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A coupled dynamic problem of thermo-electro-mechanics for a layered beam is formulated based on the 
Kirchhoff–Love hypotheses. In the case of harmonic loading, a simplified formulation is given using the single 
frequency approximation and the concept of complex moduli. As an example, the problem of forced vibration of 
a three-layer sandwich beam (aluminium alloy core covered with piezoelectric layers) with hinged ends is solved 
in order to investigate the accuracy and applicability of the approximate monoharmonic approach and to study 
the self-heating caused by the electromechanical losses in piezoactive layers and the mechanical losses in 
electrically passive metal layer. The thermal fatigue life was estimated assuming that the structure fails if the 
temperature exceeds the Curie point for piezoceramics. 
 
 
1 Introduction 
 
The forced-vibration analysis of structures occupies a significant place in the dynamics of deformable systems. 
An accurate prediction of the dynamic response is a serious challenge, since the material of a structure may 
become plastic under intensive loading and/or exhibit viscous properties. Variable viscoelastoplastic behaviour 
should be studied when designing metal dampers for the vibrations of building structures under wind and seismic 
loads, devices for suppressing vibrations of pipelines, test specimens in low-cycle fatigue tests, etc. 
 
The stringent requirements to modern complex devices have recently compelled many researchers to pay 
attention to the modelling and control of the vibration of flexible structures (Rao and Sunar, 1994; Liu et al., 
1999; Vidoli and dell’Isola, 2001; Han and Lee, 1998; Bao et al., 1998; Fernandes and Pouget, 2002; Zhuk and 
Senchenkov, 2004; Sridharan and Kim, 2009; Zhuk and Guz, 2009). The rapid development of the modern 
technology necessitates changing over from the traditional methods of vibration control to new ones that allow 
implementing more complex and highly effective operating modes and observing numerous life and reliability 
criteria. As a result, the modelling of the vibration of flexible structures and their elements and study of the 
possibilities for controlling them have gained a new impetus and are aimed at the development of systems with 
improved or qualitatively new characteristics. The ultimate goal of such studies is to create a new generation of 
active adaptive materials capable of responding to an external load according to predefined criteria or a program 
and having the functions of self-checking, self-diagnostics, and self-restoration (Tani et al., 1998). 
 
Using the electromechanical model (Zhuk and Senchenkov, 2004; Zhuk et al., 2011a,b) as the starting point, the 
simplified monoharmonic approach is developed in this paper here in order to describe the coupled thermo-
electro-mechanical dynamic behaviour of thin wall structures consisting of elastic piezoactive and inelastic metal 
layers under cyclic electric or mechanical loading. As an example, a three-layer sandwich beam (aluminium alloy 
core covered with piezoelectric layers) with hinged ends is studied. The beam undergoes harmonic mechanical 
loading by the moments applied to its ends or by the harmonic voltages applied to the electrodes covering the 
piezoactive layers. 
 
The developed formalism of thermo-electro-mechanical problem is used for estimating the self-heating caused by 
the electromechanical losses in piezoactive layers and the mechanical losses in electrically passive metal layer. 
For this purpose, the heating temperature evolution with time is computed. The thermal fatigue life is estimated 
assuming that the structure fails if the temperature exceeds the Curie point for piezoceramics. Using this 
criterion, the safe dissipative heating levels under harmonic loading are determined. The developed method is 
also successfully used for describing the thermal state under active damping regimes for other thin wall structures 
with piezoelectric layers for the case of small to moderate inelastic strains in the metal layer. 
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2 Two Approaches to Modelling Mechanical Response of Inelastic Solids under Cyclic Loading 
 
Modelling the mechanical behaviour of inelastic materials is one of the major challenges to be accomplished in 
evaluating the durability or function characteristics of deformed solids. There are currently two approaches to 
solve such problems. One employs the constitutive equations valid for arbitrary or, at least, rather wide classes of 
loading histories (Chan et al., 1984; Chaboche, 1993; Sands et al., 2010). The other approach is based on 
simplified models for specific deformation history (Krempl, 2000; Zhuk and Senchenkov, 2004; Senchenkov et 
al., 2004). 
 
Within the framework of unified flow theories used in the first approach, the time-dependent inelastic behaviour 
of crystalline solids is represented as part of a combined elastic-inelastic formulation that may not rely on a yield 
criterion or loading and unloading conditions. The same equations are applicable for all circumstances such as 
straining at prescribed rates, creep under constant stress, and stress relaxation under constant strain. An objective 
of a unified constitutive theory is that it should be suitable for certain classes of materials over a wide range of 
strain rates and temperatures. To be useful for engineers, the equations have to be reasonably simple, possess a 
firm physical basis and be consistent with the principles and constraints of mechanics and thermodynamics (Chan 
et al., 1984; Chaboche, 1993; Sands et al., 2010). The second approach was developed especially for one of the 
most important cases of periodic processes – for cyclic (particularly harmonic) loading. The idea of 
simplification can be clearly demonstrated by an example of linearly viscoelastic materials. In the case of 
harmonic deformation, all basic types of constitutive equations – integral (hereditary) or differential – have an 
algebraic form written in terms of complex stress and strain amplitudes. The relationship between these quantities 
is expressed in terms of complex-value moduli (Christensen, 1971). 
 
The present paper is devoted to the comparison of the results obtained within the framework of the complete and 
simplified problem statements for the particular case of forced vibration of thin wall members containing 
piezoactive layers. Both problem statements are briefly described below. 
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Figure 1:  Beam geometries and the loading scheme 
 
 
 
Let us briefly specify the complete statement of the electro-mechanical problem of the forced vibration and 
dissipative heating of layered beams composed of electrically passive and piezoactive layers of constant 
thickness. The layers are in perfect contact with each other. Each sth piezoelectric layer is covered with infinitely 
thin electrodes to which an electric potential difference )(s

zϕ  can be applied. The beam is referred to the 
rectangular Cartesian coordinate system Oxyz as shown in Figure 1 for the particular case of hinged ("roller 
supported") three-layer sandwich beam consisting of a middle aluminium alloy layer and the outer PZT layers. 
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The beam length is L and its total thickness is h = ∑ hs, where hs is the thickness of sth layer. A surface equidistant 
to the surfaces of the layers is chosen to be the reference one. The layers are numbered in the z-direction. The 
coordinate of the upper surface of the sth layer is denoted by zs. The PZT layers are polarised in the positive or 
negative z-direction only. At this point, the material of the piezoactive layer is considered to be elastic 
transversely isotropic or viscoelastic one. The material of the electrically passive layers can demonstrate the 
inelastic response. 
 
In deriving the equations of state, we assume that the total strain ijε  includes elastic (or, in general case, 

viscoelastic), e
ijε , and inelastic, p

ijε , strain components. The constitutive equations for linear piezoelectric 
materials without pyroeffect can be written in the following form (Yang and Batra, 1995): 
 

zyxnmlkjihDEDhc klnklmnmnmmijklijklij ,,3,2,1,,,,,,, SD ↔=−=−= εβεσ ,         (1) 
 

where ijσ  and ijε  are, respectively, the stress and strain tensors; iE  and iD  are, respectively, the electric field 

and electric displacement; D
ijklc  is the isothermal elastic tensor at constant electric displacement; ijkh  are the 

piezoelectric constants; and S
ijβ  is the permittivity matrix at constant strain. These equations were derived in the 

electrostatic approximation, i.e., the equations of electrostatics (Zhuk and Guz, 2009; Yang and Batra, 1995) are 
assumed to be true. The Bodner-Partom model was used to simulate the inelastic response of the electrically 
passive material (aluminium alloy), see (Chan et al. 1984). The detailed formalism can be found in (Zhuk and 
Guz, 2009). 

 
In the case of long-term inelastic deformation, the complexity of the solution obtained within the framework of 
complete problem statement is due to the necessity of storing a large body of data and performing extensive 
computations to allow for the deformation history. To overcome these difficulties, in the practically important 
case of harmonic loading, an approximate monoharmonic model of thermo-electro-mechanical processes can be 
used. The simplified model is based on the concept of complex moduli, which are determined by a modified 
technique of equivalent linearization (Zhuk and Senchenkov, 2004; Senchenkov et al., 2004). In terms of these 
moduli, the initial problem is reduced to a scleronomous system of equations for complex amplitudes of 
mechanical and electrical variables – displacements, stresses, total and inelastic strains, voltage and electric 
current. Equations of the simplest version of the model for monophase loading were developed in (Senchenkov et 
al., 2004). 
 
 
3 Thermal Aspects 
 
The single frequency approximation can be particularly useful for the investigation of the problems where the 
amplitudes of the main field variables play a major role, when the peculiarities of the hysteresis loop and specific 
behavior over the vibration cycle are not relevant (Senchenkov et al., 2004). Fatigue life prediction and 
estimation of the dissipative heating levels are among the useful results (Zhuk and Senchenkov, 2004; 
Senchenkov et al., 2004). 
 
Let us consider the coupled thermo-electromechanical problem for the tree-layer beam shown in Figure 1 when 
the mismatch between the heat expansion coefficients of the constituents is not taken into account. To incorporate 
the thermal effects under harmonic loading, one should start with the energy balance equation which yields the 
general form of heat conduction equation. Introducing temperature increase as 0TT −=θ  and averaging the heat 
conduction equation over the period of vibration as well as neglecting the contribution of thermoelastic terms to 
the heating (Senchenkov et al., 2004), one can obtain the heat conduction equation in the form 
 

( ) ( )zxDbkc yzzxxV ,2,, ′+−+= θαθθθ& ,             (2) 
 
where T and T0 are current and initial temperatures, cV is the specific heat capacity at constant volume, k is the 
thermal conductivity coefficient, αy is the heat transfer coefficient from the beam faces perpendicular to the Oy 
axis, D’ is the density of the dissipation power due to electromechanical losses, b is the width of the beam. The 
perfect thermal contacts at the material interfaces are assumed, i.e. the temperatures on and the thermal fluxes 
through the interfaces are equal. Let us emphasise that θ and D’ are used to denote the averaged temperature and 
dissipation respectively. 
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The dissipative function for the piezoactive layer can be written as follows (Karnaukhov and Kirichok, 1986) 
 

[ ]∗∗ +=′ zzxxxx DEzxD ~~~~Im
2

),( εσ
ω ,              (3) 

 
where the complex conjugate quantities are marked with an asterisk. Taking account of the amplitude constitutive 
relations, the final form of the expression for the averaged dissipation function for the piezoactive layer contains 
three terms that determine mechanical, dielectric and piezoelectric losses. In the case of the electrically passive 
metallic layer, only the term which specifies the mechanical losses appears. 
 
It is assumed that convective heat exchange with the environment happens on the each beam face. Corresponding 
boundary conditions as well as the initial conditions for temperature are to be added to complete the problem 
statement.  
 
Let us emphasize here that the heat conduction problem is solved as a two-dimensional problem in the plane Oxy. 
It allows the heat generation and distribution along longitudinal and thickness dimensions of the beam to be 
investigated. 
 
 
4 Material Properties 
 
In order to solve the model problem of forced vibration under harmonic mechanical or electrical loading of a 
hinged beam containing piezoelectric layers, we need to specify both the actual and the cyclic properties of the 
constituents. The following beam lay-up is considered: the middle layer is made of aluminium alloy and the outer 
layers are made of piezoactive material. The piezoceramics PZT is chosen as a material of the piezoactive layers, 
 
It was mentioned above that within the framework of the complete problem statement, the response of the PZT to 
the harmonic loading is considered to be the elastic one. The density of piezoceramics is equal to 7300 kg/m 3. 
The relevant moduli for transversely isotropic material are taken as follows 

 
D
11c = 1.12·105 MPa, D

12c = 0.64·105 MPa, D
13c = 0.5·105 MPa, D

33c = 1.25·105 MPa, 

31h = –5.0·108 V/m, 33h = 1.8·109 MPa, S
33β = 1.33·108 m/F. 

 
The response of the aluminium alloy within the framework of the complete problem statement is described by a 
set of the physical properties and the Bodner-Partom model parameters, which are chosen as 
 

ρ = 2692.65 kg/m3, E = 0.816·105 MPa, ν = 0.34, D0 = 104 c–1, n = 2.06, 
m1 = 0.182 MPa–1, m2 = 3.7 MPa–1, K0 = 323.6 MPa, K1 = 647.4 MPa, D1 = 80 MPa. 
 

Here density, Young’s modulus and Poisson’s ratio are denoted by ρ, E and ν respectively. For complete 
explanation of the model parameters D0, n, m1, m2, K0, K1 and D1 see, for example, (Chan et al., 1984).  
 
Making use of the data listed above and the complete problem statement derived in Zhuk and Guz, 2009, it is 
possible to compute both the transient and the steady state response of the beam to harmonic loading. 
 
The cyclic properties of material should be determined either experimentally or obtained numerically (within the 
framework of chosen material model) as a response to the harmonic loading. The complex moduli for aluminium 
alloy are taken from (Senchenkov et al., 2004) where the detailed procedure for calculating them is also 
described. Dependencies of the storage modulus, G', the loss modulus, G", and the real and imaginary parts of 
the plasticity coefficients pκ ′  and pκ ′′  on the stress intensity, ei, are also shown by Senchenkov et al. (2004). Let 
us emphasise that for the simplified model adopted here, the volumetric modulus KV is a real quantity. The value 
of this modulus for the aluminium alloy equals 8.5·10 4 MPa. 
 
Following (Schwartz, 2002; Sabata et al., 2007), the cyclic behaviour of PZT is considered to be a viscoelastic 
one with relatively small loss moduli. Complex moduli for this material are assumed to be independent of the 
frequency, temperature and strain intensity. Real parts of the relevant complex moduli are chosen to be equal to 
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the correspondent actual moduli for the complete problem statement given in the previous subsection. The loss 
tangents for transversely isotropic material are (Pugachev, 1984) 
 
  '"tan D

11
D
1111c cc=δ  = 0.0128, '"tan D

12
D
1212c cc=δ  = 0.0144, '"tan D

13
D
1313c cc=δ  = 0.02, '"tan D

33
D
3333c cc=δ = 0.015, 

  '"tan 313131h hh=δ  = – 0.0125, '"tan 333333h hh=δ  = 0.0142, '"tan S
33

S
3333β ββδ =  = – 0.0215 

 
Here the storage moduli are denoted by prime and the loss moduli are denoted by the double prime. 
 
For temperatures below the Curie point for piezoceramics, which is the region of our main interest, the complex 
moduli for an aluminium alloy exhibit a weak dependence on the temperature and, therefore, can be considered 
as temperature independent quantities for the purposes of the work presented here. Manufacturers provide 
different data for the Curie point, TC, ranging from 150°C to 350°C depending on the PZT type and composition. 
In the present investigation, it is chosen to be equal to 200°C, and therefore, in terms of the temperature increase 

0TTCC −=θ =180°C. The following parameters were used to solve the heat conduction problem:  
αy = 100 W/m2·K, 0T = 20 °C; cV = 2.48·106 J/m3·K and k = 90 W/m·K for the aluminium alloy; and  

Vc  = 3.58·106 J/m3·K and k  = 1.25 W/m·K for the PZT piezoceramics. 
 
 
5 Results and Discussion 
 
The model problem of vibration and dissipative heating of a sandwich beam under harmonic mechanical or 
electric loading is discussed in this section. The vibrations in the vicinity of the first resonance frequency occur in 
the first symmetric mode. In all cases, the upper PZT piezoceramic layer is polarized in the positive direction of 
z-axis, and the lower layer is polarised in the opposite direction. Two types of the beam support are considered 
here: a simply supported beam and a hinged ("roller supported") one.  
 
5.1  Limits of the Applicability of the Simplified Model  
 
The nature of the approximations introduced within the framework of the simplified monoharmonic approach 
imposes the obvious limitations on the model use. All of them are considered here for the isothermal case. The 
version of the monoharmonic approach adopted here does not deal with the mean strain and stress. To exclude 
them from the consideration and prevent formation of the hollow arch instead of the beam due to the inelastic 
deformation, a gradual linear growth of the load amplitude (both, mechanical and electrical) should be provided 
at the beginning for several cycles – the so called “adaptation period”. After that, the amplitude of loading 
remains constant. This initial adaptation period lasted for fifty cycles in our study. The next fifty cycles are used 
as a stabilization period to allow for the steady-state vibration of the beam to be reached. Then, the amplitudes of 
the investigated quantities are computed. 
 
Analysis of the typical transient response of the beam to harmonic mechanical as well as electric excitation in the 
presence of both physical and geometrical nonlinearities demonstrated that after the first 50 cycles of vibration, 
when the load amplitude reaches the steady state, the deflection amplitude shows a small decrease caused by the 
hardening of the aluminium layers adjacent to the piezoceramics. After the completion of the transient adaptation 
period, the cycles of vibration become symmetric about a horizontal line. The total strain, the inelastic strain and 
the stress as well as the electric current taken from the PZT layer electrodes tend to form the stable loops after the 
short transition period. The cycle of stress response is symmetric during the steady-state vibration. The elastic 
limit of the material is reached with increasing load. This time point corresponds to the change in the envelope 
angle. In the presence of geometrical nonlinearity alone, the history of inelastic strain is not symmetric about zero 
because of the deformation of the beam axis. If, however, only physical nonlinearity is present, the history of 
inelastic deformation is symmetric. In the sensor mode, the electric current from one of the piezoelectric layers is 
also characterized by a cycle weakly asymmetric about zero. The reason is that the charge induced by the inverse 
piezoelectric effect is determined by the deformation of the piezoelectric layer, which is not symmetric about 
zero due to the geometrical nonlinearity. 
 
In general, the asymmetry of the deformation cycles can be attributed to the geometrical nonlinearity, particularly 
associated with the deformation of the beam axis. Since the axis undergoes tensile deformation, the strain in the 
stretched layers increases and the strain in the compressed layers decreases within each half-cycle. The situation 
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is similar for the electric current. If the geometrical nonlinearity is disregarded, all the curves will be symmetric 
and the strain of the beam axis will be zero. 
 
Let us emphasize here that the two types of loading (mechanical and electrical) are equivalent for the particular 
problem under consideration, in the sense that they cause the same deflections and produce the same levels of the 
stress, the total strain and the inelastic strain. Therefore, only one set of figures for mechanical loading can be 
shown.  
 
As expected, the closer the frequency is to the resonance, the smaller the influence of the higher harmonics is on 
the response of the system. In other words, the monoharmonic approximation becomes more accurate if the 
system vibrates in the resonance regime, because the amplitude of vibration with the excitation frequency is 
amplified at the resonance. 
 
The effect of the higher harmonics can be more pronounced if the excitation frequency differs significantly from 
the resonance. In order to investigate this aspect of the beam behaviour, the forced vibrations were considered at 
the different frequencies of loading. Due to the type of nonlinearity dealt with (i.e. elastic-viscoplastic response 
of the electrically passive material), the additional factor influencing the system response is the level of loading. 
The higher loading leads to a more complex behaviour of the beam as a result of the interplay between physical 
nonlinearity, geometrical nonlinearity and electro-mechanical coupling. It was shown that for a hinged "roller 
supported" beam shown in Figure 1, under the moderate loading levels and the deflections up to 1.5 of the beam 
thickness, the influence of geometrical nonlinearity is rather small, in contrast to the problem studied in (Zhuk 
and Guz, 2009), where the membrane force played a significant role. 
 
In general, it was found that the simplified approach provides a reliable and accurate estimation of amplitudes of 
the main mechanical parameters and the electric current taken from piezoactive layers, if the influence of the 
geometrical nonlinearity is small. This is true not only in the immediate vicinity of the first resonance, but also 
for the region of quasi-static response. 
 
5.2  Amplitude-Frequency Characteristics 
 
There are two main points in understanding the nature and estimating the level of the dissipative heating under 
intensive harmonic loading: amplitude-frequency characteristics and distribution of the dissipation function. The 
amplitude-frequency characteristics are very useful for investigation of the applicability of the approximate 
monoharmonic approach to the solution of the class of problems under consideration and for estimation of its 
accuracy and the limits of applicability. They provide the qualitative and quantitative analysis of cyclic response 
of the inelastic material and give the general idea about the dangerous frequency domain. The set of amplitude-
frequency characteristics for different parameters of electromechanical state is obtained within the frameworks of 
both, the complete and the approximate problem statements. Since the considered mechanical and electrical 
loading produces the identical response of the beam, only the set of plots for mechanical loading will be shown 
below.  

 
The amplitude-frequency characteristics of the forced vibration under mechanical excitation of a hinged beam 
with L = 2.0 m, h = 0.6·10–1 m, h1 = h3 = 0.2·10–2 m (h2 = 0.56·10–1 m), b = 0.3·10–1 m are presented in Figure 2 
for six different values of the controlled parameter (amplitude of loading bending moment) M0 = 0.2·10–3, 0.2·10–

1, 0.2, 0.5, 1.0 and 2.0 kN·m. The amplitudes of the stress and the inelastic strain at the most stressed point of the 
metal are given in Figures 2(a) and 2(b). The results obtained within the framework of the approximate approach 
are shown by the solid lines. The results of direct solution of the problem using the complete model are indicated 
by the squares. All calculations are performed for M0 = 1.0 kN·m. Computing the transient response is extremely 
time and resource consuming, especially in the vicinity of the resonance.  
 
All dependences presented in Figure 2 demonstrate nonlinearity of the soft type. The quantities have finite 
amplitudes in the resonance domain. Inelastic strains are observed over a limited region of frequencies. This 
region has a tendency to grow if the controlled parameters M0 or V0 increase. The curves for stress amplitude 
under a significant load causing inelastic deformation - see the lines for M0 = 0.2, 0.5, 1.0 and 2.0 kN·m in Figure 
2(a) - have a plateau-like segment expanding as the controlled parameter increases. This peculiarity is due to the 
weak hardening of cyclic stress-strain curve for aluminium alloy. Figure 2(b) allows one to determine the 
frequency region where the inelastic deformation occurs. The high temperature release is expected in it. In 
general, the results obtained within the frameworks of the complete and the approximate monoharmonic problem 
statements agree well with each other. 
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The analysis of Figure 2 shows that the simplified model works well if the geometrical nonlinearity is not taken 
into account. For other beam geometries and boundary conditions, the squares of rotation angles (which may 
appear due to the comparatively large deflections) and the membrane force (in the case of the pin hinged ends, 
for example) may have to be accounted for to appropriately describe the geometrically non-linear behaviour. This 
requires the harmonics higher then the first one to be taken into consideration. 
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Figure 2:  Amplitude-frequency characteristics of the forced vibration for a three layer beam excited 
mechanically or electrically: (a) amplitude of stress; (b) amplitude of inelastic strain plotted against frequency at 
the point (L/2, –h2/2) 
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5.3  Dissipative Heating and Thermal Fatigue Life Prediction  
 
The dissipative heating is essentially defined by the distribution of dissipative function over the body. In turn, it 
is ruled by the spatial distributions of the amplitudes of the main field electro-mechanical characteristics. The 
peak values of them are located in the central cross-section of the beam and can be attributed to the dynamic 
effect. It worth mentioning that inelastic deformation occurs in the regions adjacent to the piezoactive layers. 
This fact is decisive for the dissipative function shaping and, therefore, the heating zones formation.  
 
Examples of central cross-section distributions of the dissipative function for f = 10 Hz and for the set of 
frequencies in the resonance vicinity are shown in Figures 3(a) and 3(b) respectively. The numbers in Figure 3(b) 
display the frequency values. Far away from the resonance region, the metal layer deforms elastically and does 
not contribute to the heating over the vibration period. In this case, the energy losses (mechanical, piezoelectric 
and dielectric) occur in the piezoelectric layers only, see Figure 3(a). The situation changes dramatically if even a 
small inelastic strain appears in the metal layer, Figure 3(b). Then the mechanical losses in the metal dominate. 
The maximal losses occur at the central cross-section in the regions adjacent to the piezoceramics. Presence of 
inelastic strain generates significant loss of mechanical energy that, being dissipated as heat, leads to an 
appreciable temperature raise. For a large number of cycles, this can cause an overheating of the piezoceramics 
and deterioration of its piezoelectric properties.  
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(b) 
 

Figure 3:  Distributions of the dissipative function along the beam central cross-section for (a) loading frequency 
f = 10 Hz and (b) for the set of frequencies in the resonance vicinity. 
 
 
 
To study the latter effect, the heating time histories for the beam are computed. The maximum heating is 
observed at the points x = 1 m; z = ±0.28·10–1 m which is the most stressed points of the metal layer where the 
maximal inelastic strain occurs. The temperature time histories at the point for different frequencies are shown in 
Figure 4. The numbers indicate the frequency values. The maximum heating is observed in the resonance region. 
Comparison with Figure 2 shows that the greater the deflection and, as a result, the inelastic strain the shorter the 
time period is needed to reach the Curie point. Far away from the resonance region, the temperature increase is 
not high enough to cause the dangerous temperature levels. Under these conditions, the vibrations can continue 
for a very long time period without compromising the piezoelectric properties of the ceramics. The distribution of 
the temperature through the thickness of the beam is almost uniform at the advanced stages of the process. At the 
beginning, it corresponds to the dissipative function shown in Figure 3. Then the temperature is approximately 
constant through the beam thickness, but still having a local maxima at the points x = 1 m; z = ±0.28·10–1 m. It 
happens due to the high thermal conductivity of the core aluminium alloy. Nevertheless, due to dynamic effects 
and pure heat conductivity of piezoceramics, the effect of the heating localization in the central part of the beam 
is easily observed. That is the region where the temperature reaches the Curie level first and depolarisation 
begins. 
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Figure 4:  Time-temperature histories at the point x = 1 m; z = 0.28·10–1 m for different frequencies. 
 
 
 
To avoid dangerous overheating, safe vibration regimes must be found. For this purpose, the thermal fatigue life 
characteristic, θN , can be introduced. It corresponds to the classical fatigue life, but with the Curie temperature 
taken as the failure criterion. A typical curve 0M – θN  for frequency f = 32 Hz (the fastest heating regime) is 
shown in Figure 5. The line divides the plane into two regions: a region above the curve where thermal failure 
can occur at a sufficiently high number of cycles and a region below the curve where thermal failure will not 
occur regardless of the number of cycles. For each value of the controlled parameter, the safe operating regime 
can easily be established from the appropriate curve. Small values of thermal fatigue life belong to the near-the-
resonance region and match well with the domain where the amplitudes of inelastic strain become noticeable; see 
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Figure 2(b). Taking account of the information presented in Figure 5, one can easily estimate the useful life 
expectancy of a structure for a specified loading level. 
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Figure 5:  Typical thermal fatigue curve 0M – θN  for frequency f = 32 Hz. 
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Figure 6:  Time temperature histories at the maximum heating point x = 1 m; z = 0.28·10–1 m before and during  
                 active suppression of the vibration 
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To prevent overheating, active suppression of the vibration can be used. As it was mention above, in the cases of 
electric and mechanical excitation, the beam responds similarly to both types of loading. Hence, it is possible to 
damp mechanically excited vibrations by choosing the appropriate amplitude of voltage, V0, applied to the 
piezoactive layers. The relationship between the controlled parameters of the electric ( V0) and mechanical (M0) 
loading can be established by parametrizing the dependences of the deflection amplitudes vs M0 and deflection 
amplitudes vs V0 with respect to deflection for each frequency. As a result, the dependency V0 vs M0 is obtained. 
Despite of different levels of deflections and inelastic strains causing the strong nonlinearity, it appears the 
dependence is linear within the frequency range being considered and, therefore, can be specified by solving a 
linear problem. 
 
Under suppression regime, dissipation is equal to zero in the electrically passive aluminium alloy layer if it 
deforms entirely elastically. The piezoelectric layers continue to provide heating, though, as a consequence of 
deformation induced internal friction and electrical activity. In this case, the term defining dielectric losses is the 
only nonzero one. The computations reveal that at the most dangerous points of PZT layers ( x = 1 m; z = 
±0.3·10–1 m) for f =32 Hz and M0 = 1 kN·m (maximum heating), the dielectric term contributes 15.6 % of the 
total dissipated energy, while the mechanical losses account for 78.3 % and the piezoelectric losses contribute a 
further 6.1 %. In turn, losses in the PZT layers are much smaller than those in the aluminium alloy layer, if 
vibrations are not suppressed; see Figure 3(b). Therefore, under the suppression regime, the power of the heat 
source decreases dramatically, and gradual cooling starts as a result of conduction inside the beam and heat 
convection to the outside. Several time temperature histories are shown in Figure 6 for frequencies 32, 31.32 and 
31.30 Hz. In all cases, the immediate cooling begins, preventing the depolarisation of the piezoceramic layers. A 
stationary thermal state with nonzero temperature rise will be reached after a significant time interval. 
 
 
6 Conclusions 
 
When applied to layered thin wall structures containing piezoelectric active layers and undergoing harmonic 
electro-mechanical loading, the model based on the monoharmonic approximation and the concept of complex 
moduli is a powerful technique for determining the amplitudes of the main mechanical and electrical variables. 
This technique works very well for a systems consisting of elastic or viscoelastic piezoactive and inelastic 
electrically passive layers if the loading and boundary conditions allow for neglecting the influence of 
geometrical nonlinearity and hence ensure a symmetrical vibration cycle. If geometrical nonlinearity is 
significant, the second harmonic has to be taken account of. 
 
Analysis of the data presented in the paper shows that the approximate model correctly estimates the amplitudes 
of the electric and mechanical parameters for small or moderate inelastic deformation of the passive layers. The 
nature of the approximate model does not allow considering large inelastic strains. 
 
The proposed technique is useful for estimating the self-heating caused by electromechanical losses in the 
piezoactive layers and mechanical losses in the electrically passive metal layer. It is shown that the small 
temperature increases due to the dissipation of electromechanical energy over separate cycles of vibration can 
lead to a significant temperature rise for multi-cycle processes. Though the approximate approach is not designed 
for describing the transient mechanical response of structures, it is capable of simulating the heating temperature 
evolution with time. The problems of determining the safe dissipative heating levels under harmonic loading, 
predicting the thermal fatigue life, and modeling the thermal state under active damping regimes for thin wall 
layered structures containing piezoelectric layers can be successfully solved using this approach. 
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