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Graphical Representations of the Regions of Rank-One-Convexity of some
Strain Energies

R. Gluge, J. Kalisch

Isotropic elastic energies which are quadratic in the straieasures of the Seth family are known not to be rank-
one-convex in the entire domain of invertible deformaticadgents with positive determinant. Therefore, they are
in principle capable of displaying a laminated microstruet. Nevertheless, they are commonly used for standard
elastic solids. In general one does not observe a microgiracvolution due to the fact that the solution is not
sought outside of the region of rank-one-convexity. Comsetly, the question for the boundaries of the region
of rank-one-convexity arises. We address this questionppjyeg a set of necessary and sufficient conditions
for rank-one-convexity to the mentioned elastic energa@sl give graphical representations for the regions of
rank-one-convexity.

1 Introduction

The modelling of elasticity of solids has reached a highlle¥sophistication, coming a long way from Hooke’s
observation that the force is proportional to the strair6@nd Green’s existence theorem (1839, Ferrers (1871))
of an elastic energw. The latter is the starting point for most of the approacheslasticity. However, several
restrictions have to be imposed an both from purely mathematical and physical consideratidtarting from

the theory of hyperelastic simple materials, ive gepends only on the deformation gradiéntit is imposed that

« w has to be quasiconvex ifi (Morrey, 1952),
« w has satisfy growth conditions, also known as coercivity,

« w should depend only througt’ = F”F = U? on F, in order to makew independent of rotations
(material objectivity),

« w should be positive for any deformation.

The first two conditions are necessary for the existence afigque solution of the elastostatic boundary value
problem. The third and fourth condition are imposed due tgsfaal considerations. Unfortunately, it is very hard
to change the order in which the constraints are imposede shre linearity ofF’ in the position vector is an
important property needed for the examination of the eristeand uniqueness of a solution to the elastostatic
boundary value problem.

Since it is difficult to verify the quasiconvexity of an eli@stnergy, other notions of convexity have been examined,
e.g., by Ball (1977). Polyconvexity and rank-one-conwegitoved to be more practical. Unlike quasiconvexity, a
functionw(F') can be checked pointwise for specifitfor poly- and rank-one-convexity. Moreover, both appear
to be very close to quasiconvexity, where the implications

polyconvexity=- quasiconvexity- rank-one-convexity

hold. Rank-one-convexity is interesting for two reasons:

« Itis related to the kinematic compatibility condition. @ deformation gradient can only undergo rank-one
jumps, i.e.,

F" — F~ =ab, a,b € R*\{0}. 1)
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This ensures that, at singular surfaces with the normabvécthe body does not open or overlap with itself.
Poly- and quasiconvexity can also be linked to physicalamstj namely to different stability criteria (Ball
and Marsden, 1984). However, the kinematic compatibilitydition is more elementary.

« It appears to be very close to quasiconvexity. There arenples of elastic energies which are rank-one-
convex but not quasiconvex, firstly established by Sver@RZ2}, but these strain energies are not rotationally
invariant. It is still unknown whether a rotational invartarank-one-convex strain energy which is not
quasiconvex existsS{lhavy, 2002).

The failure of polyconvexity has been demonstrated for so&ropic St. Venant-Kirchhoff elastic energy (Raoult,
1986), and for isotropic linear stress strain relationsedasn the logarithmic strains by Bruhns et al. (2001).
Bruhns et al. also gave lower bounds for the limits of theaegif rank-one-convexity and state that, for modelling
phenomena with discontinuous deformation gradients, if beimportant to know the exact locations of these
limits. In Bertram et al. (2007), all energy functions tha¢ @uadratic in Seth strain measures are shown to
violate rank-one-convexity for one deformation state athar. However, since these states usually lie outside the
domain within which a solution is sought, the functions grpleed without problems in commercial finite element
software. For example the FE system ABAQUS 6.7-1 employdastie law relating the Cauchy stresses linearly
to the logarithmic strains in the large strain setting. aligh this information is not given in the documentation,
it can be found easily in a uniaxial tension test.) Thus, leeépplying these laws to large deformations one should
ask for the limit of the region of rank-one-convexity.

Notation. Vectors are symbolized by lowercase bold letters, secotkeraensors by uppercase bold letters. The
tensor productib is defined by(ab) - ¢ = (b - ¢)a. The dot represents a simple contraction, the number of dots
corresponds to the number of contractions. Indices latgam 8 have to be takemodulo3. The deformation
gradient and its polar decomposition d&e= R- U, U = +/C, C = F' . F. The eigenvalues df/, resp. the
singular values of", are denoted by, 2 5. The strain energy is denoted by the indexing ofw corresponds to
the partial derivatives w.r.ty; o 3.

2 Necessary and Sufficient Conditions for Rank-One-Conveti

Unfortunately, the full set of necessary and sufficient dtois for rank-one-convexity is known only for isotropic
(Rosakis, 1990Silhawy, 1999; Dacorogna, 2001) and incompressible isotropie @w® Sternberg, 1983) strain
energies. The starting point for the derivation is

0w 3 3
0< (ab)--——5 - -(ab) forall a R’ beR". )
OF
Further, in the case of incompressibilityandb must obey
b-F'.a=0 (3)

due to the fact that the jump d at a singular surface must be volume preserving. Limitirgdbmain ofa or b
by the latter inequality, the restrictions for rank-oneveexity are less strict in the case of incompressibility.eDu
to the isotropyw depends only on the singular valuesrof

Eliminating the quantifiers in eq. (2) is a laborious work.eQmay of doing this is

* normalizea andb

determined?w/0F?* at F = U (the substitutiora = R - a is always possible)
« carry out the contractions with, which gives the acoustic tensdr

« assure positive definiteness Af

The last step can be done by assuring the positivity of theejlie minors. In doing so, one arrives at the following
set of inequalities:

» The first principle minor gives the separate convexity ¢tooils

0 < wy, (no sum) 4)
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For lateereace, some characteristic strain-driven tests
are depicted, namely a simple shear test (dashed), isochrignsion/compression (dotted), uniaxial exten-
sion/compression without lateral straining (dash-datjepsolume change (solid line).

» The second principle minor gives inequalities involvinixed derivatives

0 <miij + VWi Wjj, 7 75_]

= _ y
mg; = £ w;;

+

w; — :I:wj
i — X

« The third principle minor gives inequalities involving xaid derivatives

+ + +
0 <Mip+/W33 + Miz/Wa2 + ngm+ /W11 W22W33,

®)

(6)
()

8

i inatidngt mT mt = ot = + = =
which must be evaluated for the combinatidms|,,, m5, ma;}, {m,, mi3, mas}, {mj5, mis, mas}, and
- = o F

{mia, myz, mas}.

These results can be found in Dacorogna (2001). For the ipeesrible case, a similar procedure is possible.
However, one has to take the derivative with respedt ton the subspacéet(F') = 1, and incorporate eq. (3).

3 Graphical Representations of the Regions of Rank-One-Ceexity

Using the inequalities (4, 5, 6, 8), we are able to determtireerégions of rank-one-convexityw(A1, A2, A3) is
symmetric w.r.t. index permutations. Therefore, the pigttange can be restricted by the ordering< A, < As,
which is achieved by introducing the parametgrs= A\, /s andgs = A2/\3. The graphical representations are
giveninterms of) < ¢; < 1,0 < ¢ < 1,0 < A3 < 4. They have been constructed with the help of a computer
algebra system. The figure layout is the same for all grapRiosthe left, a 3D-representation is given, where the
non-region of rank-one-convexity is filled. The lower backreer corresponds to the origin of the coordinatgs

g2, A3, and the upper front cornertg = 1, g2 = 1, A3 = 4, see Fig. 1. Additionally, the region of relatively
small strainsy_;(1 — \;)® < 0.2% is represented. On the right, a contour plot\gfover \5/); (the horizontal

direction) and\; /A, (the vertical direction) is given, which is more suitable éxtracting data. It corresponds to
a projection of the rank-one-convex boundary into¢hez.—plane.

3.1 Elastic Energies which are Quadratic in Seth Strain Meastes

In the case of a linear and isotropic stress strain relatiwnelastic law and hence the elastic energy are completely
determined by the choice of the strain measure and two @lgstbnstants. The elastic strain energy is then given
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by
A
or normalized

A
w=E}+ E2+ E2 + B(E\Ey + EsEs + E1E3)  B:=

=— 10
e (10)

with Lamé’s constants\, ¢ and the eigenvalueE; of the strain tensor. Laés constants are related to the bulk-
and shear moduluk” andG by

2
uw=G )\:K—gG. (11)
The Legendre-Hadamard condition is ensuredsby 0, G > 0, which allows to determine the range for valig
—1<B8<2. (12)

One can write3 as a function of Poisson’s ratio

g=-2 (13)

1—v

where—1 <v < % is admissible. Usually, the strains are defined as isotrfopictions of the material stretching

The functionE(\) defines the strain measure. Typically one uses a Seth dwainhich

1
m
Eo(A) :=In()\), (16)
hold. For exampleyn = —2 corresponds to the Piola-Almansi strain. In the 1-dimemailhomogeneous case,

m = —1 corresponds te = Al/l, i.e., one relates the length change to the actual (trug}tierThe casen = 0
corresponds to the logarithmic (Hencky) strain which imalsferred to as the true strain. In the 1-dimensional
homogeneous casey, = 1 corresponds te = Al/l, i.e., one relates the length change to the reference length
Thus, it is referred to as the nominal strain, engineeringjrstor Biot strain. The case: = 2 leads to the the
Green, Lagrange or Finger strain.

In Figs. 2 to 4, the regions of rank-one-convexity far= —2,—1,0,1,2 andv = 0,0.1,0.2,0.3,0.4,0.5 are
plotted. It is found in general that far — 0.5, the limit of the region of rank-one-convexity approachies t
unstretched staté; = A\s = A3 = 1, independent ofn. Further, form < 0, one can impose arbitrarily large
compressive strains without violating rank-one-conwexithile for 0 < m, one can impose an arbitrarily large
volume increase without violating rank-one-convexity.

The casesn = 0, m = 1 andm = 2 are most interesting, and examined in detail. It is found tha

» for m = 0, eqg. 5 imposes no restrictions (the right hand side is pesitr all strains and approaches 0 as
v — 0.5). eq. 8 is globally weaker than eg. 4 and eq. 6 together.

e form = 1, eq. 4 imposes no restrictions (the right hand side is justE?). eq. 5 and eq. 6 restrict the
very same domain, which is given By< 5(A; — 2) 4+ 2(A\;+1 + Ait2 — 1). The latter approaches eq. 8 as
v — 0.5. Eq. 8 is globally weaker than eq. 5 (resp. eq. 6).

« for m = 2, none of eq. 4, eq. 5 or eq. 6 includes the other one globatiyvever, they include together eq.
6.
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Figure 3: Regions of rank-one-convexity far= 0 andv = 0.0, v = 0.2, v = 0.3, v = 0.4.
3.2 Ciarlet-Geymonat Strain Energy

The Ciarlet-Geymonat strain energy (Ciarlet and Geymat282) is conveniently denoted in terms of principal
invariants ofB,

weg = %(IIIB —Inlllg — 1) + g(IB —Inlllp — 3) 1)

with Il g = (A A2A3)? andI g = A? + A3 + A% and Lané’s constants (Simo and Hughes, 1998;The original
function contains six material parameters (Ciarlet (19&Xercise 4.23), which are reduced by approaching a
linearly elastic isotropic material with andy asF — I. It is derived from the family of Ogden materials, but
with the restriction to be polyconvex for positive values)ofind i, (Ciarlet (1988), page 185). Thusicg is
rank-one-convex in the entire domain of positive Az, A3 if v > 0. We can normalizevcc by multiplying with
2/p, where we are able to replace

A v
2 1—2v°

(18)

This allows, similar to the preceding section, to parametthe range of valid material parametersibgn the
normalized strain energy. For negativethe region of rank-one-convexity is bounded. It is smalflesy = —1,
for which a graphical representation is given in Fig. 5(a).

3.3 Blatz-Ko Strain Energy

The strain energy of Blatz and Ko is of the form

2
WBlatz—Ko = %f Ip -3+ T’”(IIIB

_2A
m

_1)] Lea=f) {13_1 _3+27“(m§ “1), (19)



02 04 06

@m=1,v=0.0

¥ o
0.2 0.4 0.6 0.8 1
c)m=1v=02

02 04 06 . 1
e)m=1,v=04

3.6
3.2
2.97
2.6¢
2.31
1.9¢
1.6t
1.3z
0.9¢
0.6€
0.t

3.€
3.2

2.7
2.4
2.1
1.8
1t
1.2
0.¢
0.67

3.t
3.22
2.9¢
2.7¢
2.5%

2.3
2.01
1.8
1.61
1.3¢
1.1t
0.81%

0.2 0.4 0.6
(b)ym=2,vr=0.0

0.2 0.4 0.6
(dm=2,v=02

0.2 0.4 0.6
Hm=2v=04

0.8

Figure 4: Regions of rank-one-convexity far= 1, m = 2 andv = 0.0, v = 0.2, v = 0.4.

233

3.4¢
3.1¢

2.8
2.61
2.32
2.02
1.7¢
1.4t
1.1¢
0.87
0.71

2.4t
2.2¢
21
1.9¢
1.82
1.6¢
1.5¢
14
1.2¢
1.1z
0.9¢
0.82

1.87
1.78¢
1.7
1.61¢t
1.5
1.44¢
1.3¢€
1.27¢
1.1¢
1.10¢
1.0z
0.94



36
3.24
2.8¢
252
2.1€
18
1.44
1.0¢
0.7z

‘ — B 0.3¢
0 02 04 06 08 1 1.4t 0 02 04 06 08 1 0

0.6

0.4

0.2

(a) Ciarlet-Geymonat strain energyiat= —1 (b) Reduced Blatz-Ko-strain energy (c)

Figure 5: Region of rank-one-convexity of the Ciarlet-Geyrat strain energy at = —1 (a), the reduced Blatz-Ko
strain energy (b) and Attard’s strain energy (c) for the makparameters of eq. (22).

with I+ = A\[2 + A\;2 + A\3%. Compared to its original form (Blatz and Ko (1962), eq. 9@ expression
(1 —2v)/visreplaced by /A (eq. 18) and/s is replaced byw/IlT . By fixing f = 0 and\/u = 1 (v = 0.25)
it is reduced to

Whtatr—o = 5 g1 + 2V = 5) = SO0 4252 4257 + 20 dedg = 5) (20)
see Blatz and Ko (1962) eq. (67). The strain energy,,, k. is used to model polymeric foams (Horgan, 1996).
However, Horgan noted that strong ellipticity is lost ineag 0 < f < 1, i.e.,wf,.,_k, displays loss of rank-
one-convexity. Inwg,.., k., there is no material parameter which affects the regioraoksone-convexity, i.e.,
a single graph is sufficient (Fig.5(b)). Itis found they,, ., ., does not fail to be rank-one-convex under purely
volumetric deformations. To be more specific, rank-onevesity is lost only ifA; /\; < 0.2688.

3.4 Attard’s Strain Energy

Attard (2003) proposed a strain energy of the form

o n n 2 : m 2m §
WAttard = nE:1 <2n(IC"- — 3) + %(Ic—n - 3)) + P %(h’lq]) —InJ n:1(An - Bn) (21)

The first sum represents a shape-change energy contriptiteosecond and third sum incorporate the dependence
of watara ON Volume changes. Usually, nonlinear strain energies@mpbre than two material parameters, i.e.,

it is a tedious task to make a parameter-study of the regibnan&-one-convexity. Therefore, we examine the
rank-one-convexity for only one of the resultant strainrgiess, obtained by adopting Attard’s strain energy to a
rubber material. The nonzero material parameters (At2083) eq. 69) are

A; = 0.361MPa By = 0.22MPa Ay = 0.1MPa C1 = 2000MPa. (22)

The region of rank-one-convexity is, unlike the other exapresented here, not representable by a single pro-
jection of the rank-one-convex boundary into the/ A\3—\1 /Ao—plane (Fig. 5(c)). Characteristic points for the
loss of rank-one-convexity are eigenvalues very close o aed\; 5 3 ~ 1.4,

4 Failure of Rank-One-Convexity in Characteristic Tests

For completeness, we have examined five characteristg; temnely

simple shear}; = \/1 +92/2 —y\A+7%/2, A2 =1, A3 = \/1 +92/2 4+ v/4 +~2%/2,
¢ uniaxial stress state\; = u, Ay and A3 from wy = w3z = 0,
* isochoric tension/compression; = u, Ay = A3 = 1//u,

» simple tension/compressiof; = u, Ao = A3 = 1,

dilatation: A\ = Ay = A3 = u,
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[ m [ v | Simple Sheaf Uniax. Stress | Isochor. T/IC | Simple T/C | Dilatation |
0.0 v < 0.496 0.436 <u <1.29 | 0.657 <u<1.289 | 0.436 <u < 1.29 0<u<1.29
0.1 v < 0.55 0513 <u <129 | 0626 <u<133 | 0394 <u<129 | O0<u<1.243
-2 0.2 v < 0.641 0.569 <u <131 | 0578 <u <1403 | 0.351 <u<1.286 | 0<u<1.201
0.3 v < 0.861 0.612 <u < 1.332 | 0.506 < u < 1.675 | 0.31 <u < 1.265 0<u<1.143
04 v < 1.29 0.646 <u < 1.364 | 0432 <u <2337 | 02Tl <u < 1.185 | 0 <wu < 1.069
0.0 v < 0.768 033 <u<1.b 0.548 < u < 1.494 033 <u<1.b 0<u<1b
0.1 v < 0.827 0.39 <u <1511 | 0529 <u<1.559 | 0.302 <u<1.b 0<u<1.409
-1 0.2 v < 0.909 0439 <u <1.544 | 0503 <u < 1.655 | 0.272 <u <1498 | 0 <u<1.333
0.3 v < 1.043 048 <u < 1.595 | 0.462 < u < 1.837 | 0.239 < u <1478 | 0 <u < 1.269
04 v < 1.366 0.514 <u < 1.67 | 0391 <u <2434 | 0203 < u < 1.368 | 0 <wu < 1.142
0.0 v < 1.849 0.141 <u <2718 | 0.303 < u < 2.638 | 0.141 <u <2718 | 0 <u < 2.718
0.1 v < 1.941 0.165 <u <278 | 0.294 <u <2829 | 0133 <u <2718 | 0<u<2.266
0] 0.2 v < 2.061 0.187 <u <3.031 | 0283 <u<3.074 | 0.124 <u <2718 | 0 <u < 1.947
0.3 v < 2.226 0.204 <u <3.469 | 0.268 <u <3411 | 0,114 <u <2718 | 0 <u<1.713
04 v < 2.485 0.215 <u < 4.081 | 0.245 < u < 3.932 | 0.103 <u < 2.718 | 0 <wu < 1.535
0.0 v < 0o 0<u<oo 0<u<4.0 0<u<oo 0.501 < u < oo
0.1 v < 0o 0<u<11.0 0<u<oo 0.112 <u < o0 0.579 <u < o0
1|02 v < 00 0 <u <5999 0<u<oo 0.251 <u < o0 0.667 < u < o0
0.3 ¥ < 00 0 <u<4.333 0<u<oo 0.429 < u < 00 0.765 < u < 00
04 vy < 00 O0<u<35b 0<u<oo 0.667 < u < o0 0.876 < u < 00
00| ~<1.121 0.586 < u < o0 0578 <u < 2.0 0.586 < u < o0 0.708 < u < o0
0.1 v < 00 0.592 < u < o0 0.513 <u < o0 0.603 < u < o0 0.761 < u < 00
2|02 vy < 0o 0.594 <u < o0 O0<u<oo 0.639 <u < o0 0.817 <u < o0
0.3 ¥ < 00 0.593 < u < o0 0<u<oo 0.706 < u < o0 0.875 < u < 00
04 v < 00 0.588 < u < o0 0<u<oo 0.8256 <u < o0 0.936 <u < o0
Blatz-Ko| y<v2 [0.349 <u <2867 ] 0416 <u <2406 | 0268<u<3732] 0<u<oo

Table 1: Rank-one-convex ranges of characteristic testhiéoHookean strain energies and the reduced Blatz-Ko
strain energy.

whereu and~ are process parameters. Note that the eigenvalues intlddige are not ordered. Table 1 contains
the rank-one-convex ranges for the characteristic testthtBoHookean strain energies and Blatz-Ko’s reduced
strain energy.

5 Summary

We examined the strain energies which are quadratic in thergbzed Seth strain measures. It has been found
that

« in all cases, in the incompressible limit, the rank-onevex boundary approaches the undeformed state,

« for Seth strains with negative exponent and the logarithstriains, a compressive volume change does not
lead to the loss of rank-one-convexity,

« for Seth strains with positive exponent, a volume expandi@es not lead to the loss of rank-one-convexity.

From the Hookean strain energies which have been examihedye which is quadratic in the nominal strain
(m = 1) displayed the largest rank-one-convex ranges in chaisiiteests.

We also examined three compressible non-Hookean strangiesgnamely Ciarlet-Geymonat'’s, Blatz-Ko’s and
Attard’s strain energy.

We confirmed that the two-parameter Ciarlet-Geymonatrs&aergy has no rank-one-convex limit for positive

Poisson’s ratios. It is worth noting that Ciarlet-Geymadmatrain energy and the corresponding Cauchy stresses
are given by = (u(B — I) + \(J? — 1)/2I)/J, i.e. no explicit calculation o/ or V is required.
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The reduced Blatz-Ko strain energy (with= 0.25) fails to be rank-one-convex if and only if;/\; < 0.2688,
i.e., no rank-one-convex failure under purely dilatoridaformations is observed. In the characteristic tests, the
rank-one-convex range of the Blatz-Ko strain energy tutrtigmbe similar to those Hookean strain energies.

No specific conclusions could be drawn for Attard’s straiergy, except for that for more complicated strain
energies the regions of rank-one-convexity may have a aaaghlape in the space of the singular values'of

We observed that, out of the set of necessary and sufficiemtitbons that we used here, the eq. (8) are always
weaker than the restrictions eq. (4, 5, 6) together, andtadsio impact for the strain energies under consideration.
At most, this restriction coincided with one of the otherawiéver, this is due to the specific strain energies under
consideration, and does not hold in general.
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