic
unloading takes place.

If θ′′(0) = 0, or if, during the hardening response,θ′′(γ(t)) becomes zero at somet, from equation (19) we still
have elastic unloading foṙβ(t) ≤ 0. For β̇(t) > 0 the same equation yieldṡ̄γ(t) = β̇(t), while the punctual
distribution of γ̇ remains undetermined. Note that, by(17)2, ¯̇γ(t) = β̇(t) implies σ̇(t) = 0, that is, aperfectly
plasticresponse.

Finally, if θ′′(γ(x, t)) is negative at some(x, t), the necessary condition (8) for an energy minimum is violated. In
this case it is easy to see that, ifθ′′(γ( · , t)) is negative on a set of finite measure, the termË in the expansion (9)
of the energy attains arbitrarily large negative values when γ̇ concentrates over smaller and smaller portions of that
set. The dropping of the energy to−∞ is the model’s representation of the catastrophic failure of the bar.

3 The Non-Local Model

The indeterminacy of the spatial distribution of the inelastic strain rate and the absence of a strain softening re-
sponse are two major defects of the model discussed so far. They can be eliminated by adding to the energy (3) a
non-local term proportional to the square of the derivativeof the inelastic deformation

Eα(ǫ, γ) =

∫ l

0

(

w(ǫ(x)) + θ(γ(x)) + 1
2 αγ

′2(x)
)

dx , (20)

whereα is a small positive constant.

The addition of the non-local term requires some regularityof γ. Here we assume thatγ isC1[0, l]. An extension
to functions with a discontinuous first derivative does not change substantially the results, see (Del Piero et al.,
2012).
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3.1 Equilibrium

Like in the local model, an equilibrium confiuration(ǫ, γ) is characterized by the non-negativeness of the first
variation of the energy

δEα(ǫ, γ, δǫ, δγ) =

∫ l

0

(

w′(ǫ(x)) δǫ(x) + θ′(γ(x)) δγ(x) + αγ′(x) δγ′(x)
)

dx

for all perturbations(δǫ, δγ) which satisfy the dissipativity conditionδγ(x) ≥ 0 at all x, and which preserve the
length of the bar. This condition again requires that in an equilibrium configuration the axial forceσ and the elastic
deformationǫ be constant over the bar, and that the inequality

σ ≤ θ′(γ(x))− αγ′′(x) (21)

be satisfied at allx (Del Piero et al., 2012). This is the non-local counterpart of the yield condition (7). With it,
the elastic and inelastic zone are re-defined by

Eα =
{

x ∈ (0, l) | σ < θ′(γ(x))− αγ′′(x)
}

, Jα = (0, l) \ Eα ,

respectively. The analysis of the first variation also provides some additional boundary conditions. It is possible,
see (Del Piero et al (Del Piero et al., 2012)), to choose between two possible alternatives

γ′(l) = γ′(0) = 0 , and γ(l) = γ(0) = 0 . (22)

The first alternative produces solutions in which the inelastic deformation concentrates at the ends of the bar, while
with the second alternative the inelastic deformation concentrates at the interior. The second choice is preferable,
because it allows a closer comparison with the experimentalresults. Indeed, in the experiments the concentration of
the inelastic deformation at the ends is avoided, either by reinforcing the terminal parts of the bar, or by weakening
the central part with the creation of a notch. As a consequence of our choice of the boundary conditions(22)2, the
requirements on the admissible perturbationsδγ in the analysis of the variations ofEα must be completed by the
conditions

δγ(l) = δγ(0) = 0 . (23)

The gradient term introduced in the non-local model has a stabilizing effect, because it adds a positive term to the
second variation of the energy. It is proved in (Del Piero et al., 2012) that this term renders the second variation
non-negative when the zero on right-hand side of inequality(8) is replaced by a negative constant, depending onl
and on the Young modulus of the material.

In the same paper (Del Piero et al., 2012), some sufficient conditions for a local minimum are proved. Here they
will be considered later, and only for equilibrium configurations at the onset of the inelastic regime. They allow
for the presence of negative values ofθ′′(γ(x)), not allowed in the local model because of the necessary condition
(8). This makes possible a description of strain softening within the non-local model.

3.2 Quasi-Static Evolution

In order to determine the evolution of the bar in a loading processt 7→ β(t), we consider the expansion (9) for the
energyEα. The first-order term in the expansion is

Ėα(t) =

∫ l

0

(

w′(ǫ(t)) ǫ̇(t) + θ′(γ(x, t)) γ̇(x, t) + αγ′(x, t) γ̇′(x, t)
)

dx

= lβ̇(t)σ(t) +

∫ l

0

(

θ′(γ(x, t))−σ(t)−αγ′′(x, t)
)

γ̇(x, t) dx+ α
[

γ′(x, t) γ̇(x, t)
]l

0
.

On the right-hand side, the integrand function is non-negative by the dissipation inequality (5) and the equilibrium
condition (21), and the boundary term is zero by the boundaryconditions

γ̇(l, t) = γ̇(0, t) = 0 , (24)
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which follow from (23). Therefore, the minimum oḟEα(t) is lβ̇(t)σ(t), and the minimizers satisfy the Kuhn-
Tucker conditions

γ̇(x, t) ≥ 0 , θ′(γ(x, t))− σ(t)− αγ′′(x, t) ≥ 0
(

θ′(γ(x, t))− σ(t)− αγ′′(x, t)
)

γ̇(x, t) = 0
(25)

for all x in (0, l), and the boundary conditions (24). Just as in the local model, the complementarity condition(25)3
states thaṫγ(x, t) = 0 at all points in the elastic zoneEα(t). As shown in (Del Piero et al., 2012), the minimization
of the second-order term̈Eα in the expansion ofEα determines a second set of Kuhn-Tucker conditions

γ̇(x, t) ≥ 0 , θ′′(γ(x, t)) γ̇(x, t)− σ̇(t)− α γ̇′′(x, t) ≥ 0
(

θ′′(γ(x, t)) γ̇(x, t)− σ̇(t)− α γ̇′′(x, t)
)

γ̇(x, t) = 0
(26)

to be satisfied by allx in Jα(t). These are non-local versions of conditions (13).

Added in proof.Futher investigation, made after this paper was written, showed that conditions (26) hold only
approximately. There is indeed a supplementary term, inherited from the first-order minimization, which does not
disappear in the limit when the time step in the expansion (9)tends to zero, see (Del Piero et al., 2012) for details.
Ignoring this term gave some trouble in reproducing the response curve of concrete, which, for this reason, was
excluded from the present communication. The supplementary term does not affect the analysis of the response
at the onset of the inelastic regime, made in the following Section. In the numerical scheme of Section 4, the
functional (42) should be completed with the addition of an extra term. This change does not affect the numerical
results on the steel bar presented in Section 5.

3.3 The Onset of the Inelastic Regime

Like in the local model, in a loading processt 7→ β(t) with β̇(t) > 0 starting from the natural configuration there
is an initial time interval(0, tc) in which the evolution is purely elastic. That is, the deformation is homogeneous,
andγ(x, t), ǫ(t) andσ(t) are as in (14). Whent reaches the timetc given by (15), all points in the bar switch from
the elastic to the inelastic zone, and an inelastic regime takes place.

By the complementarity condition(26)3, the equation (16) of the local model is now replaced by the differential
equation

θ′′(0) γ̇(x)− σ̇ − α γ̇′′(x) = 0 , (27)

where the dependence on the constantt = tc has been omitted. This equation is associated with the boundary
conditions (24). Therefore, just as in the local model, the evolution in the inelastic regime depends on the sign of
θ′′(0). If θ′′(0) > 0, the solution is

γ̇(x) =
σ̇

θ′′(0)

(

tanh
κl

2
− tanh

κx

2

)

sinhκx , (28)

whereκ = (θ′′(0)/α)1/2. Computing the averagė̄γ and using the constitutive equation (4), the incremental
force-elongation response

σ̇ =
w′′(βc) θ

′′(0)

θ′′(0) + ϕ(κl)w′′(βc)
β̇ , ϕ(κl)

.
= 1− tanhκl/2

κl/2
, (29)

follows. A comparison with the local counterpart (18) showsthat the non-local effect is given by the factorϕ(κl),
which is positive and less than one.

Forθ′′(0) = 0, the solution is

γ̇(x) =
σ̇

2α
x (l − x) , σ̇ =

12αw′′(βc)

12α+ l2w′′(βc)
β̇ . (30)

Thus, forθ′′(0) ≥ 0 the non-local energy term has the effect of increasing the slope of the force-elongation
response curve. In particular, forθ′′(0) = 0 a hardening response takes the place of the perfectly plastic response
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σ̇ = 0 predicted by the local model, and the indeterminacy of the punctual valuesγ̇(x) exhibited by the local
model now disappears.

For θ′′(0) < 0, there are two types of solutions:full-size solutions, in which γ̇(x) is positive all over the bar, and
localized solutions, in which γ̇(x) is positive on a proper subset of(0, l). The full-size solution is

γ̇(x) =
σ̇

θ′′(0)

(

tan
kx

2
− tan

kl

2

)

sin kx , (31)

wherek = (−θ′′(0)/α)1/2. For the singular casekl = π, for whichtan kl/2 is infinite, the solution is

γ̇(x) =
π

2
β̇ sin

πx

l
. (32)

To be admissible, a solution must satisfy the dissipation inequalityγ̇(x) ≥ 0 at allx. It is easy to verify that this
is true for the solutions (28), (30) forθ′′(0) ≥ 0. For θ′′(0) < 0, the solutions (31), (32) satisfy the dissipation
inequality for 0 < kl ≤ π, while for all kl > 2π the same condition is violated. In the remaining interval
π < kl ≤ 2π, the dissipation inequality is satisfied only if

θ′′(0) + ψ(kl) w′′(βc) > 0 , ψ(kl)
.
= 1− tan kl/2

kl/2
. (33)

Let klc be the value ofkl for which the above inequality is satisfied as an equality. Because the functionψ is
decreasing in the interval(π, 2π), inequality (33) is the same as

kl < klc . (34)

Then, the full-size solution (31) is admissible forkl ≤ max{ 2π, klc}. The corresponding incremental force-
elongation relation is

σ̇ =
θ′′(0)w′′(βc)

θ′′(0) + ψ(kl)w′′(βc)
β̇ , (35)

with σ̇ = 0 in the singular casekl = π. The study of the functionψ shows thatψ(kl) is negative forkl < π and
positive forπ < kl < 2π. Then the slopėσ/β̇ of the response curve(σ, β) is positive forkl < π, zero forkl = π,
and negative forπ < kl < max{ 2π, klc}. In the three cases, the response at the onset of the inelastic deformation
is work-hardening, perfectly plastic, and strain-softening, respectively. Ifklc < 2π, for kl = klc the denominator
in (35) is zero, that is, the negative slope of the response curve becomes infinite. In the present non-local model,
this situation is identified with the final rupture of the bar.Then, ifkl ≥ klc, rupture takes place immediately after
the onset of the inelastic deformation. This is the model’s representation of Griffith’s brittle fracture.

Now consider a localized solution witḣγ(x) positive on an interval(a, a+ly) strictly contained in(0, l) and zero
outside. In it,γ̇ satisfies the differential equation (27) at the interior points of the interval, and the conditions
γ̇(a) = γ̇(a+ly) = 0 at the boundary. These conditions come either from the boundary conditions (24) or from
continuity with the neighboring region, at whichγ̇(x) = 0. Moreover, the assumed continuity ofγ̇′(x) requires
that γ̇′(a) = 0 if a > 0 andγ̇′(a + ly) = 0 if a + ly < l. In all cases, see (Del Piero et al., 2012), this results in
the supplementary condition

ly =
2π

k
, (36)

which determines the extently of the localization. The solution of the differential problem is

γ̇(x) =
σ̇

θ′′(0)

(

1− cos k (x− a)
)

, x ∈ (a, a+ly) . (37)

By (36) with ly < l, this solution is possible only ifkl > 2π. That is, only for values ofkl for which a full-size
solution is not admissible. Moreover, the dissipation inequality is satisfied only if

θ′′(0) +
2π

kl
w′′(βc) > 0 . (38)
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Denote byklr the value ofkl for which this inequality holds as an equality. By comparison with (33)1 it follows
that

ψ(klc) =
2π

klr
.

Becauseψ is a decreasing function ofkl, for klc > 2π one hasψ(klc) < ψ(2π) = 1 and, therefore,klr > 2π.
Thus, if klc > 2π, that is, if the full-size solution (31) is admissible for all kl ≤ 2π, then there is an interval
(2π, klr) in which the localized solution (37) is admissible. On the contrary, no localized solution is admissible if
klc < 2π. For2π < kl < klc, the incremental force-elongation relation is

σ̇ =
θ′′(0)w′′(βc)

θ′′(0) + 2π
kl w

′′(βc)
β̇ . (39)

By (38), the slope of the(σ, β) response curve is negative. That is, at the onset of the inelatic deformation a
localized solution corresponds to a strain-softening response. Brittle fracture, again characterized by an infinite
negative slope of the response curve, occurs for allkl greater thanklr.

The results of preceding analysis are better expressed in terms of the internal length

li = π

√

α

−θ′′(0) . (40)

Indeed, at the onset of the inelastic regime we have

(i) a full-size solution with a work-hardening response ifl ≤ li,

(ii) a full-size solution with a strain-softening response ifli < l ≤ max{ 2li, lc},

(iii) a localized solution with a strain-softening response if2li < l < lr,

(iv) brittle fracture if l ≤ lc < 2π/ k and if l > lr > 2π/ k.

Beyond the onset of the inelastic deformation, the differential equation (27) is replaced by

θ′′(γ(x)) γ̇(x)− αγ̇′′(x) = σ̇ (41)

with γ(x) not anymore constant. This equation cannot be solved, in general, in a closed form. Then, the quasi-
static evolution can be determined only approximately, using step-by step numerical algorithms. Like at the onset,
a solution may be full-size or localized, or brittle fracture may occur, depending on material parameters more
difficult to evaluate. Some general properties of the evolution are proved in (Del Piero et al., 2012):

- The continuation is full-size ifθ′′(γ(x)) > 0 at allx in the inelastic regionJα,

- σ̇ is negative ifθ′′(γ(x)) ≤ 0 at allx in Jα,

- in a localized continuation the process zone of the inelastic deformation tends to concentrate over smaller
and smaller regions if the derivativeθ′ is concave, and to spread out over larger regions ifθ′ is convex.

4 The Numerical Scheme

For a given load processt 7→ β(t), suppose that the equilibrium configuration(ε(t), γ(x, t)) at timet is known.
Then the configuration at the timet + τ is determined by minimizing the expansion (9) of the energyEα(ǫ, γ) at
(ǫ(t), γ(x, t)). As explained in Sections 2.2 and 3.2, the zero-order and thefirst-order term of the expansion are
determined. Then a second-order approximation is obtainedby minimizing the second-order term

Ëα(β(t), γ(x, t); γ̇) = lw′′(β(t)− γ̄(t))(β̇(t)− ¯̇γ)2 +

∫

Jα(t)

(

θ′′(γ(x, t)) γ̇2(x) + α γ̇′
2
(x)

)

dx , (42)

in the class of all functionṡγ which satisfy the dissipation inequality (5) and the boundary conditions (24), and
vanish in the elastic zoneEα(t). The minimizerγ̇(x) provides the approximation

γτ (x) = γ(x, t) + τ γ̇(x) ,
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for the deformationγ(x, t + τ). This approximation is refined by minimizing the quadratic approximation ofEα

atγτ

Eα2(β(t+ τ), γτ + δγ) = Eα(γτ ) +
∂

∂γ
Eα(γτ ) δγ +

1

2

∂2

∂γ2
Eα(γτ ) δγ

2, (43)

where
∂

∂γ
Eα(γτ ) δγ =

∫

Jα(γτ )

(

θ′(γτ (x)) δγ(x) + αγ′τ (x) δγ
′(x)− w′(ǫτ ) δγ(x)

)

dx ,

∂2

∂γ2
Eα(γτ ) δγ

2 =

∫

Jα(γτ )

(

θ′′(γτ (x)) δγ
2(x) + α δγ′

2
(x) + w′′(ǫτ ) δγ

2(x)
)

dx ,

and
ǫτ = β(t+ τ)− γ̄τ ,

Jα(γτ ) =
{

x ∈ (0, l) | w′(ǫτ ) = θ′(γτ (x))
}

.

The algorithm to determineδγ is the following.

0. Initialization. Setβ0 = β(t), γ0(x) = γ(x, t).

1. Incremental step.

(i) Compute γ̇0 = argmin
{

Ëα(β0, γ0; γ̇ ) | γ̇(x) ≥ 0, γ̇(0) = γ̇(l) = 0
}

.

(ii) Set β1 = β(t+ τ), γ01(x) = γ0(x) + τ γ̇0(x) .

2. Iterative refinement, i-th step.

(i) Compute δγi = argmin
{

Eα2(β1, γ
i−1
1 , δγ) | δγ(x) ≥ γ0(x) − γi−1

1 (x), δγ(0) = δγ(l) = 0
}

,
and setγi1 = γi−1

1 + δγi.

(ii) Stop when theL2 norm of(γi1 − γi−1
1 ) is less than a given toleranceγ̂.

3. End

(i) Take asγ1 the lastγi1 in step 2.

(ii) If the L2 norm of (γ1 − γ0) is less than a given tolerancẽγ, perform a new incremental step starting from
(β1, γ1). Otherwise, repeat the computation withτ replaced byτ/2.

The last control avoids the overcoming of energy barriers due to excessively large incremental steps.

In the numerical code, the bar is discretized using linear finite elements. The quadratic programming problems
involving the minimization ofËα andEα2 are solved using the projection method (Gill et al., 1981,P)implemented
in thequadprog.mfunction of Matlab. The code generates a mesh refinement whenthe number of elements in the
inelastic regionJα is smaller than a certain number, 100 in the simulations presented below. In this case, each
element is split into two sub-elements.

In all simulations, for the elastic strain energy density weassume the quadratic expression

w(ǫ) = 1
2 EAǫ

2

where the axial stiffnessEA is the product of the Young modulusE of the material by the areaA of the cross
section, and for the cohesive energy density we take the piecewise cubic function

θ(γ) = Ai +Biγ + 1
2 Ciγ

2 + 1
6 Diγ

3 , γ ∈ [γi−1, γi ] , i ∈ {1 . . . n} , (44)
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whereγi are a finite number of nodal points, withγ0 = 0 andγn ≤ +∞. To guarantee the continuity ofθ and of
the derivativesθ′, θ′′ at the nodal points, the coefficientsAi,Bi, Ci,Di must satisfy the3n− 3 conditions

Bi+1 = Bi−3 (Ai+1−Ai)(γi+1)
−1, Ci+1 = Ci+6 (Ai+1−Ai)(γi+1)

−2, Di+1 = Di−6 (Ai+1−Ai)(γi+1)
−3,

Then onlyn+ 3 of the4n constants are independent. We takeA1 = θ(0) = 0, whileB1 = θ′(0), the value of the
force at the onset of the inelastic regime, is identified on the experimental curve. Then we are free to choosen+1
of the remaining constants. These constants can be used to identify a specific experimental response curve. In the
next section, they are selected with the purpose of reproducing the experimental tensile test on a steel bar.

5 Numerical Simulations

A tension test was performed at the Laboratorio Prove Materiali e Strutture of the Università Politecnica delle
Marche in Ancona, on a ribbed bar of B450C (FeB44k) steel, with diameterφ = 16 mm, and with

l = 200mm, EA = 42× 103 kN , B1 = 109.5 kN .

For the cohesive energy a convex-concave expression of the type (44) was taken, with

n = 3 , γi = (0.10, 0.54, +∞) ,

C1 = 400 kN , D1 = −4000 kN , Ai = (0, −0.65, 28.03) kN .

The functionθ(γ) is plotted in Fig. 1. It is convex forγ < 0.1, and concave forγ > 0.1.

We takeβ = t, so that the time-like parametert is physically non-dimensional. For the non-locality parameterα,
the time stepτ , the initial mesh sizeh, and the toleranceŝγ andγ̃ we take

α = 100 kN mm2, τ = 10−4, h = 1mm , γ̂ = 10−6 , γ̃ = 10−3 .

In Fig. 2, the experimental response is represented by the dotted curve. It reaches the elastic limit atβ = 0.0026,
a maximum atβ = 0.1016, and the slope becomes infinite atβ = 0.1254. In the same figure, the solid line is
the numerical response curve. The two curves are very close to each other. In particular, the numerical curve
reproduces the hardening regime,0.0026 < β < 0.1016, and the softening regime,0.1016 < β < 0.1254, of
the post-elastic evolution. In the simulation, the two regimes are determined by the convex and concave part ofθ,
respectively. With the addition of an initial concave part,the horizontal plateau shown by the experiment in the
range (0.0026 < β < 0.017) could also be reproduced.

The evolution of the inelastic deformation is described in Fig. 3, whereγ andγ̇ are plotted for different values ofβ.
In the hardening regime the inelastic deformationγ is almost constant over the bar, except near the boundary, where
γ is zero by the boundary conditions (16). In the softening regime, in the short interval0.1016 < β < 0.1018 the
evolution is still full-size as in the previous hardening regime. Forβ > 0.1018, the inelastic deformation gradually
localizes on shorter and shorter intervals. The extreme localization is reached forβ = 0.1254. At this point the
response curve becomes vertical, and rupture occurs.

The diagrams of the localized inelastic deformation for different values ofβ are collected in Fig. 4a. They are in
a very good qualitative agreement with the experimental curves of Fig. 4b, taken from (Miklowitz, 1950). In Fig.
5a the transverse profile of the bar is shown forβ close to the rupture value 0.1254. This profile has been deduced
from the axial deformation obtained in the simulation, assuming a coefficient of transverse contraction (Poisson’s
ratio) equal to 0.3. It is very similar to the profile in the picture of Fig. 5b, also taken from (Miklowitz, 1950).

To investigate the influence of the sizel of the specimen and of the non-locality parameterα, we performed the
following series of simulations:

Simulation 1 2 3 4 5 6 7 8
l = 200 300 200 100 100 200 100 100 mm ,
α = 100 100 50 25 100 500 300 500 kN mm2.

Simulation 1 is the one used for comparison with the experiment. The response curves of Simulations 1, 2 and
5, all corresponding to the sameα, are shown in Fig. 6. The three curves differ only in the softening part, which
is shorter for largerl. That is, larger bars are less ductile, and break at for smaller values ofβ. This is a clear
manifestation of the size effect.
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The same loss of ductility and reduction of the rupture valueβr of β is observed whenα is reduced keepingl
constant. In Fig. 7, the values ofβr obtained in the eight simulations are plotted versus the ratio

√
α/l. They

almost exactly lie on a straight line. That is, for the rupture value ofβ our simulations provide the empirical
relation

βr = c1 + c2

√
α

l
,

with c1, c2 suitable constants. Recalling the expression (40) of the internal lengthli, we can put this relation into
the form

βr = c1 + c2

√

−θ′′(0)
π

li
l
,

which shows that the rupture load is governed by the ratioli/ l. That is, the parameterli, which comes from the
analysis of the onset of the inelastic deformation, seems tobe useful to predict the elongation at rupture, at least
when rupture occurs at the end of a substantial inelastic regime.
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