
TECHNISCHE MECHANIK,32, 2-5, (2012), 227 – 237

submitted: November 1, 2011

Graphical Representations of the Regions of Rank-One-Convexity of some
Strain Energies

R. Glüge, J. Kalisch

Isotropic elastic energies which are quadratic in the strain measures of the Seth family are known not to be rank-
one-convex in the entire domain of invertible deformation gradients with positive determinant. Therefore, they are
in principle capable of displaying a laminated microstructure. Nevertheless, they are commonly used for standard
elastic solids. In general one does not observe a microstructure evolution due to the fact that the solution is not
sought outside of the region of rank-one-convexity. Consequently, the question for the boundaries of the region
of rank-one-convexity arises. We address this question by applying a set of necessary and sufficient conditions
for rank-one-convexity to the mentioned elastic energies,and give graphical representations for the regions of
rank-one-convexity.

1 Introduction

The modelling of elasticity of solids has reached a high level of sophistication, coming a long way from Hooke’s
observation that the force is proportional to the strain (1660) and Green’s existence theorem (1839, Ferrers (1871))
of an elastic energyw. The latter is the starting point for most of the approaches to elasticity. However, several
restrictions have to be imposed onw, both from purely mathematical and physical considerations. Starting from
the theory of hyperelastic simple materials, i.e.,w depends only on the deformation gradientF , it is imposed that

• w has to be quasiconvex inF (Morrey, 1952),

• w has satisfy growth conditions, also known as coercivity,

• w should depend only throughC = F
T
F = U

2 on F , in order to makew independent of rotations
(material objectivity),

• w should be positive for any deformation.

The first two conditions are necessary for the existence of a unique solution of the elastostatic boundary value
problem. The third and fourth condition are imposed due to physical considerations. Unfortunately, it is very hard
to change the order in which the constraints are imposed, since the linearity ofF in the position vectorx is an
important property needed for the examination of the existence and uniqueness of a solution to the elastostatic
boundary value problem.

Since it is difficult to verify the quasiconvexity of an elastic energy, other notions of convexity have been examined,
e.g., by Ball (1977). Polyconvexity and rank-one-convexity proved to be more practical. Unlike quasiconvexity, a
functionw(F ) can be checked pointwise for specificF for poly- and rank-one-convexity. Moreover, both appear
to be very close to quasiconvexity, where the implications

polyconvexity⇒ quasiconvexity⇒ rank-one-convexity

hold. Rank-one-convexity is interesting for two reasons:

• It is related to the kinematic compatibility condition. The deformation gradient can only undergo rank-one
jumps, i.e.,

F
+ − F

− = ab, a, b ∈ R3\{0}. (1)
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This ensures that, at singular surfaces with the normal vector b, the body does not open or overlap with itself.
Poly- and quasiconvexity can also be linked to physical notions, namely to different stability criteria (Ball
and Marsden, 1984). However, the kinematic compatibility condition is more elementary.

• It appears to be very close to quasiconvexity. There are examples of elastic energies which are rank-one-
convex but not quasiconvex, firstly established by Sverak (1992), but these strain energies are not rotationally
invariant. It is still unknown whether a rotational invariant rank-one-convex strain energy which is not
quasiconvex exists (Šilhav́y, 2002).

The failure of polyconvexity has been demonstrated for the isotropic St. Venant-Kirchhoff elastic energy (Raoult,
1986), and for isotropic linear stress strain relations based on the logarithmic strains by Bruhns et al. (2001).
Bruhns et al. also gave lower bounds for the limits of the region of rank-one-convexity and state that, for modelling
phenomena with discontinuous deformation gradients, it may be important to know the exact locations of these
limits. In Bertram et al. (2007), all energy functions that are quadratic in Seth strain measures are shown to
violate rank-one-convexity for one deformation state or another. However, since these states usually lie outside the
domain within which a solution is sought, the functions are applied without problems in commercial finite element
software. For example the FE system ABAQUS 6.7-1 employs an elastic law relating the Cauchy stresses linearly
to the logarithmic strains in the large strain setting. (Although this information is not given in the documentation,
it can be found easily in a uniaxial tension test.) Thus, before applying these laws to large deformations one should
ask for the limit of the region of rank-one-convexity.

Notation. Vectors are symbolized by lowercase bold letters, second order tensors by uppercase bold letters. The
tensor productab is defined by(ab) · c = (b · c)a. The dot represents a simple contraction, the number of dots
corresponds to the number of contractions. Indices larger than 3 have to be takenmodulo3. The deformation
gradient and its polar decomposition areF = R · U , U =

√
C, C = F

T · F . The eigenvalues ofU , resp. the
singular values ofF , are denoted byλ1,2,3. The strain energy is denoted byw, the indexing ofw corresponds to
the partial derivatives w.r.t.λ1,2,3.

2 Necessary and Sufficient Conditions for Rank-One-Convexity

Unfortunately, the full set of necessary and sufficient conditions for rank-one-convexity is known only for isotropic
(Rosakis, 1990;̌Silhav́y, 1999; Dacorogna, 2001) and incompressible isotropic (Zee and Sternberg, 1983) strain
energies. The starting point for the derivation is

0 ≤ (ab) · · ∂
2w

∂F 2
· ·(ab) for all a ∈ R

3, b ∈ R
3. (2)

Further, in the case of incompressibility,a andb must obey

b · F−1 · a = 0 (3)

due to the fact that the jump ofF at a singular surface must be volume preserving. Limiting the domain ofa or b
by the latter inequality, the restrictions for rank-one-convexity are less strict in the case of incompressibility. Due
to the isotropy,w depends only on the singular values ofF .

Eliminating the quantifiers in eq. (2) is a laborious work. One way of doing this is

• normalizea andb

• determine∂2w/∂F 2 atF = U (the substitutiona = R · ã is always possible)

• carry out the contractions withb, which gives the acoustic tensorA

• assure positive definiteness ofA

The last step can be done by assuring the positivity of the principle minors. In doing so, one arrives at the following
set of inequalities:

• The first principle minor gives the separate convexity conditions

0 < wii, (no sum) (4)
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Figure 1: Scheme for graphical representation. For later reference, some characteristic strain-driven tests
are depicted, namely a simple shear test (dashed), isochoric extension/compression (dotted), uniaxial exten-
sion/compression without lateral straining (dash-dot), pure volume change (solid line).

and the Baker-Ericksen-inequalities

0 <
wiλi − wjλj

λi − λj

, i 6= j. (5)

• The second principle minor gives inequalities involving mixed derivatives

0 <m±

ij +
√
wiiwjj , i 6= j (6)

m±

ij =± wij +
wi −±wj

λi −±λj

. (7)

• The third principle minor gives inequalities involving mixed derivatives

0 <m±

12

√
w33 +m±

13

√
w22 +m±

23

√
w11 +

√
w11w22w33, (8)

which must be evaluated for the combinations{m+
12,m

+
13,m

+
23}, {m−

12,m
+
13,m

−

23}, {m+
12,m

−

13,m
−

23}, and
{m−

12,m
−

13,m
+
23}.

These results can be found in Dacorogna (2001). For the incompressible case, a similar procedure is possible.
However, one has to take the derivative with respect toF on the subspacedet(F ) = 1, and incorporate eq. (3).

3 Graphical Representations of the Regions of Rank-One-Convexity

Using the inequalities (4, 5, 6, 8), we are able to determine the regions of rank-one-convexity.w(λ1, λ2, λ3) is
symmetric w.r.t. index permutations. Therefore, the plotting range can be restricted by the orderingλ1 ≤ λ2 ≤ λ3,
which is achieved by introducing the parametersq1 = λ1/λ2 andq2 = λ2/λ3. The graphical representations are
given in terms of0 ≤ q1 ≤ 1, 0 ≤ q2 ≤ 1, 0 ≤ λ3 ≤ 4. They have been constructed with the help of a computer
algebra system. The figure layout is the same for all graphics. On the left, a 3D-representation is given, where the
non-region of rank-one-convexity is filled. The lower back corner corresponds to the origin of the coordinatesq1,
q2, λ3, and the upper front corner toq1 = 1, q2 = 1, λ3 = 4, see Fig. 1. Additionally, the region of relatively
small strains

∑

i(1 − λi)
2 < 0.22 is represented. On the right, a contour plot ofλ3 overλ2/λ3 (the horizontal

direction) andλ1/λ2 (the vertical direction) is given, which is more suitable for extracting data. It corresponds to
a projection of the rank-one-convex boundary into theq1–q2–plane.

3.1 Elastic Energies which are Quadratic in Seth Strain Measures

In the case of a linear and isotropic stress strain relation,the elastic law and hence the elastic energy are completely
determined by the choice of the strain measure and two elasticity constants. The elastic strain energy is then given

229



by

w =

(

µ+
λ

2

)

(E2
1 + E2

2 + E2
3) + λ(E1E2 + E2E3 + E1E3) (9)

or normalized

w = E2
1 + E2

2 + E2
3 + β(E1E2 + E2E3 + E1E3) β :=

λ

µ+ λ
2

(10)

with Lamé’s constantsλ, µ and the eigenvaluesEi of the strain tensor. Laḿe’s constants are related to the bulk-
and shear modulusK andG by

µ = G λ = K − 2

3
G. (11)

The Legendre-Hadamard condition is ensured byK > 0, G > 0, which allows to determine the range for validβ,

−1 < β < 2. (12)

One can writeβ as a function of Poisson’s ratioν

β =
2ν

1− ν
(13)

where−1 < ν < 1

2
is admissible. Usually, the strains are defined as isotropicfunctions of the material stretching

E =
∑

i

Em(λi)uiui. (14)

The functionE(λ) defines the strain measure. Typically one uses a Seth strain,for which

Em(λ) :=
1

m
(λm − 1), m 6= 0, (15)

E0(λ) := ln(λ), (16)

hold. For example,m = −2 corresponds to the Piola-Almansi strain. In the 1-dimensional homogeneous case,
m = −1 corresponds toε = ∆l/l, i.e., one relates the length change to the actual (true) length. The casem = 0
corresponds to the logarithmic (Hencky) strain which is also referred to as the true strain. In the 1-dimensional
homogeneous case,m = 1 corresponds toε = ∆l/l0, i.e., one relates the length change to the reference length.
Thus, it is referred to as the nominal strain, engineering strain or Biot strain. The casem = 2 leads to the the
Green, Lagrange or Finger strain.

In Figs. 2 to 4, the regions of rank-one-convexity form = −2,−1, 0, 1, 2 andν = 0, 0.1, 0.2, 0.3, 0.4, 0.5 are
plotted. It is found in general that forν → 0.5, the limit of the region of rank-one-convexity approaches the
unstretched stateλ1 = λ2 = λ3 = 1, independent ofm. Further, form ≤ 0, one can impose arbitrarily large
compressive strains without violating rank-one-convexity, while for 0 < m, one can impose an arbitrarily large
volume increase without violating rank-one-convexity.

The casesm = 0, m = 1 andm = 2 are most interesting, and examined in detail. It is found that

• for m = 0, eq. 5 imposes no restrictions (the right hand side is positive for all strains and approaches 0 as
ν → 0.5). eq. 8 is globally weaker than eq. 4 and eq. 6 together.

• for m = 1, eq. 4 imposes no restrictions (the right hand side is just 2). Eq. eq. 5 and eq. 6 restrict the
very same domain, which is given by0 < β(λi − 2) + 2(λi+1 + λi+2 − 1). The latter approaches eq. 8 as
ν → 0.5. Eq. 8 is globally weaker than eq. 5 (resp. eq. 6).

• for m = 2, none of eq. 4, eq. 5 or eq. 6 includes the other one globally. However, they include together eq.
6.
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(a) m = −2, ν = 0.0
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(b) m = −1, ν = 0.0
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(c) m = −2, ν = 0.2
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(d) m = −1, ν = 0.2
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(e) m = −2, ν = 0.4
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(f) m = −1, ν = 0.4

Figure 2: Regions of rank-one-convexity form = −2, m = −1 andν = 0.0, ν = 0.2, ν = 0.4.
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(a) m = 0, ν = 0
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(b) m = 0, ν = 0.2
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(c) m = 0, ν = 0.3
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(d) m = 0, ν = 0.4

Figure 3: Regions of rank-one-convexity form = 0 andν = 0.0, ν = 0.2, ν = 0.3, ν = 0.4.

3.2 Ciarlet-Geymonat Strain Energy

The Ciarlet-Geymonat strain energy (Ciarlet and Geymonat,1982) is conveniently denoted in terms of principal
invariants ofB,

wCG =
λ

4
(IIIB − lnIIIB − 1) +

µ

2
(IB − lnIIIB − 3) (17)

with IIIB = (λ1λ2λ3)
2 andIB = λ2

1 +λ2
2 +λ2

3 and Laḿe’s constants (Simo and Hughes, 1998;?). The original
function contains six material parameters (Ciarlet (1988), Exercise 4.23), which are reduced by approaching a
linearly elastic isotropic material withλ andµ asF → I. It is derived from the family of Ogden materials, but
with the restriction to be polyconvex for positive values ofλ andµ (Ciarlet (1988), page 185). Thus,wCG is
rank-one-convex in the entire domain of positiveλ1, λ2, λ3 if ν ≥ 0. We can normalizewCG by multiplying with
2/µ, where we are able to replace

λ

2µ
=

ν

1− 2ν
. (18)

This allows, similar to the preceding section, to parametrize the range of valid material parameters byν on the
normalized strain energy. For negativeν, the region of rank-one-convexity is bounded. It is smallest for ν = −1,
for which a graphical representation is given in Fig. 5(a).

3.3 Blatz-Ko Strain Energy

The strain energy of Blatz and Ko is of the form

wBlatz−Ko =
µf

2

[

IB − 3 +
2µ

λ
(III

−
λ
µ

B
− 1)

]

+
µ(1− f)

2

[

I
B

−1 − 3 +
2µ

λ
(III

λ
µ

B
− 1)

]

, (19)
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(b) m = 2, ν = 0.0
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(c) m = 1, ν = 0.2
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Figure 4: Regions of rank-one-convexity form = 1, m = 2 andν = 0.0, ν = 0.2, ν = 0.4.
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(a) Ciarlet-Geymonat strain energy atν = −1
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(b) Reduced Blatz-Ko-strain energy (c)

Figure 5: Region of rank-one-convexity of the Ciarlet-Geymonat strain energy atν = −1 (a), the reduced Blatz-Ko
strain energy (b) and Attard’s strain energy (c) for the material parameters of eq. (22).

with I
B

−1 = λ−2
1 + λ−2

2 + λ−2
3 . Compared to its original form (Blatz and Ko (1962), eq. 50) the expression

(1− 2ν)/ν is replaced by2µ/λ (eq. 18) andJ3 is replaced by
√
IIIB. By fixing f = 0 andλ/µ = 1 (ν = 0.25)

it is reduced to

w∗

Blatz−Ko =
µ

2
(I

B
−1 + 2

√

IIIB − 5) =
µ

2
(λ−2

1 + λ−2
2 + λ−2

3 + 2λ1λ2λ3 − 5) (20)

see Blatz and Ko (1962) eq. (67). The strain energyw∗

Blatz−Ko is used to model polymeric foams (Horgan, 1996).
However, Horgan noted that strong ellipticity is lost in case of 0 ≤ f < 1, i.e.,w∗

Blatz−Ko displays loss of rank-
one-convexity. Inw∗

Blatz−Ko, there is no material parameter which affects the region of rank-one-convexity, i.e.,
a single graph is sufficient (Fig.5(b)). It is found thatw∗

Blatz−Ko does not fail to be rank-one-convex under purely
volumetric deformations. To be more specific, rank-one-convexity is lost only ifλi/λj < 0.2688.

3.4 Attard’s Strain Energy

Attard (2003) proposed a strain energy of the form

wAttard =

N
∑

n=1

(

An

2n
(ICn − 3) +

Bn

2n
(I

C
−n − 3)

)

+

M
∑

m=1

Cm

2m
(lnJ)2m − lnJ

N
∑

n=1

(An −Bn). (21)

The first sum represents a shape-change energy contribution, the second and third sum incorporate the dependence
of wAttard on volume changes. Usually, nonlinear strain energies employ more than two material parameters, i.e.,
it is a tedious task to make a parameter-study of the regions of rank-one-convexity. Therefore, we examine the
rank-one-convexity for only one of the resultant strain energies, obtained by adopting Attard’s strain energy to a
rubber material. The nonzero material parameters (Attard (2003) eq. 69) are

A1 = 0.361MPa B1 = 0.22MPa A2 = 0.1MPa C1 = 2000MPa. (22)

The region of rank-one-convexity is, unlike the other examples presented here, not representable by a single pro-
jection of the rank-one-convex boundary into theλ2/λ3–λ1/λ2–plane (Fig. 5(c)). Characteristic points for the
loss of rank-one-convexity are eigenvalues very close to zero andλ1,2,3 ≈ 1.4.

4 Failure of Rank-One-Convexity in Characteristic Tests

For completeness, we have examined five characteristic tests, namely

• simple shear:λ1 =
√

1 + γ2/2− γ
√

4 + γ2/2, λ2 = 1, λ3 =
√

1 + γ2/2 + γ
√

4 + γ2/2,

• uniaxial stress state:λ1 = u, λ2 andλ3 fromw2 = w3 = 0,

• isochoric tension/compression:λ1 = u, λ2 = λ3 = 1/
√
u,

• simple tension/compression:λ1 = u, λ2 = λ3 = 1,

• dilatation:λ1 = λ2 = λ3 = u,
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m ν Simple Shear Uniax. Stress Isochor. T/C Simple T/C Dilatation

0.0 γ < 0.496 0.436 < u < 1.29 0.657 < u < 1.289 0.436 < u < 1.29 0 < u < 1.29
0.1 γ < 0.55 0.513 < u < 1.296 0.626 < u < 1.33 0.394 < u < 1.29 0 < u < 1.243

-2 0.2 γ < 0.641 0.569 < u < 1.31 0.578 < u < 1.403 0.351 < u < 1.286 0 < u < 1.201
0.3 γ < 0.861 0.612 < u < 1.332 0.506 < u < 1.675 0.31 < u < 1.265 0 < u < 1.143
0.4 γ < 1.29 0.646 < u < 1.364 0.432 < u < 2.337 0.271 < u < 1.185 0 < u < 1.069

0.0 γ < 0.768 0.33 < u < 1.5 0.548 < u < 1.494 0.33 < u < 1.5 0 < u < 1.5
0.1 γ < 0.827 0.39 < u < 1.511 0.529 < u < 1.559 0.302 < u < 1.5 0 < u < 1.409

-1 0.2 γ < 0.909 0.439 < u < 1.544 0.503 < u < 1.655 0.272 < u < 1.498 0 < u < 1.333
0.3 γ < 1.043 0.48 < u < 1.595 0.462 < u < 1.837 0.239 < u < 1.478 0 < u < 1.269
0.4 γ < 1.366 0.514 < u < 1.67 0.391 < u < 2.434 0.203 < u < 1.368 0 < u < 1.142

0.0 γ < 1.849 0.141 < u < 2.718 0.303 < u < 2.638 0.141 < u < 2.718 0 < u < 2.718
0.1 γ < 1.941 0.165 < u < 2.78 0.294 < u < 2.829 0.133 < u < 2.718 0 < u < 2.266

0 0.2 γ < 2.061 0.187 < u < 3.031 0.283 < u < 3.074 0.124 < u < 2.718 0 < u < 1.947
0.3 γ < 2.226 0.204 < u < 3.469 0.268 < u < 3.411 0.114 < u < 2.718 0 < u < 1.713
0.4 γ < 2.485 0.215 < u < 4.081 0.245 < u < 3.932 0.103 < u < 2.718 0 < u < 1.535

0.0 γ < ∞ 0 < u < ∞ 0 < u < 4.0 0 < u < ∞ 0.501 < u < ∞
0.1 γ < ∞ 0 < u < 11.0 0 < u < ∞ 0.112 < u < ∞ 0.579 < u < ∞

1 0.2 γ < ∞ 0 < u < 5.999 0 < u < ∞ 0.251 < u < ∞ 0.667 < u < ∞
0.3 γ < ∞ 0 < u < 4.333 0 < u < ∞ 0.429 < u < ∞ 0.765 < u < ∞
0.4 γ < ∞ 0 < u < 3.5 0 < u < ∞ 0.667 < u < ∞ 0.876 < u < ∞
0.0 γ < 1.121 0.586 < u < ∞ 0.578 < u < 2.0 0.586 < u < ∞ 0.708 < u < ∞
0.1 γ < ∞ 0.592 < u < ∞ 0.513 < u < ∞ 0.603 < u < ∞ 0.761 < u < ∞

2 0.2 γ < ∞ 0.594 < u < ∞ 0 < u < ∞ 0.639 < u < ∞ 0.817 < u < ∞
0.3 γ < ∞ 0.593 < u < ∞ 0 < u < ∞ 0.706 < u < ∞ 0.875 < u < ∞
0.4 γ < ∞ 0.588 < u < ∞ 0 < u < ∞ 0.825 < u < ∞ 0.936 < u < ∞

Blatz-Ko γ <
√
2 0.349 < u < 2.867 0.416 < u < 2.406 0.268 < u < 3.732 0 < u < ∞

Table 1: Rank-one-convex ranges of characteristic tests for the Hookean strain energies and the reduced Blatz-Ko
strain energy.

whereu andγ are process parameters. Note that the eigenvalues in the list above are not ordered. Table 1 contains
the rank-one-convex ranges for the characteristic tests for the Hookean strain energies and Blatz-Ko’s reduced
strain energy.

5 Summary

We examined the strain energies which are quadratic in the generalized Seth strain measures. It has been found
that

• in all cases, in the incompressible limit, the rank-one-convex boundary approaches the undeformed state,

• for Seth strains with negative exponent and the logarithmic strains, a compressive volume change does not
lead to the loss of rank-one-convexity,

• for Seth strains with positive exponent, a volume expansion does not lead to the loss of rank-one-convexity.

From the Hookean strain energies which have been examined, the one which is quadratic in the nominal strain
(m = 1) displayed the largest rank-one-convex ranges in characteristic tests.

We also examined three compressible non-Hookean strain energies, namely Ciarlet-Geymonat’s, Blatz-Ko’s and
Attard’s strain energy.

We confirmed that the two-parameter Ciarlet-Geymonat strain energy has no rank-one-convex limit for positive
Poisson’s ratios. It is worth noting that Ciarlet-Geymonat’s strain energy and the corresponding Cauchy stresses
are given byσ = (µ(B − I) + λ(J2 − 1)/2I)/J , i.e. no explicit calculation ofU orV is required.
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The reduced Blatz-Ko strain energy (withν = 0.25) fails to be rank-one-convex if and only ifλi/λj < 0.2688,
i.e., no rank-one-convex failure under purely dilatoricaldeformations is observed. In the characteristic tests, the
rank-one-convex range of the Blatz-Ko strain energy turns out to be similar to those Hookean strain energies.

No specific conclusions could be drawn for Attard’s strain energy, except for that for more complicated strain
energies the regions of rank-one-convexity may have a complex shape in the space of the singular values ofF .

We observed that, out of the set of necessary and sufficient conditions that we used here, the eq. (8) are always
weaker than the restrictions eq. (4, 5, 6) together, and thushad no impact for the strain energies under consideration.
At most, this restriction coincided with one of the others. However, this is due to the specific strain energies under
consideration, and does not hold in general.
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