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Regularity of Minimizers in Nonlinear Elasticity – the Case of a One-Well
Problem in Nonlinear Elasticity

G. Dolzmann

In this note sufficient conditions for bounds on the deformation gradient of a minimizer of a variational problem
in nonlinear elasticity are reviewed. As a specific model class, energy densities which are the relaxation of the
squared distance function to compact sets are considered and estimates in the space of functions with bounded
oscillation are presented. An explicit example related to a one-well problem shows that assumptions of convexity
are essential for uniform bounds on the deformation gradient. As an application of the relaxation of the energy in
this special case it is indicated how general relaxation formulas for energies withp-growth can be obtained if the
relaxation with quadratic growth satisfies natural assumptions.

1 Introduction

Variational models in nonlinear elasticity play a fundamental role in modern applications in the engineering sci-
ences. It has long been recognized that linear models are inappropriate to capture the true elastic behavior of
materials with internal structures which have a significant impact on the response of the materials to applied loads.
Significant progress in the mathematical analysis of these models has been achieved, in particular following the
seminal paper Ball (1976/77) which identified classes of energy densities for which existence of solutions for the
corresponding variational problems can be inferred with the direct method in the calculus of variations.

Despite significant progress in the past years, many questions concerning regularity and uniqueness of solutions
remain open. In this note we focus on the question of uniform estimates for the gradient of minimizers. This
question has direct applications to the material systems modeled by the variational principles: a minimizeru
represents the deformation and its gradient describes local changes of length. It seems a natural requirement that
this quantity be bounded in an energy minimizing configuration.

In order to illustrate some of the effects that may occur we recall some recent results on regularity of minimizers
in Dolzmann et al. (2011) and confront them with a special model example, the nonlinear version of a one-well
energy in two dimensions, which serves as the most basic model for the austenitic phase of a material undergoing
an austenite-martensite phase transformation in the solid state, see, e.g., Ball and James (1987, 1992); Chipot and
Kinderlehrer (1988) for discussions from the point of view of nonlinear elasticity. We provide a short proof for
the well-known relaxation of this energy and indicate a general method that allows one to obtain the relaxation of
a corresponding energy withp-growth,p ≥ 2. These energies fit into the framework of isotropic functions which
have been studied in detail in the literature, see, e.g.,Šilhav́y (2001, 2007b) and the references therein for more
general results.

2 Preliminaries

We use standard notation for Lebesgue and Sobolev spaces. The space of all realm × n matrices is denoted by
Mm×n. In 2 × 2-matrices we use the decomposition into a conformal and anticonformal part,X = X+ + X−

which is orthogonal with respect to the inner product inM2×2 and is given by

X+ =
1
2

(
a −b
b a

)

, X− =
1
2

(
c d
d −c

)

, (1)

wherea = X11 + X22, b = X21 − X12, c = X11 − X22, andd = X21 + X12 In particular

2 det X = |X+|2 − |X−|2 . (2)
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We finally recall the relevant notions of convexity, see Dacorogna (1989) for more information. Letf : Mm×n →
R be a real valued function. We say thatf is

(a) rank-one convex, iff is convex along rank-one lines, i.e., for allX ∈ Mm×n and allR ∈ Mm×n with
rank(R) = 1 the real-valued function of one variablet 7→ f(X + tR) is convex; the function is said to be
rank-one affine if it is affine along all rank-one lines;

(b) quasiconvex (in the sense of Morrey), if for allφ ∈ C∞
0 ((0, 1)n;Rm) and allX ∈Mm×n in inequality

f(X) ≤
∫

(0,1)n

f
(
X + ∇Φ(x)

)
dx

holds; the function is said to be quasiaffine if equality holds in this inequality for allφ;

(c) polyconvex, iff can be represented as a convex functiong of X and all its minors, i.e., all subdeterminants of
X; the function is said to be polyaffine ifg is affine.

It is important to note the following implications:

f convex ⇒ f polyconvex ⇒ f quasiconvex ⇒ f rank-one convex .

In case that a given functionf fails to be polyconvex (quasiconvex, rank-one convex) one defines the polyconvex
(quasiconvex, rank-one convex) envelope of the function as the largest polyconvex (quasiconvex, rank-one convex)
function less than or equal tof . For example, the polyconvex envelope is given by

fpc(X) = sup
{
p(X) : p is polyconvex withp ≤ f onMm×n

}
.

In particular, the implications between the notions of convexity motivate the following approach towards the char-
acterization offqc. Construct an upper boundf ≥ f̃ for the rank-one convex envelope and prove thatf̃ is
polyconvex. Then necessarily

f̃ ≥ f rc ≥ fpc ≥ f̃

and hence equality holds throughout this chain of inequalities. We illustrate this process in Section 4.

3 Uniform Bounds on the Deformation Gradient for Functionals with Quadratic Growth

Almost all regularity results in the literature without explicit convexity assumptions rely on strong assumptions on
the behavior of the energy densities at infinity. For example, the pioneering work Chipot and Evans (1986) assumes
that the density is twice continuously differentiable and that the second derivatives converge to a positive definite
matrix at infinity. These assumptions are usually not satisfied for energy densities arising in nonlinear elasticity.

In order to formulate results without such a strong assumption, we restrict our attention to a special class of
functionals which are given as the relaxation of the squared distance function to a compact setK ⊂ Mm×n. That
is, letFK(∙) = dist2(∙,K) denote the squared Euclidean distance and consider

I[u] =
∫

Ω

F qc
K (Du)dy . (3)

Under the additional assumption thatK admits supporting balls of a given fixed radius at each boundary point
it was shown in Dolzmann et al. (2011) that the gradient of any minimizer of (3) belongs toL∞

loc(Ω;Mm×n).
Moreover, using the results in Fuchs (1997) one can improve this assertion if additional assumptions are made. For
example, ifK ⊂M2×2 is a compact and convex subset in the two-dimensional subspace of all conformal matrices,
then all extremals of (3) are locally Lipschitz continuous, and even of classC1,α

loc (Ω;R2) for someα ∈ (0, 1]. Note
that in all these examples the distance function is convex and therefore the relaxationF qc

K coincides withFK .
If convexity of the set fails, then one cannot expect uniform bounds. The natural replacement forL∞ is the
spaceBMO of all functions with bounded mean oscillation. In fact, it was show in Dolzmann et al. (2011) that
minimizers of (3) lie in this space ifK is any compact set in the space of allm × n-matrices. The proof relies on
an explicit representation of the relaxation which follows from Ball et al. (2000). A counterexample to uniform
bounds is reviewed in Section 4.
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4 Relaxation of a One-Well Problem withp-Growth

Let dist(X, SO(2)) be the Euclidean distance of a matrixX ∈M2×2 to the set of all proper rotations, that is,

F (X) = dist(X, SO(2)) = min
Q∈SO(2)

|X − Q| .

We write Fp = F p for the pth power of this function. In view of (1), (2) and|Q| =
√

2 for all Q ∈ SO(2) it
follows that

F2(X) =
(
|X+| −

√
2
)2

+ |X−|2 = 2|X+|2 − 2
√

2|X+| + 2 − 2 det X =
(√

2|X+| − 1
)2

+ 1 − 2 det X .

This function is certainly not convex along a directiont 7→ tC whereC is a conformal matrix. Since conformal
matrices are not rank-one matrices, the construction off̃ as in Section 2 cannot be achieved by an optimization of
the energy along conformal directions in matrix space. In order to proceed one notes first that

det(A + B) = det A +

(
a22 −a21

−a12 a11

)

:

(
b11 b12

b21 b22

)

+ det B for all A, B ∈M2×2

and hence the determinant is in fact an affine function along any rank-one linet 7→ X + tR with X, R ∈ M2×2

andrank R = 1. Therefore we may focus on the quadratic term in the energy. We assert that this contribution to
the energy can be reduced to zero by a laminate for allX ∈M2×2 with |X+| < 1/

√
2. Indeed, letI be the identity

matrix in the space of all real2×2-matrices and choose any vectora ∈ R2 with |a| = 1 and setR = a⊗a⊥ where
a⊥ denotes the vector which is obtained by rotatinga by π/2 in counterclockwise direction. ThenR is a rank-one
matrix. Consider the rank-one linet 7→ Xt = X(I +tR) and the functiont 7→ γ(t) =

√
2|X+

t |−1 along this line.
Thenγ(0) < 0 and the function has linear growth at infinity since the conformal part of any rank-one matrix is
different from zero. Hence there exist two parameterst± and corresponding matricesX± such thatt− < 0 < t+
andγ(t±) = 0. We setλ = t+/(|t−| + t+), observe thatX = λX− + (1 − λ)X+ and infer in view of the
convexity ofF rc

2 along rank-one directions that

F rc
2 (X) ≤ λF rc

2 (X−) + (1 − λ)F rc
2 (X+) ≤ λF2(X−) + (1 − λ)F2(X+) = 1 − 2 det X . (4)

For future reference we observe thatF2 is in fact constant on{X−, X+} since

det Xt = det
(
X(I + tR)

)
= det X det

(
I + ta ⊗ a⊥

)
= det X

(
1 + t〈a, a⊥〉

)
= det X . (5)

This suggests to define

f̃(X) =

{
1 − 2 det X +

(√
2|X+| − 1

)2
if |X+| ≥ 1/

√
2 ,

1 − 2 det X otherwise,

and it followsF qc
2 = f̃ if we can prove that̃f is polyconvex. However, this follows easily sincẽf is the sum of

the polyconvex function1 − 2 det X and the function(g ◦ h)(X) whereg(t) = (
√

2t − 1)2+ andh(X) = |X+|.
Here we writea+ = max{a, 0} for a ∈ R. Henceg is convex and monotonically increasing andh is convex. The
concatenation of a convex and increasing function with a convex function is again convex and hencef̃ is the sum
of a polyconvex and a convex function, thus polyconvex.

We now review well-known facts in order to state a more general result on the characterization of the semiconvex
envelopes of functions. They have been widely used, both in theoretical investigations as well as for algorithmic
approaches, see, e.g., Bartels (2004); Bartels et al. (2006); Carstensen and Roubı́ček (2000); Carstensen (2003);
Carstensen et al. (2008); DeSimone and Dolzmann (2002); Dolzmann (1999); Kochmann and Hackl (2011); Kohn
and Strang (1986); Krǔźık and Luskin (2003); Krǔźık et al. (2005); Pedregal (1997); Roubı́ček (2002);Šilhav́y
(2007a) and the references therein. The construction just described is usually referred to as a simple laminate.
More generally,f̃ can be constructed by optimizing in a set ofN matrices which satisfy theHN condition in
Dacorogna (1989). Here we say that the pairs(Xi.λi), i = 1, . . . , N , with Xi ∈ Mm×n and λi ∈ (0, 1),
λ1 + . . . + λN = 1 satisfy the conditionHN if the following is true: ForN = 2 we haverank(X1 − X2) = 1.
If N > 2, then one can relabel the matrices in such a way thatrank(XN−1 − XN ) = 1 and such that the pairs
(Yi, μi), i = 1, . . . , N − 1 with

(Yi, μi) = (Xi, λi) , i = 1, . . . , N − 2, μN−1 = λN−1 + λN , YN−1 =
1

λN−1 + λN

(
λN−1XN−1 + λNXN

)
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satisfy theHN−1 condition. Finally,X = λ1X1 + . . .+λNXN . Note that this construction implies for a rank-one
convex function

(λN−1 + λN )f
( λN−1

λN−1 + λN
XN−1 +

λN

λN−1 + λN
XN

)
≤ λN−1f(XN−1) + λNf(XN )

and by induction

f(X) ≤ f
( N∑

i=1

λiXi

)
. (6)

It is natural to identify this set of matrices with measures, called finite laminates, and to define integration of a
continuous function with respect to such a measureν by

ν =
N∑

i=1

λiδXi , 〈ν, f〉 =
N∑

i=1

λif(Xi) , 〈ν, id〉 =
N∑

i=1

λiXi = X .

The calculation which led to (4) can be extended to finite laminates and yields

〈ν, f〉 =
N∑

i=1

λif(Xi) ≥
N∑

i=1

λif
rc(Xi) ≥ f rc

( N∑

i=1

λiXi

)
= f rc(X) . (7)

Note that eachν is by construction a probability measure. As pointed out by Müller andŠveŕak (1999), the
minimization can be performed in the larger class of measures which are obtained as the weak-∗ closure of finite
laminates with support in a compact setK which we will refer to as generalized constructions or laminatesν ∈
Mrc(K,X) with center of massX. That is, for everyν ∈ Mrc(K,X) there exists a sequenceνk of finite
laminates with support inK such that for all continuous functionsf the identity

〈ν, f〉 = lim
k→∞

〈νk, f〉

holds true. In particular, forf ≡ 1 one obtains thatν is a probability measure. Moreover, iff is rank-one convex,
then (6) implies that

〈ν, f〉 = lim
k→∞

〈νk, f〉 ≥ f(X) . (8)

However, iff is any continuous function, then〈ν, f〉 ≥ f rc(X) for all finite laminates inMrc(K,X), see (7), and
the same assertion holds true for all laminates,

〈ν, f〉 ≥ f rc(X) for all ν ∈ Mrc(K,X) . (9)

After these preparations we are in a position to state a principle of stability under exponentiation in the convex case.
Suppose thatf : Mm×n → [0,∞) is a function withfpc = fqc = f rc and that there exists for allX ∈ Mm×n a
compact setK and a generalized constructionν ∈ Mrc(K,X) with the following properties:

(a) the center of mass is the given matrixX, i.e.,〈ν, id〉 = X;

(b) the generalized construction realizes the infimum of the energy, i.e.,f rc(X) = 〈ν, f〉;

(c) f is constant on the supportsupp(ν).

Then the relaxation offp, p ≥ 1, is given by(fqc)p. In order to verify the assertion we observe that the natural
candidate for the functioñf is given byf̃ = (f rc)p. Clearlyfp ≥ (f rc)p and in view of assumptions (b) and (c),

f̃(X) = (f rc)p(X) = 〈ν, f〉p =
(∫

Mm×n

f(A)dν(A)
)p

=
(
f
∣
∣
supp ν

)p(
∫

Mm×n

dν(A)
)p

=
∫

Mm×n

fp(A)dν(A) = 〈ν, fp〉 ≥ (fp)rc(X) .

It remains to prove that̃f is polyconvex. Sincef rc = fpc, there exists a convex functiong which depends only on
the vectorT (X) of all minors ofX such thatf rc(X) = g(T (X)). Sincef is nonnegative we conclude the same
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for g and hence(f rc)p(X) = (h ◦ g)(T (X)) whereh(t) = tp+ is a convex and nondecreasing function. Therefore
h ◦ g is convex and(h ◦ g)(T (X)) is a polyconvex function inX. The arguments in Section 2 imply thatf̃ is the
relaxation offp and that(fp)rc = (fp)qc = (fp)pc.

We now return to the specific exampleFp = distp(∙, SO(2)). The construction forf rc in X is based on a finite
laminateν = λδX+ + (1 − λ)δX− and on the support ofν the functionf coincides with the constant function
Y 7→ 1 − 2 det X, see (5). Hence we obtain from the foregoing discussion, that

F rc
p (X) = F qc

p (X) = F pc
p (X) =

(
F rc

2 (X)
)p/2

=

{
distp(X, SO(2)) if |X+| ≥ 1/

√
2 ,

(1 − 2 det X)p/2 otherwise,
p ≥ 2 . (10)

This representation is very convenient for the subsequent discussion of minimizers with unbounded gradients. The
first formula for the relaxation ofFp can be found iňSilhav́y (2001, 2007b) where general isotropic functions are
considered and a formula in terms of the singular values is presented.

We finally present an unbounded minimizer for the corresponding quadratic variational problem following Dolz-
mann et al. (2011). LetΩ = B(0, 1) be the unit disk in the plane. Minimize inW 1,2

0 (Ω;R2) the energy
∫

Ω

F qc
2 (∇u)dx .

We assert thatu(x, y) = 1
2 (x,−y) ln

(
x2 + y2

)
is a minimizer. Note that this function appears already in Iwaniec

(1986). The functionu satisfies

Du(x, y) =
1
2

(
ln(r2) + 1

)
(

1 0
0 −1

)

+
1

2r2

(
x2 − y2 2xy
−2xy x2 − y2

)

wherer2 = x2 + y2. Thus we have|Du+| = 1/
√

2 a.e. onΩ and henceF qc
2 (Du) = 1 − 2 det Du on Ω. Let

φ ∈ W 1,2
0 (Ω;R2) and observe that
∫

Ω

F qc
2 (Du + Dφ)dy ≥

∫

Ω

(
1 − 2 det(Du + Dφ)

)
dy =

∫

Ω

(
1 − 2 det Du

)
dy =

∫

Ω

F qc
2 (Du)dy.

This chain of inequalities verifies thatu is in fact a minimizer of the functional.

5 Conclusion

We presented sufficient conditions for uniform bounds on the deformation gradient and provided an example with
a logarithmic divergence which shows that the assertions are optimal. It is a natural question whether the coun-
terexample in Section 4 can be extended from the quadratic case to thep-growth case. This remains a challenging
problem, but it seems that the representation (10) could provide a link between the quadratic and the superquadratic
case that could help to settle this demanding problem.
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Roub́ıček, T.: Evolution model for martensitic phase transformation in shape-memory alloys.Interfaces Free
Bound., 4, (2002), 111–136.
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