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Image Correlation-Based Identification of Fracture Parameters for
Structural Adhesives

R. Fedele, S. Sessa, N. Valoroso

We consider the identification problem of a cohesive model using kinematic full-field data obtained via digital
image correlation during the fracture test of an adhesive joint. A criterion is presented for selecting measurements
that exhibit optimal features for identification purposes. The proposed selection scheme is constructed using the
sensitivity information and its performances are evaluated at varying noise-to-signal ratio.

1 Introduction

The development of high-strength structural adhesives has created many new uses for adhesive joints and estab-
lished a need for additional theoretical and experimental investigation. Usually joints fail in the adhesive and, for
an assembly that is properly designed, failure takes placewithin the adhesive layer (cohesive failure) rather than at
the adhesive-substrate boundary. Predicting the behaviour of an adhesive joint is in general not an easy task due to
a number of uncertainties concerning the assumed stress distribution, magnitude and direction of applied loads as
well as changes in properties of adhesives during their service life. Because of that, design codes usually prescribe
higher safety factors according to the importance of applications. Joints may be loaded to failure in the design
configurations or in the form of test specimens and it is important to understand the response obtained by such
testing especially for the apparently simple configurations used in international standards, that can be conveniently
employed for data reduction. This is indeed a crucial point for design since the availability of material parame-
ters from experiments and the general coherence between the data reduction schemes and the numerical model in
which such parameters are used have a direct impact on the results of computations.

In this paper reference is made to a cohesive-zone model suitable to describe the nonlinear mechanical response of
adhesively bonded assemblies originally developed by Valoroso and Champaney (2006). For the identification of
the model parameters a global approach is adopted, in which the entire sample is modeled, as an alternative to the
local methodology presented by Fedele et al. (2009) where only a small part of the specimen surface was accounted
for. In particular, the data set for identification can be obtained via a Digital Image Correlation (DIC) procedure,
which provides at different instants during the experiment kinematic full-field measurements on the free surface
of the tested samples (Roux and Hild, 2008; Sutton et al., 2009). The main ingredients of DIC are summarized
in Figure 1 that refers to a Double Cantilever Beam (DCB) test monitored by a digital camera, namely: (i) the
reference (undeformed) image, with a pixel size of 19.5μm, (ii) the finite element grid used for image correlation
(element size is 12 pixel), and (iii) the reconstructed vertical displacement field.

The quantity and quality of experimental data obtained using DIC have to be carefully analysed. Actually, on one
side, especially in presence of large noise-to-signal ratio, the overall information turns out to be smeared over a
large number of data. On the other hand, a large set of noisy data with low sensitivities may contribute negatively
to the identification process, see, e.g., Bolzon et al. (2002), and, in the most favorable scenario, they unnecessarily
increase the problem size. In both cases, due to the accumulation of non-resolved residuals, uncertainty of kine-
matic measurements provided by DIC tends to increase with the number of processed digital images. Differently
from Valoroso and Fedele (2010), the information provided by sensitivity maps in this study are exploited in order
to formulate a selection criterion for extracting the optimal measurable quantities for identification purposes.

The paper is organized as follows. The constitutive model and the forward problem are presented in Section 2.
The inverse identification problem and the sensitivity analysis based on the direct differentiation method are then
recalled in Section 3. A selection criterion based on sensitivity maps is then presented in Section 4. The discussion
of results is outlined in Section 5 and concluding remarks are given in Section 6.
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Figure 1: Symmetric DCB test. (a) Reference image (b) Finite element discretization for Digital Image Correlation
(c) Reconstructed vertical displacement field. The inverted coordinates system is due to the imaging process.

2 Mechanical Model and Problem Set-Up

In this study reference is made to the one-dimensional (mode-I) version of the interface damage model proposed
by Valoroso and Champaney (2006) and summarized in the following. The constitutive equations for the interface
(normal) tractiont and the damage-driving forceY are

t = (1 − D)k〈[[u]]〉+ + k−〈[[u]]〉−

Y =
1
2
k〈[[u]]〉2+

(1)

where [[u]] is the displacement discontinuity in the direction normal to the interface,D ∈ [0, 1] is the scalar
damage variable and〈∙〉± the positive (negative) part of the argument; symbolsk andk− denote in turn undamaged
interface stiffnesses in tension and compression, the latter being understood as a penalty stiffness that enforces non-
interpenetrability.

196



The damage law can be specified by prescribing that the forceY is bounded by a suitable threshold valueȲ

Ȳ =






∫ τ

0

˙̄Y dτ = F (D) if D ∈ [0, 1[

max
τ∈[0,T ]

Y (τ) if D = 1
(2)

and using the unilateral conditions

Y − Ȳ (D) ≤ 0; Ḋ ≥ 0; Ḋ
(
Y − Ȳ (D)

)
= 0 (3)

to get damage irreversibility. The damage evolution is obtained by specifying the scalar functionF in Eq. (2) as a
monotonically increasing positive function of the argumentD, see Valoroso and Champaney (2006) for a detailed
account. In particular, the mode-I version of the interface model governed by an exponential traction-separation
relationship, see also Figure 2, is obtained using

F (D) = −Gc log(1 − D) (4)

whereGc ≥ 0 is the critical strain energy release rate, i.e. the total work of separation.
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Figure 2: Mode-I cohesive relationship between normal tractiont and displacement jump〈[[u]]〉+ locally at the
interface, generated by the target parametersk = 800 [N/mm3] andGc = 0.1 [N/mm].

In the present formulation the computation of the damage state only amounts to one function evaluation, since for
damage loading (̇D > 0) the value of the energy threshold̄Y equals that of the damage energy release rateY .
Accordingly, at each timeτ the damage variable can be obtained from

D(τ) = min

(

1, max
(ρ≤ τ)

{F−1(Y (ρ))}

)

(5)

The above described model depends on two material parameters collected in the vectorx :

x =

[
k

Gc

]

(6)

that will be identified on the basis of the conventional symmetric DCB test.

The geometry of the test considered in our computations is shown in Figure 3; the left-end of the structure (intact
part) is free, whilst on the right side two supports are prescribed and an increasing vertical displacement is imposed
at the end of the upper arm. The nonlinear response of the DCB during the debonding tests is described using the
damage model discussed in this section, which is taken as the constitutive law for zero-thickness interface elements
that have been implemented as a part of a customized version of the FE code FEAP, Taylor (2009). As usual,
the adherends are assumed to behave linearly elastically throughout the test that is simulated using plane strain
conditions.
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Figure 3: DCB test specimen. Geometry and finite element discretization.

3 Inverse problem and Sensitivity Maps

The relationship between the computed responseucomp (herein displacements) and the model parametersx , usu-
ally referred to as forward (or direct) operator, is denoted as:

ucomp = H(x ) (7)

The optimal parameterŝx are then obtained as a solution of a nonlinear programming problem in which an objec-
tive functionω is minimized, see Tarantola (1987). Such function quantifies the discrepancy between the measured
quantitiesumeas at all considered instants and those computed as in Eq. (7) via the mathematical model as a
function of the unknown parametersx . The data set of the identification process is a time-space sampling of dis-
placement components; in particular, the data vectorumeas will be constructed as any = (nτ × nu)-dimensional
vector containing thenu nodal displacements selected at each measurement instanti (i = 1 , . . . , nτ ). Such data
can be provided by a DIC procedure concerning the deformation process of a suitable Region of Interest (ROI) that
is monitored during the test (Fedele et al., 2009).

With this notation the inverse identification problem can be stated as follows:

x̂ = arg min
x

ω(x ) (8)

with ω(x ) the objective function

ω(x ) =

∣
∣
∣
∣

∣
∣
∣
∣S ∙

(
umeas − ucomp(x )

)
∣
∣
∣
∣

∣
∣
∣
∣

2

W

(9)

where the (squared)W-norm is defined as

∥
∥u
∥
∥2

W
= Wu ∙ u (10)

andW is a diagonal matrix used for data scaling whileS denotes a selection (Boolean) diagonal matrix, i.e. whose
entries are either 0 or 1, acting as a mask on the vector of all measurable quantities. The error covariance matrix at
the solution point is given by

Ĉx =

(

LT (x̂ ) Ĉ−1
u L(x̂ )

)−1

(11)

whereĈu is the (estimated) covariance matrix of the selected displacements

Ĉ−1
u = σ̂−2

u I (12)

σ̂u is the standard deviation of the data set, and

L(x ) =
∂u

∂x
(13)

the corresponding sensitivity, the superscript(∙)comp being omitted for notational simplicity. It is worth empha-
sizing that: i) the simplifying assumption of un-correlated measurements, implying a diagonal form for the noise
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covariance matrix in Eq. (12), turns out to be in safety favor since it corresponds to the worst scenario for identifi-
cation without cross information between data; ii) Equation (11) is derived from the Markov’ formula in presence
of an indefinitely uncertain (Bayesian) a priori information, by linearizing the forward operatorH(x ) in the neigh-
borhood of the solution point̂x .

Derivatives of the computed displacement fieldu with respect to the material parameters to identify are a key
ingredient of the present identification procedure. Actually, the sensitivity information is needed both for the
optimal design of the experiments, and to compute gradients required in the first-order minimization procedure.
The method adopted here for sensitivity computations is based on the Direct Differentiation of the governing
equations, and has been implemented in the same FE code employed for forward simulations. A detailed discussion
on this topic is outside the scope of this work and can be found elsewhere, see, e.g., Kleiber et al. (1997). We
here limit ourselves to recall that the displacement sensitivities can be obtained from the finite element residual
equations at thek-th loading step

R(k) = R(u (k)(x ), x ) = 0 (14)

via linearization with respect to the material parameters to get:

−
∂R(k)

∂u

[
∂u (k)

∂x

]

=

[
∂R(k)

∂x

]

(15)

In closing this section we recall that the computation of displacement sensitivities requires a little extra computing
time since the coefficient matrix for the above equation is the usual FE tangent matrix and that, for the DCB
problem at hand, the only non-zero contributions to the pseudo-load vector∂R(k)

∂x come from interface elements
since the adherends are linearly elastic. It is also worth noting that the same equation for sensitivity computations
also holds for nonlinear elasticity or holonomic elastic-plastic behaviour.

4 Space-Time Sampling of Measurable Quantities

In the following a selection criterion based on sensitivity maps is presented for the identification of mode-I cohesive
parameters resting on kinematic full-field data. Such criterion allows one to perform the space and time sampling
of the available nodal displacements that can be obtained via DIC, and then will specify the entries of Boolean
matrixS multiplying the data vector in Equation (9), to be 1 if the relevant datum is retained for identification, and
0 if not. The selection criterion is defined by a condition such as:

g(uv) = .TRUE. ⇒ Sv = 1 (16)

beingg a logical variable andv a set of indices relevant to the selected displacement componentsu.

Let P be a generic node of the adopted space discretization; at each time stationτm, let us consider the spatial
distribution of sensitivities within the ROI, namely the derivatives of a displacement componentui with respect to
a model parameterxj , being herei, j ∈ {1, 2}. The following thresholds can be defined:

lij = max
P∈ROI

(

max
m=1,...,nτ

∣
∣
∣
∣
∂ui

∂xj
(P, τm)

∣
∣
∣
∣

)

(17)

The inner maximization in Eq. (17) is performed in time, separately for each nodeP , i.e. the node location is
frozen. Thereafter, the outer maximization allows one to compare performance of different nodes inside the ROI.
It is worth noting that Equation (17) disregards any time-dependence of the threshold. According to this criterion, a
single displacement component at nodeQ and time stationτm, ui(Q, τm), is selected for the identification process
and included in the objective functionω, if the following condition is met (different fori = 1 or i = 2):

τ = τm , i = 1, 2 gi =
⋃

j=1,2

{ ∣∣
∣
∣
∂ui

∂xj
(Q, τm)

∣
∣
∣
∣ ≥ s ∙ lij

}

(18)

Symbol
⋃

denotes the logical operator OR, implying selection if at least one of the two inequalities in Eq. (18)
is satisfied, concerning derivatives of the same displacement component with respect to the model parameter
xj , j ∈ {1, 2}. In Eq. (18) the scalar coefficients ∈ [0, 1] allows the user to relax continuously the optimal-
ity thresholds. For the sake of simplicity the sames is assumed for all the coefficientslij . For s = 0, all the
available nodal displacements trivially satisfy Eq. (18) and they are all processed for identification. Obviously,
for s = 1 at least one displacement component is included in the objective function to minimize (along with other
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components at the same time stationτm equally sensitive, if any). It may also occur that, at a given time station
τm, no displacement components are selected, since they turn out to be not sufficiently sensitive to the interface
parameters. Anyway, both horizontal and vertical displacement components are selected, since distinct thresholds
are adopted for them. The proposed criterion in Eq. (18) is quite general and can be effectively applied even in
presence of plastic dissipation within the metal adherends. Moreover, it includes as a particular case also selection
criteria possibly based on Linear Elastic Fracture Mechanics (LEFM), namely derived under the assumption of
linear elastic response of the adherends. For instance, one could reasonably expect that the most sensitive mea-
surements at each instant of the test are located in a neighborhood of the crack tip, and therefore, in a weighted least
square approach, they could be given a weight proportional to(1/r), beingr the radial distance from the current
crack tip. Actually, the dependence of displacement sensitivities on1/r is fully caught by the discretized version
of a Green-like function, namely some properly defined elastic influence matrixG, based on the relationship (see
Bolzon et al., 2002):

∂u
∂x

= G ∙
∂Δ
∂x

(19)

where vectorΔ collects the displacement discontinuities at the interface nodes, i.e. the discretized counterpart of
quantities[[u]] in Eq. (1).

In order to compare a posteriori the information content of the selected data set, a strategy suitable to deal with
the fundamental tradeoff between bias and variance is introduced. To this purpose, let us consider the following
confidence ellipsoid in thenx-dimensional space of model parametersx :

E1−α =
∣
∣
∣
∣x − x̂

∣
∣
∣
∣2
Ĉ−1

x
− χ2

1−α, nx−1 = 0 (20)

where symbolχ2
1−α, nx−1 denotes the upper(1 − α)-quantile of the Chi-square probability density distribution

with (nx − 1) degrees of freedom. The estimated mean value vectorx̂ obtained from the identification process
represents the center of the ellipsoid, and the quadratic form is associated to the covariance matrix of the estimation
errorĈx , given as in Equation (11). Under the hypothesis of Gaussian distribution for vectorx , the true parameter
vector (nx-dimensional) is expected to belong to the ellipsoid Eq. (20) with a probability of1−α. In the following
reference is made to the confidence ellipse in Eq. (20) withα = 0.05 meaningful from an engineering standpoint,
denoted in what follows by symbolE0.95. It is well-known that the square lengths of the principal diameters
of the ellipsoid equal the eigenvalues of the current covariance matrixĈx and that the volume bounded by the
ellipsoid is proportional to the product of the lengths of the principal axes, i.e. to the determinant ofĈx . These
geometric properties allow one to graphically visualize the confidence level of the estimates and the effectiveness
of the identification procedure, see e.g. Tarantola (1987). However, from an engineering standpoint there is a
special need for a scalar performance index, to be dealt with easily. To this purpose, the constrained nonlinear
programming problem is considered:

x ∗ = arg max
x

{∥
∥x − x

∥
∥ | x ∈ E0.95

}

(21)

with ‖ ∙ ‖ the usual Euclidean norm. Vectorx ∗ represents the point belonging to the(1 − α)-confidence ellipsoid
which is the farthest from the target parameter vectorx , which is known a priori since pseudo-experimental data
are considered for the validation of the procedure. Therefore, the distance:

d0.95 =
∥
∥x ∗ − x

∥
∥ (22)

depends both on the location of the estimated parameters vector with respect to the correct parameter vectorx , and
on the estimated covariance matrix (i.e. on both its axes and their orientation). Using the parametric representation
of the ellipsoid, the problem defined by Eq. (21) is equivalent to a(nx − 1)-dimensional search, the maximisation
being performed in the definition domain of the bijective mapx = x (q). Hereinnx = 2, i.e., the confidence
domain is bounded by an ellipse, andq ∈ [0, 2π] is a scalar parameter. The error distance Eq. (22) can be
computed in the space of normalized parametersxj/xj , with a suitably scaled covariance matrix.

It is worth emphasizing what follows.

i) The error distance Eq. (22) allows one to quantify a posteriori the information content of a given data set
with reference to a specific model and parametrization.

ii) The above distance does not vanish if the bias is null, i.e. if the parameter vector is estimated correctly and
x̂ → x , since the relevant covariance matrix may be different from zero. On the contrary, the above distance
is null when also the error covariances vanishes, i.e.Ĉx → 0.
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iii) The proposed error distance allows one to easily compare the quality of identification results taking into
account both the mean value vector and the covariance matrix.

5 Results and Discussion

The results presented in this section refer to a DCB specimen whose size and geometry are shown in Figure 3.
The finite element model has been developed in a customized version of the FEAP code (Taylor, 2009). The
simulation is performed under displacement control and the adopted discretization consists of 520 enhanced as-
sumed strain elements for the bulk material and 115 zero-thickness interface elements along the joint. To generate
pseudo-experimentaldata, i.e. synthetic data for the validation stage, the mechanical response of properly designed
aluminum adherends is assumed to be linearly elastic, withE = 72.0GPa, ν = 0.3, and the cohesive parameters
object of the identification procedure are taken as:

x =

[
k

Gc

]

=

[
800 N/mm3

0.1 N/mm

]

(23)

At each time stationτm, m = 1, ..., nτ ≡ 400, displacements (amounting tonu = 1, 570) endowed by param-
eter sensitivities are provided by the FE code to the minimization algorithm, developed in a Matlab environment
(The MathWorks, 2009). The overall number of kinematic data here available amounts tony = 628, 000. To
simulate the scatter of experimental measurements, synthetic data have been corrupted by an additive Gaussian
noise with null mean and increasing standard deviationσ̂ = 1 , 10 , 50 , 100 μm kept constant during the test.
The stability of the inverse procedure can be assessed by comparing the resulting estimates to the correct valuesk
andGc which are known a priori. It is worth noting that, for the problem at hand, the considered range of noise
is extremely wide. In fact, uncertainty related to kinematic full-field measurements provided by 2D-DIC usually
amounts to about1/10 ÷ 1/20 of the pixel size, depending on the surface texture and image quality. Using a
standard digital camera with a 16 Megapixel sensor, a large part of the sample surface lies inside the field-of-view,
the estimated pixel size amounts to about 20μm, and in the worst scenario the uncertainty on reconstructed dis-
placement should not exceed1÷2 μm, as it can be envisaged in Figure 1-(c). Once that Boolean matrixS has been
specified, minimization of the objective functionω(x ) in Eq. (9) is performed through a two-step strategy: first,
a zero-order, direct-search simplex algorithm; ii) thereafter, a first-order gradient-based, interior-point trust region
algorithm, suitable for large-scale problems. The former is suitable to deal with the possible presence of local
minima, and the latter is employed when the current estimates are definitely in the neighborhood of the minimum.
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Figure 4: Data sampling with threshold coefficients = 0.3. Node locations are evidenced by symbol+; nodes
selected by the proposed strategy at different instants are marked by rhombs.
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The selection performed by the proposed criterion is sketched in Figure 4, where the nodes of the adopted finite
element discretization are identified by a plus symbol, and nodes at which a displacement component is retained for
identification are highlighted by rhombs. Performance index in Eq. (22) is shown in Figure 5 as a function of the
number of data processed. It can be noticed that the error distance stabilizes starting from a critical size of sampled
data, which exhibits also a small dependence on the level of data noise. As expected, an increase of noise level
yields higher estimation errors: this fact can be easily recognized since, at least for the considered exercises, plots
relevant to different noise levels do not intersect each other. Therefore, any increase of the sample size besides the
critical one, turns out to be useless for identification purposes. The errord0.95 resulting for samples size exceeding
thecritical one, can be regarded as anasymptoticerror, since it can be achieved rigorously whenny → ∞. As
expected, such error distance increases with the intensity of data noise. On the basis of these preliminary results, it
clearly appears that the number of kinematic measurements required to achieve accurate parameter estimates turns
out to be quite large compared to conventional data used for parameter identification, see e.g. Bolzon et al. (2002).
In particular, for all considered noise levels, the proposed selection criterion exhibits excellent performances also
for a narrow data set, namely less than15, 000.
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Figure 5: Error distanced0.95 vs number of processed data, by increasing the noise standard deviationσ̂.

Figure 6 shows the error ellipsesE0.95 defined by Eq. (20) as a function of the processed data set, at varying
threshold coefficients. It can be noted that, for a low noise level (σ = 1 μm in Fig. 6-a), the ellipse axes exhibit
comparable lengths, since in this case the estimation uncertainties concerning the two parameters are of the same
magnitude. On the contrary, for higher noise (σ = 100 μm in Figure 6-b) the differences in the estimation of the
two parameters become more significant, and the area delimited by the ellipses is now significantly larger than in
the previous case. As the size of processed data increases, the centers of the ellipses, represented by the parameter
mean value estimates, translate towards the solution point, whilst the directions and lengths of the principal axes
change. As expected, in presence of a severe noise level, the normalised uncertainty related to parameterGc turns
out to be at least two orders of magnitude lower than the one relevant to parameterk. Actually, as already discussed
in Valoroso and Fedele (2010), parameterGc represents in a sense an integral measure of the interface relationship
since it represents the energy required to form a new traction-free surface of unit area, whilst the tangent stiffness
at the origink, governing the local shape of the cohesive law, has to be regarded as a more localized property in
that it only affects the local stress distribution within the cohesive zone but not the local stress resultant.

6 Concluding Remarks

In order to get effective simulations up to failure of adhesively bonded assemblies, rigorous calibration procedures
should be adopted, based on accurate measurements of local damage phenomena. Nowadays no-contact, full-
field techniques make available an enormous quantity of data. When dealing with such huge information, two
alternatives can be envisaged:
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Figure 6: Error ellipses in the normalised parameter space as a function of the processed sample size (at varying
threshold coefficients). Standard deviation of data noise equal to: (a)σ = 1 μm and (b)σ = 100μm.

i) use of suitable technical solutions capable of dealing with large amounts of data simultaneously and at high
speed;

ii) implementation of strategies for data selection, in order to discard those information that are either redundant
or irrelevant for the identification process.

In this paper a criterion has been presented for selecting, within the set of kinematic measurements obtained during
a mode-I debonding test, data with the highest information content for identification purposes. The proposed crite-
rion relies upon sensitivity maps, which can be made available at a negligible computational cost by implementing
the direct differentiation method in the same finite element code used for forward analyses. It is worth emphasizing
that such criterion can be applied also in the presence of nonlinear behaviour of the metal adherends, and therefore
the present approach turns out to be more general with respect to other strategies apparently more intuitive based
upon LEFM concepts. Data samples with the same size but selected according to different criteria, herein not doc-
umented for brevity, can lead to identification results markedly different; this circumstance motivates the search for
an optimal selection strategy. In particular, the results presented in this paper show that, in presence of relatively
small data sets, the quality of identification cannot be derived exclusively on the basis of the processed sample size
and of the noise standard deviationσ̂, but it can better assessed using as additional information their sensitivity
distribution in space and time. Only when the numberny of processed data is very large, i.e. mathematically for
ny → ∞ and practically some hundreds of thousands data for the problem in point, the actual distribution of pa-
rameter sensitivities plays a negligible role and the quality of processed data for identification can be satisfactorily
described by average features, such as their global number and uniform standard deviation.
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In conclusion, the main results of the present study can be summarized as follows. The minimum number of data
required to achieve a satisfactory estimation of the model parameters, i.e. with errors close in percentage to the
asymptoticvalues, strongly depends on the noise level. Actually, when the standard deviation of white noise is
increased, one needs data samples progressively wider in order to achieve the stabilization. This circumstance
appears to have a sound basis, since in presence of high noise levels the information are typically atomized over
the entire data set, so that each datum possesses only a small part of it. Furthermore, the estimation accuracy
strongly depends from the adopted selection criterion, namely the quality of estimates based on data samples with
an identical size can vary markedly depending on the adopted selection strategy. In particular, on the basis of
the identification exercises carried out by the authors, the selection criterion presented in the paper exhibits good
performances also in presence of relatively small data samples.

The present study represents a contribution for defining a road map to follow in order to increase the robustness
of identification procedures without necessarily increasing the number of processed data. When one expands the
number of kinematic data, which is directly related to the number of digital images to be analyzed, both the com-
putational cost of the image correlation procedure and the uncertainty relevant to the reconstructed displacement
fields are expected to increase. Unlike the number of acquired images, which is controllable, their space resolution
depends by the adopted digital sensor on one hand and on the natural or artificial surface texture of the monitored
specimens on the other one. And these factors cannot be arbitrarily varied by the user.
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