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Diffuse Cohesive Energy in Plasticity and Fracture

G. Del Piero, G. Lancioni and R. March

In this paper we anticipate some results of a work in progré3sl Piero et al., 2012), in which the phenomena of
fracture and yielding are described by a cohesive energyahaahd fracture is regarded as a consequence of an
extreme localization of the inelastic deformation. We 8tatly a local model, which is successful in describing a
number of aspects of the experimentally observed respbus&ils to describe the phenomenon of strain soften-
ing. Indeed the model’s prediction is that, just after itpaprance, the inelastic deformation localizes, growing in
an uncontrolled way and determining a catastrophic ruptdsanore gradual growth is obtained by introducing a
non-local energy term. Some numerical experiments shogréat flexibility of the improved model: depending
on the analytical shape assumed for the cohesive energgptindocal model describes different types of response,
such as yielding without fracture, ductile fracture withdawithout strain softening, and brittle fracture.

1 Introduction

The interest in variational models for fracture mechanies wriginated by the paper (Francfort and Marigo,
1998), based on Griffith’s theory of brittle fracture (Giffi 1920). In this theory, fractures are represented
as discontinuities of the displacement field along singalafaces. The same representation is adopted in the
cohesive energy models, introduced in (Barenblatt, 196d) €Dugdale, 1960) to describe the ductile fracture
modes which prevail in small-size bodies. In the cohesiverggnmodels, fracture is preceded by a regime of
large inelastic deformations, concentrated on the fracsurface. According to the analytic shape assumed for
the cohesive energy, very different responses, such ascghehavior, damage, brittle and ductile fracture, can be
obtained, see (Del Piero and Truskinovsky, 2009).

There is a third fracture mode, in which the inelastic defation initially spreads over a portion of the volume,
called theprocess zoneDue to the progressive weakening of the material in thigztre deformation eventually
localizes on a fracture surface. A first description of théefure mode was obtained by including in the energy
balance the work done by the plastic deformation (Irwin,7Z)9%n recent variational approaches, the weakening
of the material is attributed either to yielding (Dal Masalafoader, 2010) or to damage (Babadjian, 2011),
(Pham et al., 2010). In the present paper, which anticipaie® results of a forthcoming paper (Del Piero et al.,
2012), a description in terms of plasticity comes out, somaetinexpectedly, from the assumptions made on the
shape of the energy. As discussed in the same paper, an @ppgopodification of these assumptions leads to the
damage model treated in (Pham et al., 2010).

We consider the one-dimensional case of a bar subject to gixial displacements at the endpoints. For it we
assume that, at every pointof the bar’s axis, the axial deformatiafi(x) is the sum of an elastic partz) and of
an inelastic part/(x). We also assume that the energy of the bar is the sum of aicglast and a cohesive part,
with volume densitiesy andd, respectively

l
/0 (w(e(x)) + 9(7(96))) dx .
Finally, while the elastic part of the energy is totally resible, the cohesive part is assumed to be dissipative.

With this simple model, we proceed by incremental energyimigation. With respect to the originglobal
minimizationof (Francfort and Marigo, 1998), there are two importantges. The first is that the minimization
is nowlocal instead of global, and the second is that itnisremental Both improvements, already present in the
concentrated cohesive energy model of (Del Piero and Tmoskky, 2009), were made possible by the recent
progress in the physical understanding and mathematicedkling of rate-independent evolutionary problems.
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The essentials of incremental energy minimization and apesison with other current solution methods can be
found in the lecture notes (Mielke, 2011).

In the model for fracture described above, the result ofem@ntal energy minimization is an accurate description
of the bar’s response, from the onset of inelastic defolnaip to rupture. Some typical features of elastic-plastic
response, such as yield condition, hardening rule, elastmading, are recovered as necessary conditions for an
energy minimum.

The model is not completely satisfactory, since it fails &sctibe thesoftening responsehich precedes the
ultimate rupture. Before rupture, the experiments show aenoo less important regime in which the force-
elongation response curve has a negative slope. This saftezgime has the effect of increasing the ductility,
with the consequence that the body can sustain a larger litaduvbreaking.

The softening response is captured by adding to the energndogal term proportional to the square of the
derivative of the inelastic deformation

l 1 1 /
[ (wlew) +ot@n) do+ ya [ 42 G)ds

with « a positive material constant. This procedure is known asitiguilar perturbationrmethod. It is also called
theVan der Waals - Cahn Hilliaranethod, due to the well known applications to the capifeaoitfluids in (Van
der Waals, 1873), and to phase transitions in (Cahn andaki|lil958). More recent (Gurtin and Anand, 2005) is
the application to crystal plasticity.

In both models, local and non-local, the localization ofitiedastic strain occurs when the cohesive energy density
0 is concave near the origin, that is, wh#h(0) < 0. But, while in the local model the localization is immedigte
followed by rupture, in the non-local model a regime of istikadeformation takes place. In this case, different
types of response become possible. They are determinedebratio between the lengthof the bar and the

material constant

A
1 T ™ _9//(0) b

which has the physical meaning of arternal lengthof the material. Indeed, for sufficiently low values igf;
the model predicts a totally ductile response, with theasit deformation growing all over the body and with
no catastrophic failure. For higher valuesi@f;, the final rupture is preceded by a non-localized work-hairde
regime and, for still higher values, by a localized softgmiegime. For fixed; and varying, this reflects the well
knownsize effecof fracture mechanics.

2 The Local Model

Consider a bar of length with constant cross section, free of external loads, ahpbstito the axial displacements
u(0) =0, u(l) = pl 1)

at the endpoints. The bar's deformation is measured by theadige »’ of the axial displacemeni, and we

assume that, at each poindf the bar’s axisy’(x) can be decomposed into the sum of an elasticqfajtand an

inelastic party(x)

u'(z) = e(x) + y(z). @)

The pair of functionge, ) will be called aconfigurationof the bar. We assume that the strain energy of the bar is
the sum of two terms, the elastic strain energy and the cadesiergy, with volume densitiesandd, respectively,

l l
B(e) = [ wiet@)ds + [ 60@)do. ®
0 0
and that the axial force is related to the elastic deformation by the constitutiveagigpn

o(z) = w'(e(z)). (4)
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The functionw is assumed to be strictly convex, afids assumed to be strictly increasing. Finally, we assume
thatw can be stored, whilé is totally dissipated. This requires that, in every defdioraprocesg — u(t), the
cohesive power be non-negative ataatind for all¢:

0'(v(z, 1) ¥(z,) > 0.
For 6 is strictly increasing, thdissipation inequality
Y(z,t) >0 (5)

must be satisfied at ail and for allt.

2.1 Equilibrium

A perturbation of a configuratiofx, v) is a pair(de, 0y) such thatie(z) = ¢é(x) anddvy(x) = (z), for some
deformation process — (e(t),~(t)) starting from(e, v). The dissipation inequality then impliés(xz) > 0 at
every pointz of the bar.

In a variational approach, the equilibrium configurations ilentified with the pairge,v) for which the first
variation of the energy

l
B(e.0067) = [ (w/(el@) de(o) +0(1(2) 7 (2) d (6)

is non-negative for arbitrary perturbatiofisand for all perturbationgy which preserve the length of the bar and
satisfy the conditiod~(x) > 0 for all . It is shown in (Del Piero et al., 2012) that an equilibriunmfiguration
is characterized by the two following conditions:

() the axial forces and the elastic deformatianwhich are related by the constitutive equation (4), arestaont
all over the bar,

(i) the axial force is bounded from above by
o <O((x)  Vre(0,0). ¥
For an equilibrium configuration, the set of all points of tia at which inequality (7) is strict

E={ze0l) | o<O(y()}

is theelastic zoneand the complementary sét = (0,1) \ &, at which (7) holds as an equality, is theelastic
zone

In the language of Plasticity, the equilibrium condition) (§ a yield condition and ¢’ (v(z)) is ayield limit,
depending on the punctual values of the inelastic defoonati Note that, in the present variational approach, this
limit is not assumed a priori, but is obtained as a necesgargtitton for equilibrium.

Among all equilibrium configurations, of interest are theggch are global or local energy minimizers. A neces-
sary condition for an energy minimum is the non-negativersdéshe second variation. It is proved in (Del Piero
et al., 2012) that this occurs only if

0" (y(x,)) = 0 ®)

almost everywhere in the inelastic zoge In the same paper it is proved that a slightly stronger dandis
sufficient for astrong local minimumthat is, for a local minimum in the class of all perturbatiéon such that

sup [6y(z)| <n
z€(0,l)

for some fixedy > 0.
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2.2 Quasi-Static Evolution

For a given loading process = ((t), assume that the equilibrium configuratiei), v(x, t) at timet is known,
and that we wish to determine the equilibrium configuratiotinae ¢ + ~. This can be done by incremental energy
minimization. That is, by considering the expansion

E(e(t+71),y(z, t + 7)) = E(e(t),y(z,t)) + 7 E(e(t), y(x, 1)) + % T2E(e(t), v(x,t)) + o(T?), 9)

and minimizing for sufficiently smal- > 0. On the right-hand side, the zero-order term is known. Then a
first-order approximation is obtained by minimizing thedtional E(e(t), v(z, t)). Note that, by (1) and (2),

1 ol
o= [ w@)do= [ ela) +5(w) da.

so that, by the constancy efz) in an equilibrium configuration,

l
ﬁi%/ofy(x)dxzﬁ—e. (20)

Then, by time differentiation of (3) and by the constituteguation (4),

l
E(e(t),y(x,t)) = la(t)B(t)+/0 (0" (v(z, 1) — o (t)) Y(z,t) do . (11)

On the right side everything is known exceptand the integrand function is non-negative by the equirbr
condition (7) and the dissipation inequality (5). Then thaimum of E(¢) is achieved when the integrand function
is zero. This fact, together with inequalities (5) and (Btedmines the Kuhn-Tucker conditions

Y, t) 20, O'(v(z,t) —a(t) 20, (0'(v(z,1) —o(t) Y(z,t) =0, (12)

for all z in (0,7). The third condition, called the complementarity conditistates that(x,t) must be zero at all
points of the elastic zon& = £(t). It is remarkable that this assumption of classical Plagtis obtained here as
a necessary condition for incremental energy minimization

No further information can be obtained from the first-ord@mimization. Indeed, if the complementarity condition
holds then the integral term in (11) becomes equal to zerd,tle minimum of £ is equal tolo(t)3(t). To
determiney(z, t) in the inelastic zone, it is necessary to consider the seoother approximation of the functional
(9). This leads to the minimization of the second-order téta(t), v(z,t)) in the expansion of the energy. It is
shown in (Del Piero et al., 2012) that this minimization detimes a second set of Kuhn-Tucker conditions

;Y(x’ t) > 07 QII(V(xv t)) 7("177 t) - U(t) > O; (9”(7($7 t)) V(Ia t) - o’(t)) ’Y(xv t) =0 (13)

for all x in J (t). The first condition is again the dissipation inequalitye Becond is a relation between the incre-
ments of the force and of the inelastic deformation in théaistée zone. In it, equality denotes the permanence of

in the inelastic zone, and strict inequality denotes thernetfx inside the elastic zone. The third is thensistency
condition which says thaf(xz) must be zero when returns inside the elastic zone. Again, some assumptions of
classical Plasticity are obtained here as necessary cmmslfor second-order incremental minimization.

2.3 Evolution from the Natural Configuration

Consider a loading process— A(t) with 3(t) > 0 for all ¢ > 0, starting from the natural configuration
(e(0),v(xz,0)) = (0,0), att = 0. For this process, there is a time interyal¢.) at which the evolution is
purely elastic, that is,

V(@ t) =0 Vze(0,1), et)=p(t), ot)=uw'(B). (14)

Be = Blte) = (w')~H(0'(0)).- (15)
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Attimet., inequality (7) is satisfied as an equality. Then all poiritthe bar switch from the elastic to the inelastic
zone, and a regime of inelastic deformation begins. TheespEnt evolution strongly depends on the sign of
6"(0).

If 6”(0) > 0, because(x,t) has to be positive for some from the complementarity conditiof13); it follows
thata (t) is positive. Then, by inequalityl3), §(z, t.) has the constant value

;Y(wvtC) = (16)

Then~(z,t) is constant at the instants immediately following This conclusion holds for all > ¢.., as long as
0" (y(t)) keeps a positive value. Therefore, we have the homogen&oligien
o(t)

i(w0) = gro gy = 300,

Together with the relations

é(t) = Bty =3(t), o) =w"(e(®)) (B(t) = 3(t)), an
which follow from (10) and (4), respectively, this relatidatermines the incremental force-elongation response

5(t) = 0" ((t)) w"(e())
0" ((1)) + w"(e(t))

As long as?” (+(t)) remains positive, the slope/ 3 of the response curnve, /3) is positive. That is, the response
is work-hardening

B(t). (18)

This conclusion holds only for processes wittt) > 0 for all ¢. Indeed, fron(17), and from the complementarity
condition(13)3 it follows that

w(e(t)) B(t) (1) = (8" (3(2)) +w" () 4(¢) A(x, 1) (19)

Because the parenthesis on the right-hand side is poditivé, < 0 it must be¥(x,¢) = 0 at all z, that is, elastic
unloading takes place.

If ”(0) = 0, or if, during the hardening respong¥,(+(t)) becomes zero at somefrom equation (19) we still
have elastic unloading fo#(t) < 0. For 3(t) > 0 the same equation yieldgt) = (¢), while the punctual
distribution of 4 remains undetermined. Note that, By ),, 7(t) = ((t) implies&(t) = 0, that is, aperfectly
plasticresponse.

Finally, if 0" (v(x,t)) is negative at somer, t), the necessary condition (8) for an energy minimum is vémlatn
this case it is easy to see thatdff(+(-,t)) is negative on a set of finite measure, the téfrim the expansion (9)

of the energy attains arbitrarily large negative valuesmieoncentrates over smaller and smaller portions of that
set. The dropping of the energy tox is the model’'s representation of the catastrophic faildithe bar.

3 The Non-Local Model

The indeterminacy of the spatial distribution of the in&lastrain rate and the absence of a strain softening re-
sponse are two major defects of the model discussed so fay. ddn be eliminated by adding to the energy (3) a
non-local term proportional to the square of the derivatif/the inelastic deformation

!
Pale) = [ ((e() +00() + §or (@) do. (20)
wherea is a small positive constant.

The addition of the non-local term requires some regularfty. Here we assume thatis C[0,]. An extension
to functions with a discontinuous first derivative does rfrdrgye substantially the results, see (Del Piero et al.,
2012).
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3.1 Equilibrium

Like in the local model, an equilibrium confiuratida, v) is characterized by the non-negativeness of the first
variation of the energy

!
SEq(€,7,0¢,07) = /0 (w'(e(z)) de(z) + 0’ (v(2)) 6v(x) + ' (x) 67 (2)) da

for all perturbationgde, 6y) which satisfy the dissipativity conditiosry(x) > 0 at all z, and which preserve the
length of the bar. This condition again requires that in arilégium configuration the axial force and the elastic
deformatione be constant over the bar, and that the inequality

o <0 (v(r)) — v’ (@) (21)

be satisfied at alt (Del Piero et al., 2012). This is the non-local counterpéthe yield condition (7). With it,
the elastic and inelastic zone are re-defined by

fa={2€(0]) | o<t(v(@)-a)"(x)}, Ja=(00))\E,

respectively. The analysis of the first variation also pdegi some additional boundary conditions. It is possible,
see (Del Piero et al (Del Piero et al., 2012)), to choose batwweo possible alternatives

V() =9'(0)=0, and () =~(0)=0. (22)

The first alternative produces solutions in which the in@ateformation concentrates at the ends of the bar, while
with the second alternative the inelastic deformation eotrates at the interior. The second choice is preferable,
because it allows a closer comparison with the experimeesalts. Indeed, in the experiments the concentration of
the inelastic deformation at the ends is avoided, eitheelmfarcing the terminal parts of the bar, or by weakening
the central part with the creation of a notch. As a consequehour choice of the boundary conditiof®?),, the
requirements on the admissible perturbatiémnsn the analysis of the variations @f, must be completed by the
conditions

dv(l) = 6v(0) = 0. (23)

The gradient term introduced in the non-local model haslalstig effect, because it adds a positive term to the
second variation of the energy. It is proved in (Del Pierolet2®12) that this term renders the second variation
non-negative when the zero on right-hand side of inequéBitys replaced by a negative constant, depending on
and on the Young modulus of the material.

In the same paper (Del Piero et al., 2012), some sufficierditions for a local minimum are proved. Here they
will be considered later, and only for equilibrium configtimas at the onset of the inelastic regime. They allow
for the presence of negative valueg6f~(z)), not allowed in the local model because of the necessaryitimmd
(8). This makes possible a description of strain softeniitgiavthe non-local model.

3.2 Quasi-Static Evolution

In order to determine the evolution of the bar in a loadingcpsst — ((t), we consider the expansion (9) for the
energyF,. The first-order term in the expansion is

l
Eq(t) /O (w'(e(t)) €(t) + 0 (y(@, 1)) (@, 1) + o' (2, 1) ¥/ (2, 1)) da

l
= 10+ [ @00 -o=0r"@.0) i de + o[ (@) 0],

On the right-hand side, the integrand function is non-riegdy the dissipation inequality (5) and the equilibrium
condition (21), and the boundary term is zero by the boundanglitions

'-Y(lv t) - 7(0’ t) =0, (24)
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which follow from (23). Therefore, the minimum df, (¢) is [3(t) o(t), and the minimizers satisfy the Kuhn-
Tucker conditions

;Y(l'vt) >0, GI(V(xat)) - U(t) - O‘f}/l(:cvt) >0
(0" (v(2, 1) = o(t) = (2, 1)) A(x,8) = 0

forall zin (0,1), and the boundary conditions (24). Just as in the local méuetomplementarity conditio25);
states thaf(x, t) = 0 at all points in the elastic zor&,(t). As shown in (Del Piero et al., 2012), the minimization
of the second-order terihi,, in the expansion of/,, determines a second set of Kuhn-Tucker conditions

(25)

’.)/(I,t) > 0; 9//(7(I7t>)ry(zat) - U(t) - O‘;)/N(zat) >0
(0" (v(z, 1) A (@, t) = (t) — af"(2,1)) A(2,t) =0

to be satisfied by alt in 7,,(¢). These are non-local versions of conditions (13).

(26)

Added in proof. Futher investigation, made after this paper was writtepya&u that conditions (26) hold only
approximately. There is indeed a supplementary term, itdtefrom the first-order minimization, which does not
disappear in the limit when the time step in the expansione(®)s to zero, see (Del Piero et al., 2012) for details.
Ignoring this term gave some trouble in reproducing theaasp curve of concrete, which, for this reason, was
excluded from the present communication. The supplemgitéam does not affect the analysis of the response
at the onset of the inelastic regime, made in the followingti®a. In the numerical scheme of Section 4, the
functional (42) should be completed with the addition of atraterm. This change does not affect the numerical
results on the steel bar presented in Section 5.

3.3 The Onset of the Inelastic Regime

Like in the local model, in a loading process+ ((t) with 3(t) > 0 starting from the natural configuration there
is an initial time interval0, ¢..) in which the evolution is purely elastic. That is, the defation is homogeneous,

and~(z,t), e(t) ando(t) are as in (14). Whenreaches the timé. given by (15), all points in the bar switch from

the elastic to the inelastic zone, and an inelastic regikestplace.

By the complementarity conditiof26)s, the equation (16) of the local model is now replaced by tifferdintial
equation

0(0)4(x) — & — a¥"(x) = 0, @7

where the dependence on the constart t. has been omitted. This equation is associated with the laoynd
conditions (24). Therefore, just as in the local model, t@dion in the inelastic regime depends on the sign of
6"(0). If ”(0) > 0, the solution is

. o Kl KT\ .

A(x) = m (tanh 5~ tanh 7) sinh kx| (28)

wherex = (6”(0)/a)'/?. Computing the averagé and using the constitutive equation (4), the incremental
force-elongation response
5= w//(ﬁc) 9//(0)

—07(0) + (kD) w(Be)

follows. A comparison with the local counterpart (18) shdhaet the non-local effect is given by the factofxi),
which is positive and less than one.

_ tanhkl/2
kL2

B, kl) =1 (29)

For6”(0) = 0, the solution is

. 12 "8, .
o) = grol=a), &= GO b, (30

Thus, for6”(0) > 0 the non-local energy term has the effect of increasing thpesbf the force-elongation
response curve. In particular, féf(0) = 0 a hardening response takes the place of the perfectly plasiponse
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¢ = 0 predicted by the local model, and the indeterminacy of thecfual valuesy(z) exhibited by the local
model now disappears.

For#”(0) < 0, there are two types of solutionfulll-size solutionsin which+(z) is positive all over the bar, and
localized solutionsin which+(z) is positive on a proper subset @f, /). The full-size solution is
o

. kx AN
Y(x) = W (tan7 — tan 5) sinkx , (31)

wherek = (—6"(0)/a)/2. For the singular case = 7, for whichtan k1,2 is infinite, the solution is
A(x) = g £ sin 77737 (32)

To be admissible, a solution must satisfy the dissipatiequrlity(z) > 0 at all z. It is easy to verify that this
is true for the solutions (28), (30) fa¥’(0) > 0. For#”(0) < 0, the solutions (31), (32) satisfy the dissipation
inequality for0 < kIl < m, while for all Kl > 27 the same condition is violated. In the remaining interval
m < kl < 2w, the dissipation inequality is satisfied only if

tan kl/2

0" (0) + (ki) w”(B:) > 0, Y(kl) =1 — SR

(33)

Let k. be the value ofl for which the above inequality is satisfied as an equalitycaBse the function is
decreasing in the intervétr, 27), inequality (33) is the same as

Kl < ki, . (34)

Then, the full-size solution (31) is admissible fbf < max{ 27, kl.}. The corresponding incremental force-
elongation relation is

5o 00w (5)
0"(0) + (k1) w" (B)

with & = 0 in the singular casgl = 7. The study of the function shows that)(kl) is negative forkl < 7 and
positive forr < kI < 2. Then the slopé /3 of the response curv@, ) is positive forkl < r, zero forkl = ,
and negative forr < kl < max{ 27, kl.}. In the three cases, the response at the onset of the icalafirmation

is work-hardening, perfectly plastic, and strain-softepirespectively. 1&l. < 2r, for kIl = kl. the denominator

in (35) is zero, that is, the negative slope of the responseedaecomes infinite. In the present non-local model,
this situation is identified with the final rupture of the bahen, ifkl > ki, rupture takes place immediately after
the onset of the inelastic deformation. This is the modefsesentation of Griffith’s brittle fracture.

B, (39)

Now consider a localized solution witi(z) positive on an intervala, a+1,) strictly contained in0,) and zero
outside. In ity satisfies the differential equation (27) at the interiornp®iof the interval, and the conditions
4(a) = j(a+1,) = 0 at the boundary. These conditions come either from the bayntbnditions (24) or from
continuity with the neighboring region, at whiél{z) = 0. Moreover, the assumed continuity #f(x) requires
thaty’(a) = 0if a > 0 and¥’(a +1,) = 0if a + 1, < . In all cases, see (Del Piero et al., 2012), this results in
the supplementary condition

27

ly o (36)
which determines the exteft of the localization. The solution of the differential prebi is

, o

A(z) = 5 (0) (1 —cosk (z — a)) , x € (a,a+ly). (37)

By (36) with [, < [, this solution is possible only £/ > 2x. That is, only for values ok! for which a full-size
solution is not admissible. Moreover, the dissipation wredify is satisfied only if

6"(0) + % w(8.) > 0. (38)
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Denote bykl,. the value ofkl for which this inequality holds as an equality. By companisath (33); it follows
that

vk = o

Because) is a decreasing function @fl, for kl. > 27 one has)(kl.) < ¢(2r) = 1 and, thereforekl, > 2.
Thus, if kl. > 2m, that is, if the full-size solution (31) is admissible fot & < 27, then there is an interval
(2, kl,-) in which the localized solution (37) is admissible. On thatcary, no localized solution is admissible if
kl. < 27. For2mw < kl < kl., the incremental force-elongation relation is

5 9//(0) w//(ﬂc)
0"(0) + F w5

(39)

By (38), the slope of théo, 3) response curve is negative. That is, at the onset of thetinelaformation a
localized solution corresponds to a strain-softeningaasp. Brittle fracture, again characterized by an infinite
negative slope of the response curve, occurs fotlalreater tharki,..

The results of preceding analysis are better expressedrs tef the internal length

«

Indeed, at the onset of the inelastic regime we have

(7) afull-size solution with a work-hardening response<f /;,
(#4) a full-size solution with a strain-softening responsk i | < max{ 2l;,1.},
(#i7) alocalized solution with a strain-softening respons®;if< | < I,

(iv

Beyond the onset of the inelastic deformation, the difféadequation (27) is replaced by

)
)
)
)

brittle fracture if i <[. <27/ k andif il > [, > 2n/ k.

0" (v(z))4(z) — af"(x) = ¢ (41)

with v(z) not anymore constant. This equation cannot be solved, iergérn a closed form. Then, the quasi-
static evolution can be determined only approximatelyngisiiep-by step numerical algorithms. Like at the onset,
a solution may be full-size or localized, or brittle fractumay occur, depending on material parameters more
difficult to evaluate. Some general properties of the evatuare proved in (Del Piero et al., 2012):

- The continuation is full-size i#”' (v(x)) > 0 at all z in the inelastic regioiy/,,,

- cisnegative if¢” (v(z)) < Oatallz in J,,

- inalocalized continuation the process zone of the inielagformation tends to concentrate over smaller
and smaller regions if the derivati$éis concave, and to spread out over larger regiofisig convex.

4 The Numerical Scheme

For a given load procegs— ((t), suppose that the equilibrium configurati@t), y(z,t)) at timet is known.
Then the configuration at the timet 7 is determined by minimizing the expansion (9) of the endigye, ) at
(e(t),y(z,t)). As explained in Sections 2.2 and 3.2, the zero-order anéirgteorder term of the expansion are
determined. Then a second-order approximation is obtdgedinimizing the second-order term

(6)(B() =) + / (t)(f)”(v(l', 1) 3 (x) + ¥ (@) dv,  (42)

Ea(B(t),v(x,1);%) = " (B(t) —

Y

in the class of all functiong which satisfy the dissipation inequality (5) and the bougdanditions (24), and
vanish in the elastic zong, (¢). The minimizery(z) provides the approximation

Vr(x) = (@, 1) + 79(2)
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for the deformationy(x, ¢t + 7). This approximation is refined by minimizing the quadrappeximation ofE,,
atvy,

0 02
EQQ(ﬁ(t + T), Yr + 6'7) = Ea('y-r) + 87’)’ Ea(’Y‘r) 67 + %W Ea('%') 6723 (43)
where 5
5 Eal) 87 = [ (000 53(@) + (@) 57 (2) — w'(er) 1 (a) dor
Y Talvr)
2
(%2 Ea(yr)67% = /J OO+ a0y ) o) 3°@)
and

6726(t+7)_'777
Ta(yr) = {2 €(0,) | w'le) =0(y(x))}-

The algorithm to determin&y is the following.

0. Initialization. Setsy = 5(t), vo(z) = v(x, ).

1. Incremental step.

(i) Computeso = argmin { Ea(fo,70; ¥) | 4(z) >0, %(0) =4(1) =0} .
(ii) Set p = B(t+7), () =10(z) + m0(z).

2. Iterative refinement, i-th step.

(i) Compute &' = argmin { Eaz(B1,71 1, 87) | 6v(@) = qo(e) =1~ (2), §v(0) = &y(1) = 0},
and sety} = ~vi7! 4 o7

(i3) Stop when thd.? norm of (yi — ~i~!) is less than a given tolerange
3. End

(i) Take asy; the lasty! in step 2.

(1) If the L? norm of (y; — o) is less than a given toleranée perform a new incremental step starting from
(61,71). Otherwise, repeat the computation witheplaced byr/2.

The last control avoids the overcoming of energy barrieestdiexcessively large incremental steps.

In the numerical code, the bar is discretized using lineatefiellements. The quadratic programming problems
involving the minimization of2,, andE,,. are solved using the projection method (Gill et al., 198I®Jemented

in thequadprog.nfunction of Matlab. The code generates a mesh refinement thigemumber of elements in the
inelastic region7, is smaller than a certain number, 100 in the simulationsemtes! below. In this case, each
element is split into two sub-elements.

In all simulations, for the elastic strain energy densityagsume the quadratic expression
w(e) = 3 EA€?

where the axial stiffnes&' A is the product of the Young modulus of the material by the ared of the cross
section, and for the cohesive energy density we take theywise cubic function

0(7) = Ai + Biy+ 3 Cin® + § D, v € 1,71, i€{l...n}, (44)
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where~; are a finite number of nodal points, witlh = 0 and-~,, < +occ. To guarantee the continuity éfand of
the derivative®’, 8" at the nodal points, the coefficiends, B;, C;, D; must satisfy th&n — 3 conditions

Bit1 = B;i—3(Ais1—A)(vig1) ™", Cigr = Ci46 (Aip1 = A) (Yig1) %, Dig1 = Di—6 (Aip1 — Ai) (i) ™2,

Then onlyn + 3 of the4n constants are independent. We take= 0(0) = 0, while B; = ¢’(0), the value of the
force at the onset of the inelastic regime, is identified @nekperimental curve. Then we are free to chaosel

of the remaining constants. These constants can be useghtifyda specific experimental response curve. In the
next section, they are selected with the purpose of repindtlse experimental tensile test on a steel bar.

5 Numerical Simulations

A tension test was performed at the Laboratorio Prove Maltegi Strutture of the Universit Politecnica delle
Marche in Ancona, on a ribbed bar of B450C (FeB44k) steeh diametery = 16 mm, and with

1=200mm, FA=42x10°kN, B; =109.5kN.
For the cohesive energy a convex-concave expression offieg44) was taken, with

n=3, ~vi = (0.10, 0.54, +00),
Cy =400kN, D; = —4000kN, A; = (0, —0.65, 28.03) kN.
The functiond(v) is plotted in Fig. 1. It is convex foy < 0.1, and concave fof > 0.1.

We takes = t, so that the time-like parameters physically non-dimensional. For the non-locality paedenc,
the time stepr, the initial mesh sizé, and the tolerancesandy we take

a=100kN mm?*, 7=10"% h=1mm, 4=10°%, 5=10"3.

In Fig. 2, the experimental response is represented by tttecdourve. It reaches the elastic limit@at= 0.0026,

a maximum at? = 0.1016, and the slope becomes infinite/at= 0.1254. In the same figure, the solid line is
the numerical response curve. The two curves are very ctosadh other. In particular, the numerical curve
reproduces the hardening regine)026 < 5 < 0.1016, and the softening regim@®,1016 < 8 < 0.1254, of

the post-elastic evolution. In the simulation, the two negs are determined by the convex and concave péart of
respectively. With the addition of an initial concave pane horizontal plateau shown by the experiment in the
range (.0026 < S < 0.017) could also be reproduced.

The evolution of the inelastic deformation is describedig B, wherey and+ are plotted for different values ¢f.

In the hardening regime the inelastic deformatide almost constant over the bar, except near the boundaeyewh
~ is zero by the boundary conditions (16). In the softeningmegin the short interva.1016 < g < 0.1018 the
evolution is still full-size as in the previous hardeningiree. Forg > 0.1018, the inelastic deformation gradually
localizes on shorter and shorter intervals. The extremalilcation is reached fof = 0.1254. At this point the
response curve becomes vertical, and rupture occurs.

The diagrams of the localized inelastic deformation fofedént values ofS are collected in Fig. 4a. They are in
a very good qualitative agreement with the experimentaleziof Fig. 4b, taken from (Miklowitz, 1950). In Fig.
5a the transverse profile of the bar is showndarose to the rupture value 0.1254. This profile has been @suc
from the axial deformation obtained in the simulation, asisig a coefficient of transverse contraction (Poisson’s
ratio) equal to 0.3. It is very similar to the profile in the foie of Fig. 5b, also taken from (Miklowitz, 1950).

To investigate the influence of the sizef the specimen and of the non-locality parameigwe performed the
following series of simulations:

Simulation 1 2 3 4 5 6 7 8
[ = 200 300 200 100 100 200 100 100 mm,
a = 100 100 50 25 100 500 300 500 kN mm?.

Simulation 1 is the one used for comparison with the expertm&he response curves of Simulations 1, 2 and
5, all corresponding to the same are shown in Fig. 6. The three curves differ only in the suftg part, which

is shorter for largefl. That is, larger bars are less ductile, and break at for emadllues of3. This is a clear
manifestation of the size effect.
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The same loss of ductility and reduction of the rupture vatuef 5 is observed whew is reduced keeping
constant. In Fig. 7, the values 6f. obtained in the eight simulations are plotted versus the kgtv/l. They
almost exactly lie on a straight line. That is, for the ruptwalue of3 our simulations provide the empirical
relation

Br = 01+C2@,

with ¢1, ¢o suitable constants. Recalling the expression (40) of ttegnal lengthl;, we can put this relation into

the form
V=)
T 1’
which shows that the rupture load is governed by the rafid. That is, the parametéy, which comes from the
analysis of the onset of the inelastic deformation, seentetoseful to predict the elongation at rupture, at least
when rupture occurs at the end of a substantial inelastime=g

Br = c1+c2

() 100

80

60

40
——: concave

S I o S S S R s : convex

““
“‘
.
.

"
400

200

-200

-400

Figure 1. Graphs of() (a), and of0” () (b)

o [kN]

14

1201

100~

80r]

60

40

--------- experimental
20 .
numerical

0 i i i i i i
0 0.02 0.04 0.06 0.08 0.1 0.12 B

Figure 2. Force-elongation response curves: experiméiattked line) and numerical (solid line)

185



200

Y B=0.1030 Y
i 4
O‘Z;{r ~—p=0.1018
0.08 L
$=0.0700 :
0.06 - H 25
0.05 21
0.04 15 .
0.03 4
7/ AN
0.01F 0.5]
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180
(a
T $=0.1254 Yesor
4001
0.8
p=0.1245 il
300
o p=0.1225 250F 0.1254
04k 2001 =0.1245
p=0.1125 il -0.1225
0.2+ 1001
sol 0.1125
0 20 40 60 80 100 120 140 160 180 200 %O 85 90 95 100 105 110 115
(c) (d)
Figure 3. Diagrams of (a), (c) andy (b), (d) for different values of
Ly Umeas=13.15 M e —
0.9 - A
08 ;‘_:
[}
0.7 Umeas=12.84 = - ]
P4
06 2
05 Umeas=12.40 & TIA\ ]
. : : >
’ Umeas=11.40 E
0.3 =] .
02 Umeas=10.40 / To——
i-—--—-PLOTALONG ORIGINAL P IS\TIONS IN GAGE LENGTH———-'I

| | | I X
95 100 105 110 115 120

(@)

%o %

85

Figure 4. Diagrams of for different values of

LONGITUDINAL AXIS OF BAR

(b)

: numerical (a), and experimental (b)

186



X [mm]

90 100 110 120

(@)

Figure 5. Necking just before ultimate failure: numeriag), @nd experimental (b)

o [kN]

14
120/
100

80H

!
[=300 /=200 /L1oo

40

20

i i i i
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Figure 6. Force-elongation response curves for diffefent

0.221

.................. 3 \/a

I
0 0.05 0.1 0.15 0.2 0.25 l

Figure 7. Numerical simulations. Dependence of the valuef 5 at rupture on the ratig/«/1

187



References

Babadjian, J.-F.: A quasistatic evolution model for theerattion between fracture and damagesh. Rational
Mech. Anal, 200, (2011), 945-1002.

Barenblatt, G.I.. The mathematical theory of equilibriuraaks in brittle fractureAdv. Appl. Mech.7, (1962)
55-129.

Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform eystl. Interfacial free energy. Chem. Physi¢c28,
(1958), 258-267.

Dal Maso, G., Toader, R.: Quasi-static crack growth in elgdastic materials: the two-dimensional casesh.
Rational Mech. Ana).196, (2010), 867-906.

Del Piero, G., Lancioni, G., March, R.: A diffuse cohesiveergy approach to fracture and plasticity: the one-
dimensional case, Submitted, (2012).

Del Piero, G., Truskinovsky, L.: Elastic bars with cohesareergy,Cont. Mech. Thermodynamic21, (2009),
141-171.

Dugdale, D.S.: Yielding of steel sheets containing slitdvlech. Phys. Solids8, (1960), 100-104

Francfort, G.A., Marigo, J.-J.: Revisiting brittle fractuas an energy minimization probledaMech. Phys. Solids
46, (1998), 1319-1342.

Gill, P.E., Murray, W., Wright, M.H.Practical oprimization Academic Press, (1981).
Griffith, A.A.: The phenomena of rupture and flow in soliéil. Trans. Roy. SocA221, (1920), 163-198.

Gurtin, M.E., Anand, L.: A theory of strain-gradient plasty for isotropic, plastically irrotational materialsaR®
I: Small deformations]. Mech. Phys. Solid$3, (2005), 1624-1649.

Irwin, G.R.: Analysis of stresses and strains near the erzdaplck traversing a plat@, Appl. Mech. 24, (1957),
361-364

Mielke, A.: Differential, energetic, and metric formulatis for rate-independent processes, in: L. Ambrosio, G.
Savare edd\onlinear PDEs and Application$pringer Lecture Notes in Mathematics, 2028, (2011), 89-1

Miklowitz, J.: The Influence of the Dimensional Factors oa Mode of Yielding and Fracture in Medium-Carbon
Steel-1l. The Size of the Round Tensile BBroc. J. Appl. Mechl17, (1950), 159-168.

Pham, K., Amor, H., Marigo, J.-J., Maurini, C.: Gradient dayja models and their use to approximate brittle
fracture,Int. J. Damage Mechani¢g0, (2010), 618-652.

Polak, E.:Computational methods in optimizatiof\cademic Press, (1971).

J.D. Van der Waal€Dn the continuity of the gas and liquid stgte Dutch). Ph. D. Thesis, Sijthoff, Leiden, (1873).

Addresses:

Gianpietro Del Piero, Dipartimento di Ingegneria, Univexsli Ferrara, via Saragat 1, 44100, Ferrara, Italy, email:
dl pgpt@nife.it,

Giovanni Lancioni, Dipartimento di Ingegneria Civile, e Architettura, Universit

Politecnica delle Marche, Via Brecce Bianche 1, 60131 Aacdtaly, email:g. | anci oni @ini vpmiit,

Riccardo March, Istituto per le Applicazioni del CalcoloNR, Via dei Taurini 19, 00185 Roma, Italy, email:
r.march@ac.cnr.it.

188



