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Regularity of Minimizers in Nonlinear Elasticity — the Case of a One-Well
Problem in Nonlinear Elasticity

G. Dolzmann

In this note sufficient conditions for bounds on the deformation gradient of a minimizer of a variational problem

in nonlinear elasticity are reviewed. As a specific model class, energy densities which are the relaxation of the
squared distance function to compact sets are considered and estimates in the space of functions with bounded
oscillation are presented. An explicit example related to a one-well problem shows that assumptions of convexity
are essential for uniform bounds on the deformation gradient. As an application of the relaxation of the energy in
this special case it is indicated how general relaxation formulas for energiegwgtbwth can be obtained if the
relaxation with quadratic growth satisfies natural assumptions.

1 Introduction

Variational models in nonlinear elasticity play a fundamental role in modern applications in the engineering sci-
ences. It has long been recognized that linear models are inappropriate to capture the true elastic behavior of
materials with internal structures which have a significant impact on the response of the materials to applied loads.
Significant progress in the mathematical analysis of these models has been achieved, in particular following the
seminal paper Ball (1976/77) which identified classes of energy densities for which existence of solutions for the
corresponding variational problems can be inferred with the direct method in the calculus of variations.

Despite significant progress in the past years, many questions concerning regularity and uniqueness of solutions
remain open. In this note we focus on the question of uniform estimates for the gradient of minimizers. This
guestion has direct applications to the material systems modeled by the variational principles: a mimimizer
represents the deformation and its gradient describes local changes of length. It seems a natural requirement that
this quantity be bounded in an energy minimizing configuration.

In order to illustrate some of the effects that may occur we recall some recent results on regularity of minimizers

in Dolzmann et al. (2011) and confront them with a special model example, the nonlinear version of a one-well
energy in two dimensions, which serves as the most basic model for the austenitic phase of a material undergoing
an austenite-martensite phase transformation in the solid state, see, e.g., Ball and James (1987, 1992); Chipot and
Kinderlehrer (1988) for discussions from the point of view of nonlinear elasticity. We provide a short proof for

the well-known relaxation of this energy and indicate a general method that allows one to obtain the relaxation of

a corresponding energy wititgrowth,p > 2. These energies fit into the framework of isotropic functions which

have been studied in detail in the literature, see, Sithaw (2001, 2007b) and the references therein for more
general results.

2 Preliminaries

We use standard notation for Lebesgue and Sobolev spaces. The space ofralikreaimatrices is denoted by
M™*" In 2 x 2-matrices we use the decomposition into a conformal and anticonformalyast, X+ + X~
which is orthogonal with respect to the inner produchif*? and is given by

1 a —b 1 c d
+_ - - _
X_Z(b a)’ X_Q(dc>’ (1)
whereaq = X1+ Xo9,b = Xo1 — Xio,c= X117 — Xo9, andd = Xo1 + X2 1n partiCUlar
2det X = | X T2 — | X |2, 2
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We finally recall the relevant notions of convexity, see Dacorogna (1989) for more informatiofi: Mt <" —
R be a real valued function. We say thyats

(a) rank-one convey, if is convex along rank-one lines, i.e., for &l € M™*™ and all R € M™*™ with
rank(R) = 1 the real-valued function of one variable— f(X + tR) is convex; the function is said to be
rank-one affine if it is affine along all rank-one lines;

(b) quasiconvex (in the sense of Morrey), if for ale C5°((0,1)™; R™) and allX € M™*" in inequality
f(X) < / f(X +VO(z))da
(0,1)™

holds; the function is said to be quasiaffine if equality holds in this inequality fa¥,all

(c) polyconvey, iff can be represented as a convex functiarf X and all its minors, i.e., all subdeterminants of
X; the function is said to be polyaffine gfis affine.

Itis important to note the following implications:
fconvex = fpolyconvex = fquasiconvex = frank-one convex .

In case that a given functiofifails to be polyconvex (quasiconvex, rank-one convex) one defines the polyconvex
(quasiconvex, rank-one convex) envelope of the function as the largest polyconvex (quasiconvex, rank-one convex)
function less than or equal th For example, the polyconvex envelope is given by

fPe(X) = sup{p(X): pis polyconvex withp < f onM™*"} .

In particular, the implications between the notions of convexity motivate the following approach towards the char-
acterization off4¢. Construct an upper bounfl > f for the rank-one convex envelope and prove tfias
polyconvex. Then necessarily

ffe>fre>f

and hence equality holds throughout this chain of inequalities. We illustrate this process in Section 4.

3 Uniform Bounds on the Deformation Gradient for Functionals with Quadratic Growth

Almost all regularity results in the literature without explicit convexity assumptions rely on strong assumptions on
the behavior of the energy densities at infinity. For example, the pioneering work Chipot and Evans (1986) assumes
that the density is twice continuously differentiable and that the second derivatives converge to a positive definite
matrix at infinity. These assumptions are usually not satisfied for energy densities arising in nonlinear elasticity.

In order to formulate results without such a strong assumption, we restrict our attention to a special class of
functionals which are given as the relaxation of the squared distance function to a comgact $¢f™*". That
is, let Fi(-) = dist?(-, K') denote the squared Euclidean distance and consider

Iu] = /QFIQ(C(Du)dy. (3)

Under the additional assumption th&t admits supporting balls of a given fixed radius at each boundary point

it was shown in Dolzmann et al. (2011) that the gradient of any minimizer of (3) belong&2; M™*"™).
Moreover, using the results in Fuchs (1997) one can improve this assertion if additional assumptions are made. For
example, ifK ¢ M?*? is a compact and convex subset in the two-dimensional subspace of all conformal matrices,
then all extremals of (3) are locally Lipschitz continuous, and even of crégm; R?) for somea € (0, 1]. Note

that in all these examples the distance function is convex and therefore the relakgtienincides withFx.

If convexity of the set fails, then one cannot expect uniform bounds. The natural replacemést figrthe
spaceBMO of all functions with bounded mean oscillation. In fact, it was show in Dolzmann et al. (2011) that
minimizers of (3) lie in this space K is any compact set in the space of:allx n-matrices. The proof relies on

an explicit representation of the relaxation which follows from Ball et al. (2000). A counterexample to uniform
bounds is reviewed in Section 4.
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4 Relaxation of a One-Well Problem withp-Growth

Letdist(X, SO(2)) be the Euclidean distance of a matiixe M?*? to the set of all proper rotations, that is,

F(X) = dist(X,S0(2)) = min |X — Q.
(X) = dist(X,S0(2)) Qgslgl(z)l Q|

We write F,, = FP for the pth power of this function. In view of (1), (2) and)| = v/2 for all Q € SO(2) it
follows that

Fy(X) = (X = V2)  + X P = 21X H]> — 22| Xt +2—2det X = (V2|XH| = 1)® + 1 —2det X .

This function is certainly not convex along a direction- tC whereC' is a conformal matrix. Since conformal
matrices are not rank-one matrices, the constructighas in Section 2 cannot be achieved by an optimization of
the energy along conformal directions in matrix space. In order to proceed one notes first that

det(A+B) = det A+ 922 ~92) . (bu 02} G p forall 4, B e M2¥2
—ai2 a11 bar  boo

and hence the determinant is in fact an affine function along any rank-oneding& + tR with X, R € M?2*2
andrank R = 1. Therefore we may focus on the quadratic term in the energy. We assert that this contribution to
the energy can be reduced to zero by a laminate foX al M>*2 with | X +| < 1/4/2. Indeed, letl be the identity

matrix in the space of all re@lx 2-matrices and choose any vectoe R? with |a| = 1 and setR = a ® a* where

a* denotes the vector which is obtained by rotatinigy /2 in counterclockwise direction. TheR is a rank-one
matrix. Consider the rank-one line— X; = X (I +tR) and the functiont — ~(¢) = /2| X, | — 1 along this line.
Then~(0) < 0 and the function has linear growth at infinity since the conformal part of any rank-one matrix is
different from zero. Hence there exist two parametersnd corresponding matricé§, suchthat_ < 0 < ¢,
andv(ty) = 0. We seth = ¢, /(|t—| + t+), observe thalX = AX_ + (1 — A\)X; and infer in view of the
convexity of F3¢ along rank-one directions that

F(X) < AFS(X)+ (1 =N (Xy) S AR(X )+ (1 - AN F(Xy)=1-2det X. 4)
For future reference we observe ttftis in fact constant o X _, X } since

det X; = det (X (I +tR)) = det X det([—l—ta@aJ‘) =det X (1 +t{a,a™)) = det X . 5)

This suggests to define

)= | 1 2det X (VX - D2 i X >1/V2,
1—2detX otherwise,

and it follows F5 = f if we can prove thaff is polyconvex. However, this follows easily singés the sum of
the polyconvex functiod — 2det X and the functior{g o 2)(X) whereg(t) = (v/2t — 1)2 andh(X) = |X*|.
Here we writea,. = max{a, 0} for a € R. Hencey is convex and monotonically increasing ainés convex. The
concatenation of a convex and increasing function with a convex function is again convex ang et sum
of a polyconvex and a convex function, thus polyconvex.

We now review well-known facts in order to state a more general result on the characterization of the semiconvex
envelopes of functions. They have been widely used, both in theoretical investigations as well as for algorithmic
approaches, see, e.g., Bartels (2004); Bartels et al. (2006); Carstensen aiteR¢{2000); Carstensen (2003);
Carstensen et al. (2008); DeSimone and Dolzmann (2002); Dolzmann (1999); Kochmann and Hackl (2011); Kohn
and Strang (1986); Ktk and Luskin (2003); Kr#ik et al. (2005); Pedregal (1997); Rdtaek (2002);Silhavy
(2007a) and the references therein. The construction just described is usually referred to as a simple laminate.
More generally,f can be constructed by optimizing in a set/@fmatrices which satisfy thél, condition in
Dacorogna (1989). Here we say that the paik§.\;), « = 1,..., N, with X; € M™*"™ and \; € (0,1),
A1 + ...+ Axy = 1 satisfy the conditior  if the following is true: ForN = 2 we haverank(X; — X5) = 1.
If N > 2, then one can relabel the matrices in such a wayithat(Xy_; — Xn) = 1 and such that the pairs
(Yi,pni),i=1,...,N — 1 with

1

(Vi) = (Xis i) i=1,...,N =2, uy_1 = An_1 + Ay, Yyo1 = ————— (Avo1Xnv-1 + AvXy)
AN—1+ AN
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satisfy theH y_; condition. Finally, X = A1 X; +...4+ Ay X . Note that this construction implies for a rank-one
convex function

)\N71 >\N
AN— A — Xn- —— Xn ) <Ay f(Xn— A X
Av-1+ N)f()\N—1+)\N N 1+)\N71+)\N N)_ No1f(Xn—1) + Anf(XN)
and by induction
N
fX) < f(z AiXi) : (6)
i=1

It is natural to identify this set of matrices with measures, called finite laminates, and to define integration of a
continuous function with respect to such a measuiog

N N
V= Z /\i(SXi 5 <l/, f> = Z )\zf(Xz) 5 <1/7 Zd> = Z /\iXi =X.
i=1 i= i=1

The calculation which led to (4) can be extended to finite laminates and yields

N N N
1) = 3N 2 3N (X = (T NX) = Fo(X). )

i=1

Note that each’ is by construction a probability measure. As pointed out biyllét and Sveiak (1999), the
minimization can be performed in the larger class of measures which are obtained as theclesake of finite
laminates with support in a compact geétwhich we will refer to as generalized constructions or laminates
M (K, X) with center of massX. That is, for everyy € M™(K, X) there exists a sequeneg of finite

laminates with support i& such that for all continuous functiorfsthe identity

<Va f> = ;}Ego@k’ﬁ

holds true. In particular, fof = 1 one obtains that is a probability measure. Moreover,fifis rank-one convex,
then (6) implies that

v, f) = Jim (v, f) 2 F(X). ®)

However, if f is any continuous function, thew, f) > f"(X) for all finite laminates inM** (K, X), see (7), and
the same assertion holds true for all laminates,

(v, f) > fr(X) forallv € M*™(K,X). 9)

After these preparations we are in a position to state a principle of stability under exponentiation in the convex case.
Suppose thaf : M™*"™ — [0, o0) is a function withfP¢ = f4°¢ = f*¢ and that there exists for al € M™*™ a
compact sef and a generalized constructiore M* (K, X) with the following properties:

(a) the center of mass is the given matkixi.e., (v, id) = X;
(b) the generalized construction realizes the infimum of the energyfi¢X) = (v, f);

(c) fis constant on the suppattipp(v).

Then the relaxation of?, p > 1, is given by(f9°)?. In order to verify the assertion we observe that the natural
candidate for the functioyfi is given byf = (f*°)P. Clearly f? > (f*)? and in view of assumptions (b) and (c),

700 = (er ) = s = ([ 1) = (1) ([ avt))”
= [ A = ) = ().

It remains to prove thaf is polyconvex. Sincg™® = fP¢, there exists a convex functignwhich depends only on
the vectorT' (X) of all minors of X such thatf**(X) = ¢(T(X)). Sincef is nonnegative we conclude the same
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for g and hence /™) (X) = (h o g)(T(X)) whereh(t) = t*_is a convex and nondecreasing function. Therefore

h o gis convex andh o ¢)(T(X)) is a polyconvex function itk'. The arguments in Section 2 imply thais the
relaxation off? and that( f?)" = (f?)% = (f?)P°.

We now return to the specific examplg = dist” (-, SO(2)). The construction foy™ in X is based on a finite
laminater = Aéx, + (1 — X\)dx_ and on the support af the functionf coincides with the constant function
Y — 1 —2det X, see (5). Hence we obtain from the foregoing discussion, that

dist?(X,S0(2)) if [ XT|>1/v2,

> 2.
(1 —2det X)?/2  otherwise, p=2. (10)

T T /2
R0 = B0 = R0 = ()™ = {
This representation is very convenient for the subsequent discussion of minimizers with unbounded gradients. The
first formula for the relaxation of}, can be found irSilhavy (2001, 2007b) where general isotropic functions are
considered and a formula in terms of the singular values is presented.

We finally present an unbounded minimizer for the corresponding quadratic variational problem following Dolz-
mann et al. (2011). Le® = B(0, 1) be the unit disk in the plane. Minimize W&’Z(Q; R?) the energy

/ F(Vu)dz .
Jo

We assert that(z,y) = 1 (z, —y) In (2® + y?) is a minimizer. Note that this function appears already in Iwaniec
(1986). The function: satisfies

1 2 1 0 1 (2 —y*  2axy
Du(w,y)—Q(ln(r)—l—l)(O —1>+2r2< —2zy  x? — P

wherer? = 22 + y2. Thus we havéDu*t| = 1/1/2 a.e. onQ2 and hencey“(Du) = 1 — 2det Du on Q. Let
¢ € W,*(Q; R?) and observe that

| 5Dt Doy = |

A (1 —2det(Du+ Dg¢))dy = /

(1 —2det Du)dy = / F3(Du)dy.
Q Q

This chain of inequalities verifies thatis in fact a minimizer of the functional.

5 Conclusion

We presented sufficient conditions for uniform bounds on the deformation gradient and provided an example with
a logarithmic divergence which shows that the assertions are optimal. It is a natural question whether the coun-
terexample in Section 4 can be extended from the quadratic casegateith case. This remains a challenging
problem, but it seems that the representation (10) could provide a link between the quadratic and the superquadratic
case that could help to settle this demanding problem.
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