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Derivation of Theory of Thermoviscoelasticity by Means of
Two-component Cosserat Continuum

E. A. Ivanova

We consider a mechanical model of a two-component medium whose first component is the classical continuum and
the other component is the continuum having only rotational degrees of freedom. We show that the proposed model
can be used for description of thermal and dissipative phenomena. Interpretation of the temperature, entropy and
other thermodynamic quantities given in accordance with the proposed model is no more than the mechanical
analogy. However, use of these mechanical counterparts allows one to obtain the well-known equations describ-
ing the thermal and diffusion processes within the framework of the model. The mathematical description of the
proposed mechanical model includes as special cases not only the classical formulation of coupled problem of
thermoelasticity but also the formulation of the coupled problem of thermoelasticity with the hyperbolic type heat
conduction equation. In the context of the proposed mechanical model, an original interpretation of the volume
(acoustic) viscosity and the shear viscosity is offered.

1 Introduction

There exist different macroscopic and microscopic models of internal damping like Ziman (1960); Truesdell
(1965); Eringen (1980); Christensen (1971); Kondepudi and Prigogine (1998). There exists an extensive litera-
ture on the construction of diverse theories of viscoelasticity and thermoviscoelasticity. The models describing the
properties of real materials have been proposed. A great number of the specific problems has been solved. The
general approaches and some models are included in the textbooks on continuum mechanics like Truesdell (1965);
Christensen (1971) and in the books meant for design engineers, e. g., Rabotnov (1988). However not all of the
theoretical problems concerned with dissipative processes in a continuous medium are solved. Now the problem of
the nature of internal damping in materials remains unclear. The point of view that internal damping is connected
with thermal effects is widespread — see, for example, Ziman (1960). We are sure that the internal damping and
heat conduction should be considered as a result of interaction of atoms with the infinite surrounding medium
which can be called thethermal ether. We propose the mechanical model of the thermal ether which is the contin-
uum of particles interacting by the elastic moments. We consider some model problems of the elastic interaction
of thermal ether with the particle imbedded in it. As a result we show that the influence of the thermal ether on the
particle can be modelled by the damping moment proportional to the angular momentum of the particle. Using of
the damping moment in the model of a two-component medium allows us to describe the internal damping and the
heat conduction mechanism.

2 Linear Theory of Continuum of One-Rotor Gyrostats

Now we construct the linear theory of the material medium consisting of one-rotor gyrostats. The one-rotor gyrostat
is a particle which consists of the carrier body and the rotor (see Figure 1). The rotor can rotate independently of
rotation of the carrier body, but it can not translate relative to the carrier body.

Let vectorr determine the position of some point of space. We introduce the following notations:ρ(r, t) is the mass
density of the material medium at a given point of space;v(r, t) is the velocity field;u(r, t) is the displacement
field; P̃(r, t), ω̃(r, t) are the fields of the rotation tensors and the angular velocity vectors of the carrier bodies;
P(r, t) andω(r, t) are fields of the rotation tensors and the angular velocity vectors of the rotors. We assume
that in the reference configuration the tensorsP̃(r, t) andP(r, t) are equal to the unit tensor. Therefore, upon the
linearization near the reference position they take the form
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Figure 1. One-rotor gyrostat

P̃(r, t) = E + ϕ(r, t) × E, P(r, t) = E + θ(r, t) × E, (1)

whereE is the unit tensor;ϕ(r, t), θ(r, t) are the rotation vector fields of carrier bodies and rotors, respectively.
Kinematic relations in the linear approximation are

v =
du
dt

, ω̃ =
dϕ

dt
, ω =

dθ

dt
. (2)

The carrier bodies of the gyrostats are the classical particles. The rotors of the gyrostats represent body-points
whose tensors of inertia are the spherical parts of tensors. The kinetic energy of such body-point takes the form

K = m∗

(
1
2
v ∙ v + B v ∙ ω +

1
2
J ω ∙ ω

)

. (3)

Herem∗ is the mass of the body-point,B andJ are the moments of inertia of the body-point. The model of the
body-point (3) was proposed by P. A. Zhilin, see e. g. Zhilin (2003, 2006). A substantiation of the model can be
found in Ivanova (2011). The linear momentum and angular momentum of the body-point (3) are

K1 = m∗ (v + B ω), K2 = m∗ (B v + J ω). (4)

The equations of balance of linear momentum for the gyrostats and of angular momentum for the carrier bodies of
gyrostats take the form

∇ ∙ τ + ρ∗f = ρ∗
d

dt

(
v + Bω

)
, ∇ ∙ μ + τ× + ρ∗m = ρ∗

d

dt

(
I0 ∙ ω̃

)
. (5)

Hereτ is the stress tensor,μ is the moment tensor modelling the interaction of the carrier bodies of gyrostats,
( )× denotes the vector invariant of a tensor,f is the mass density of external forces,m is the mass density of
external moments acting on the carrier bodies of gyrostats,ρ∗ is the mass density of the material in the reference
configuration,I0 is the mass density of the inertia tensors of carrier bodies in the reference configuration. The
equation of balance of angular momentum for the rotors of gyrostats takes the form

∇ ∙ T + ρ∗L = ρ∗
d

dt

(
Bv + Jω

)
, (6)

whereT is the moment tensor modelling the interaction of the rotors of gyrostats,L is the mass density of the
external moments acting on the rotors,B andJ are the mass density of the moment of inertia of the rotors. The
moment of inertiaB is the coefficient of the production of linear and angular velocities in the expression for the
kinetic energy of rotor (3). The moment of inertiaJ is the coefficient of the squared angular velocity in this
expression.

The constitutive equations are

τT = τT
0 + 4C1 ∙ ∙ε + 4C2 ∙ ∙κ + 4C4 ∙ ∙ϑ,

μT = μT
0 + ε ∙ ∙ 4C2 + 4C3 ∙ ∙κ + 4C5 ∙ ∙ϑ,

TT = TT
0 + ε ∙ ∙ 4C4 + κ ∙ ∙ 4C5 + 4C6 ∙ ∙ϑ.

(7)

Hereτ 0, μ0, T0 are the initial stresses,4Ck are the stiffness tensors,ε, κ, ϑ are the strain tensors. The strain
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tensors are determined by the formulas

ε = ∇u + E × ϕ, κ = ∇ϕ, ϑ = ∇θ. (8)

The structure of the stiffness tensors and the concrete values of the stiffness coefficients are determined by the
physical properties of the medium. As evident from Eq. (7), in the general case all stress tensors depend on the all
strain tensors.

Thus, the basic equations describing the dynamics of the elastic continuum of one-rotor gyrostats are presented
above. The detailed derivation of these equations can be found in Ivanova (2010).

3 Continuum of One-Rotor Gyrostats and a Model of Thermoviscoelastic Medium

We consider the material continuum (see Figure 2) that consists of one-rotor gyrostats. Free space between the
gyrostats is filled up by body-points the structure of which coincides with the structure of rotors belonging to the
gyroststs. The body-points in the space between the gyrostats are the elementary particles of a continuum which
will be called the thermal ether in what follows. We consider only the gyrostats continuum. The body-points
continuum (thermal ether) positioned in space between gyrostats is an external factor with respect to continuum
under study. That is why we will model the influence of the thermal ether on the gyrostats by an external moment
in the equation of the rotors motion.

Figure 2. Elementary volume of continuum of one-rotor gyrostats deep in the thermal ether

The interaction of carrier bodies of the gyrostats is charged with the mechanical processes. The interaction of
the rotors models the thermal processes. The spherical part of the moment tensor characterizing the interaction
of the rotors is the analogue of the temperature. The corresponding angular deformation is the analogue of the
entropy. The interference of the carrier bodies and the rotors provides the interplay of the mechanical and the
thermal processes. The particles of the thermal ether realize the mechanism of thermal conductivity and viscosity.

4 Basic Hypotheses and Reductive Model of Continuum of One-Rotor Gyrostats

Let us consider a special case of the linear theory of one-rotor gyrostats continuum. We start with a formulation of
three hypotheses.

Hypothesis 1.VectorL (the mass density of external actions on the rotors of gyrostats) is a sum of the momentLh

characterizing external actions of all sorts and the moment of linear viscous damping

Lf = −β(Bv + Jω). (9)

The moment (9) characterizes the influence of the thermal ether. Structure of the moment is chosen in accordance
with the results of solving two model problems. One of them is presented in Ivanova (2011), and the second will
be considered in what follows.
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Hypothesis 2.The moment interaction between the carrier bodies of gyrostats is supposed to be characterized by
the antisymmetric tensor; there is no influence of the external moment upon the carrier bodies of gyrostats; and the
inertia tensors of the carrier bodies can be neglected

μ = −μv × E, m = 0, I0 = 0. (10)

Hypothesis 3.The moment stress tensorT characterizing the interactions between rotors is the sum of the spherical
part of tensor and the antisymmetric tensor

T = TE − M × E. (11)

Now we construct the model of continuum that is based on the hypotheses stated above. In view of assumptions
(10) the motion of carrier bodies of gyrostats is described by the equations

∇ ∙ τ + ρ∗f = ρ∗
d

dt

(
v + Bω

)
, ∇× μv = τ×. (12)

Representingτ as a sum of the symmetric and antisymmetric tensors

τ = τ s − q × E, q =
1
2

τ×, (13)

we rewrite Eq. (12) in the form

∇ ∙ τ s −∇× q + ρ∗f = ρ∗
d

dt

(
v + Bω

)
, ∇× μv = 2q. (14)

In view of assumptions (9), (11) the equation of motion of the rotors takes the form

∇T −∇× M − βρ∗(Bv + Jω) + ρ∗Lh = ρ∗
d

dt

(
Bv + Jω

)
. (15)

The energy balance equation for the elastic continuum of one-rotor gyrostats is written as

d(ρ∗Um)
dt

= τT ∙ ∙
dε

dt
+ μT ∙ ∙

dκ

dt
+ TT ∙ ∙

dϑ

dt
(16)

whereUm is the internal energy density per unit mass; the strain tensorsε, κ, ϑ are determined by formulae (8).
In view of Eq. (13) the first term in Eq. (16) can be reduced as follows

τT ∙ ∙
dε

dt
= τ s ∙ ∙

dε

dt
+ (q × E) ∙ ∙

dε

dt
= τ s ∙ ∙

dεs

dt
+ q ∙

dγ

dt
, (17)

where the following notations are used

εs =
1
2

(
∇u + ∇uT

)
, γ = ∇× u − 2ϕ. (18)

Let us note that the trace ofε is equal to the trace ofεs, and therefore we will use the notationε = tr ε = tr εs. In
view of assumption (10) the second term in Eq. (16) takes the form

μT ∙ ∙
dκ

dt
= (μv × E) ∙ ∙

dκ

dt
= μv ∙

dκ×

dt
, κ× = ∇× ϕ. (19)

We suppose that the strain vectorκ×, on which the moment vectorμv works, is equal to zero

∇× ϕ = 0. (20)

However, the moment vectorμv has a finite value. It is possible if the corresponding stiffness tends to infinity.
Indeed, in the linear theoryμv and∇× ϕ are related by the constitutive equationμv = C ∇× ϕ, whereC is the
stiffness. If∇ × ϕ = 0 thenμv = 0 in the case of a finite value ofC and only whenC → ∞ vectorμv has a
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finite value. In the last case the constitutive equation becomes indeterminate, and vectorμv is found as a result of
solution of Eq. (14). In view of assumption (11) the last in Eq. (16) can be reduced as follows:

TT ∙ ∙
dϑ

dt
= TE ∙ ∙

dϑ

dt
+ (M × E) ∙ ∙

dϑ

dt
= T

d(tr ϑ)
dt

+ M ∙
dϑ×

dt
. (21)

Using the results of transformations (17), (19), (21) and taking into account assumption (20) we write down the
energy balance equation (16) in the form

d(ρ∗Um)
dt

= τ s ∙ ∙
dεs

dt
+ q ∙

dγ

dt
+ T

dϑ

dt
+ M ∙

dψ

dt
, (22)

where the following notations are used

ϑ = tr ϑ, ψ = ϑ×, ϑ = ∇θ. (23)

Taking into account elasticity of the medium we obtain the Cauchy–Green relations

τ s =
∂(ρ∗Um)

∂εs
, q =

∂(ρ∗Um)
∂γ

, T =
∂(ρ∗Um)

∂ϑ
, M =

∂(ρ∗Um)
∂ψ

. (24)

According to the energy balance equation (22) the energy density is the function of four independent variables:εs,
γ, ϑ ψ. Let us define the energy density as

ρ∗Um = τ 0 ∙ ∙ε
s + q0 ∙ γ + T∗ϑ + M∗ ∙ ψ + G dev εs ∙ ∙ dev εs+

+
1
2
Kad ε2 + Υ ε ϑ +

1
2
Kϑ2 +

1
2

A γ ∙ γ + D γ ∙ ψ +
1
2

Γ ψ ∙ ψ .
(25)

Hereτ 0, q0, T∗, M∗ are the initial stresses,Kad is the adiabatic modulus of compression (the adiabatic bulk
modulus),G is the shear modulus,Υ, K, A, D Γ are constants whose physical sense will be discussed further.
The notation “dev” is used for the deviator part of tensor. Substituting Eq. (25) into the Cauchy–Green relations
(24) we obtain

τ s = τ 0 + Kad εE + 2G dev ε + ΥϑE, q = q0 + A γ + D ψ,

T = T∗ + Υ tr ε + Kϑ, M = M∗ + D γ + Γ ψ .
(26)

So, the reduced model of continuum of one-rotor gyrostats is described by Eqs. (2), (14), (15), (18), (20), (23),
(26).

5 Model of the “Thermal Ether”

We consider a continuum (see Figure 3) consisting of the body-points (3), (4). Let us assume the following.

Figure 3. Elementary volume of continuum consisting of body-points
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Hypothesis 1.The external forces and the force interactions between the particles of the medium are zero:

f ≡ 0, τ ≡ 0. (27)

Hypothesis 2.The moment stress tensorT is an isotropic tensor:

T = TE. (28)

Hypothesis 3.The external moments and the initial moment stresses are absent:

L ≡ 0, T0 ≡ 0. (29)

We will call the model of elastic continuum satisfying the hypotheses (27)–(29) the thermal ether. A body of finite
size in the medium dissipates energy into the medium due to the moment interactions.

In view of Eqs. (27)–(29) the equations of motion of the medium under consideration take the form

ρ̃
d

dt

(
v + B̂ω

)
= 0, ∇T = ρ̃

d

dt

(
B̂v + Ĵω

)
(30)

whereρ̃ is the mass density;̂B, Ĵ are the moments of inertia. The linear approximations of the kinematic relations
are

v =
du
dt

, ω =
dθ

dt
. (31)

Hereu(r, t), θ(r, t) are the displacement vector field and the rotation vector field correspondingly. Using the
notation

ϑ = tr ϑ ≡ ∇ ∙ θ (32)

and taking into account Eqs. (27), (28) the energy balance equation can be rewritten in the form

d

dt
(ρ̃Um) = T

dϑ

dt
. (33)

The elasticity assumption allows us to obtain the Cauchy–Green relations

T =
∂(ρ̃Um)

∂ϑ
. (34)

Let us specify the internal energy in the simplest form

ρ̃Um =
1
2
k̃ ϑ2 (35)

wherek̃ is the coefficient of stiffness. Then the constitutive equation takes the form

T = k̃ ϑ. (36)

It follows from Eqs. (30), (31), (32), (36) that the thermal ether is described by the wave equation

Δϑ −
ρ̃(Ĵ−B̂2)

k̃

d2ϑ

dt2
= 0. (37)

6 Spherical Source in the “Thermal Ether”

The simplest model illustrating the process of dissipation of the body-point energy into the thermal ether has been
considered in Ivanova (2011). Namely, the model problem of the interaction of a body-point with one-dimensional
semi-infinite continuum of body-points is solved. The problem of the interaction of a body-point with the thermal
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ether in the case of spherical symmetry (see Figure 4) is more complicated but a more appropriate model of the
process of dissipation. Now we consider the spherical source of radiusr0 consisting of the body-points (3), (4).

Figure 4. Interaction of the spherical source with the thermal ether

We suppose that the source can pulsate, and the change of its radius is characterized by the variableξ(t). At the
same time the body-points of the spherical source rotate about its radius. The angles of rotation of all body-points
are assumed to be the same and they are characterized by the variableψ(t). Thus, the kinematics of the spherical
source is described by the displacement vector and by the rotational vector

ξ = ξ(t) er ψ = ψ(t) er (38)

whereer is the unit vector of the spherical coordinate system. The inertia properties of the spherical source are
characterized by the massm evenly distributed on the source surface and the moments of inertiaB, J . The spheri-
cal source interacts with the thermal ether by means of an elastic connection. The elastic connection constitutes the
system of the identical springs working in torsion. Each of them connects the body-point of the spherical source
with the body-point of the thermal ether (see Figure 3). The stiffness of the connection per unit area of spherical
source is characterized by the stiffnessk∗/r0 where coefficientr−1

0 is introduced in order to the dimension of stiff-
nessk∗ be the same as the dimension of stiffness of the thermal ether. In the problem with the spherical symmetry
kinematics of the thermal ether is described by the variableθr(r, t) which is the angle of rotation of the medium
about the unit vectorer. Eq. (32) takes the form

ϑ =
∂θr

∂r
+

2
r

θr (39)

and the equation of motion of the thermal ether (37) takes the form

∂2(rϑ)
∂r2

−
1
c2

(rϑ)
..

= 0, c2 =
k̃

ρ̃(Ĵ−B̂2)
. (40)

The boundary conditions for the thermal ether are posed on the border of the source

k̃ ϑ
∣
∣
∣
r=r0

= −
k∗

r0

(
ψ − θr|r=r0

)
. (41)

The equations of motion of the elementary part of the spherical source are

m

4πr2
0

(
Bξ̈ + Jψ̈

)
= −

k∗

r0

(
ψ − θr|r=r0

)
,

m

4πr2
0

(
ξ̈ + Bψ̈

)
= f. (42)

Heref is an external force per unit area of the spherical source. Now we formulate the initial conditions. Suppose
that the thermal ether is at rest at an initial time, i. e. the displacements and angles of rotation as well as the linear
and angular velocities of particles of the continuum are equal to zero at the initial time. Let us assume the following
initial conditions for the spherical source

ξ(0) = ξ0, ψ(0) = ψ0, ξ̇(0) = v0, ψ̇(0) = ω0. (43)
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We will look for the solution of the Eq. (40) in the form given by d’Alembert and Euler:

ϑ(r, t) =
1
r
f(r − ct) +

1
r
g(r + ct). (44)

Since there are no perturbations at infinity we can assert thatg(r + ct) = 0. In view of zero initial conditions for
the thermal ether we see that the functionf(s − ct) is not equal to zero only on the negative semiaxis. Hence

ϑ(r, t) =






0, r > ct,

1
r
f(r − ct), r < ct.

(45)

It is easy to show that

∂(rϑ)
∂r

= −
1
c
(rϑ)

.
. (46)

By using Eqs. (39), (40), (46) we can show that

ϑ = −
(r

c
ϑ̇ +

r

c2
θ̈r

)
. (47)

In view of Eq. (47) the boundary condition for the thermal ether (41) takes the form

−
k̃ r0

c

(

ϑ̇ +
1
c
θ̈r

)∣∣
∣
∣
r=r0

= −
k∗

r0

(
ψ − θr|r=r0

)
. (48)

Let us express the difference(ψ − θr|r=r0
) from Eq. (48) and put it in the first equation of (42). As a result we

obtain

m

4πr2
0

(
Bξ̈ + Jψ̈

)
= −

k̃ r0

c

(

ϑ̇ +
1
cr

θ̈r

)∣∣
∣
∣
r=r0

. (49)

We integrate Eq. (49) taking into account the initial conditions. We obtain

m

4πr2
0

(
Bξ̇ + Jψ̇

)
= −

k̃ r0

c

(

ϑ +
1
c
θ̇r

)∣∣
∣
∣
r=r0

+
m

4πr2
0

(
Bv0 + Jω0

)
. (50)

Let us expressϑ|r=r0
from Eq. (50) and substitute it in the boundary condition for the thermal ether (41). As a

result we obtain

−
k̃

c
θ̇r

∣
∣
∣
r=r0

−
mc

4πr3
0

(
Bξ̇ + Jψ̇

)
+

mc

4πr3
0

(
Bv0 + Jω0

)
= −

k∗

r0

(
ψ − θr|r=r0

)
. (51)

We express the difference(ψ − θr|r=r0
) from Eq. (51) and put it in the first equation of (42)

m

4πr2
0

(
Bξ̈ + Jψ̈

)
= −

k̃

c
θ̇r

∣
∣
∣
r=r0

−
mcr

4πr3
0

(
Bξ̇ + Jψ̇

)
+

mcr

4πr3
0

(
Bv0 + Jω0

)
. (52)

Let us integrate Eq. (52) taking into account the initial conditions

m

4πr2
0

(
Bξ̇ + Jψ̇

)
= −

k̃

c
θr|r=r0

+
mc

4πr3
0

[
−
(
Bξ + Jψ

)
+
(
Bv0 + Jω0

)
t + Bξ0 + Jψ0

]
. (53)

Then we expressθr|r=r0
from Eq. (53) and put it in the first equation of (42). As a result we obtain the following
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system of equations:

m
(
Bξ̈ + Jψ̈

)
+ mβ

(
Bξ̇ + Jψ̇

)
+

mk∗

r2
0 ρ̃(Ĵ−B̂2)

(
Bξ + Jψ

)
+ 4πr0k∗ψ =

=
mk∗

r2
0 ρ̃(Ĵ−B̂2)

[
(Bv0 + Jω0)t + Bξ0 + Jψ0

]
, m

(
ξ̈ + Bψ̈

)
= 4πr2

0f

(54)

where coefficientβ is determined by the formula

β =
ck∗

r0k̃
=

k∗/r0√
k̃ρ̃(Ĵ−B̂2)

. (55)

A comparison of Eq. (54) with the equations obtained in Ivanova (2011) for the case of the interaction of a body-
point with the one-dimension continuum shows that although these equations somewhat differ from each other,
they have one important similarity. Both of them have the dissipative terms proportional to the angular momentum
and the same dependence of the coefficient of viscous dampingβ on the parameters of the model.

7 Hyperbolic Type Thermoelasticity

Now we consider the one-rotor gyrostat continuum which is described by Eqs. (2), (14), (15), (18), (20), (23),
(26). The quantityT characterizing the spherical part of tensor of the moment interaction of the rotors is supposed
to have the sense of temperature, and the quantityϑ characterizing the spherical part of the corresponding strain
tensor plays role of the volume density of entropy. Dimensions of the temperature and the entropy introduced in
the framework of the proposed model are different from dimensions of those in classical thermodynamics. This
problem can be solved by introduction of a normalization factora

T = aTa, ϑ =
1
a

ϑa. (56)

HereTa is the absolute temperature measured by a thermometer;ϑa is volume density of the absolute entropy. Let
us introduce the similar relations for the remaining variables

θ =
1
a

θa, ω =
1
a

ωa, M = aMa, ψ =
1
a

ψa, Lh = aLa
h. (57)

Since the new force characteristics are multiplied bya and the new kinematic characteristics are divided bya,
after substituting Eqs. (56), (57) into the energy balance equation (22) the normalization factora is cancelled and
Eq. (22) takes the form

d(ρ∗Um)
dt

= τ s ∙ ∙
dεs

dt
+ q ∙

dγ

dt
+ Ta

dϑa

dt
+ Ma ∙

dψa

dt
. (58)

By introducing new parameters

Ba =
B

a
, Ja =

J

a2
, Υa =

Υ
a

, Ka =
K

a2
, Da =

D

a
, Γa =

Γ
a2

, (59)

the normalization factora can be eliminated from all equations. Indeed, after substituting Eqs. (2), (56), (57), (59)
into Eqs. (14), (15) we obtain

∇ ∙ τ s −∇× q + ρ∗f = ρ∗
d2

dt2
(
u + Baθa

)
, ∇× μv = 2q. (60)

∇Ta −∇× Ma − βρ∗
d

dt
(Bau + Jaθa) + ρ∗L

a
h = ρ∗

d2

dt2
(
Bau + Jaθa

)
. (61)

It is well known that applying the linear theory is admissible in certain range of temperatures and entropy densities.
Therefore we introduce deviations of the quantities introduced above from their reference valuesT ∗

a , M∗
a (which
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are not zero) andϑ∗
a, ψ∗

a (which can be considered to be zero notice that without loss of generality):

Ta = T ∗
a + T̃a, Ma = M∗

a + M̃a, ϑa = ϑ∗
a + ϑ̃a, ψa = ψ∗

a + ψ̃a. (62)

Taking into account Eqs. (56), (57), (59), (62) and neglecting the initial stressesτ 0, q0 we reduce the constitutive
equations (26) to the form

τ s = Kad εE + 2G dev ε + Υaϑ̃aE, q = A γ + Da ψ̃a,

T̃a = Υa tr ε + Kaϑ̃a, M̃a = Da γ + Γa ψ̃a .

(63)

It is easy to see that the normalization factora is absent both in the equations of motion (60), (61) and in the
constitutive equations (63). That is due to the special choice of relations (59) between new and old parameters.

Now we consider a special case when the parametersA, Da, Γa, Ba are equal to zero, and the remaining parameters
are calculated by

βJa =
T ∗

a

ρ∗λ
, Ka =

T ∗
a

ρ∗cv
, Υa = −

αKizT
∗
a

ρ∗cv
, (64)

wherecv is the specific heat at constant volume,λ is the heat-conduction coefficient,Kiz is the isothermal modulus
of compression (the isothermal bulk modulus),α is the volume coefficient of thermal expansion,

Kad = Kiz
cp

cv
, cp − cv =

α2KizT
∗
a

ρ∗
⇒ Kad = Kiz +

α2K2
izT

∗
a

ρ∗cv
(65)

wherecp is the specific heat at constant pressure. In Ivanova (2010) it is shown that in the special case under
consideration Eqs. (18), (20), (60), (61), (63) can be reduced to the well known equations of the coupled problem
of thermoelasticity including the hyperbolic type heat conduction equation.

8 Volume and Shear Viscosities

Now we abandon the assumption that the parametersA, Da, Γa, Ba are equal to zero. In what follows an isentropic
process is considered, i.e. the volume density of entropy is assumed to be constant

ϑa = ϑ∗
a = const ⇒ ϑ̃a = 0 ⇒ T̃a = Υa ε. (66)

In this case choosing the parameterBa as

βBa = −
αKizT

∗
a

ρ∗cvηv
(67)

we can show that the following equation is the consequence of Eqs. (2), (14), (15), (18), (20), (23), (26):

ηv Δε − ρ∗
dε

dt
− β−1ρ∗

d2ε

dt2
= ρ∗Ψv, Ψv =

α cvηv

cp − cv
∇ ∙ La

h. (68)

It is easy to see that Eq. (68) agrees with the self-diffusion equation. The only difference is that the former
contains the inertial term. Therefore the parameterηv has the sense of the volume (acoustic) viscosity. Sinceηv is
the coefficient in the equation describing the isentropic process it will be called the isentropic volume viscosity.

Now we pass on to discussion of the shear viscosity. Let us choose elastic modulusA as

A =
λ (ηq − ηs)(Kad − Kiz)

cv η2
v

. (69)

The parametersDa andΓa we represent in the form

Da = −
αKizT

∗
a ηs

ρ∗cvηv
, Γa =

(ηq − ηs) T ∗
a

λ ρ∗
. (70)
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The physical sense of the constantsηs andηq will be discussed further.

Analogous to the isentropic process, suppose that vectorψa is a constant:

ψa = ψ∗
a = const ⇒ ψ̃a = 0 ⇒ M̃a = Da γ. (71)

We can show that from Eqs. (2), (14), (15), (18), (20), (23), (26) and the supposition (71) follows the equation with
respect to the unknown∇ × v. Neglecting the terms characterizing the external effects and the terms containing
the second time derivatives we obtain an approximate form of the equation. By using the notations (69), (70) the
equation takes the form

ηs Δ∇× v = ρ∗
d

dt
∇× v. (72)

It is easy to see that Eq. (72) is equivalent to the equation of vortex motion of a viscous fluid. Hence the parameter
ηs has the sense of the shear viscosity. Since Eq. (72) describes the isentropic process the coefficientηs will be
called the isentropic shear viscosity.

Let us consider the process where the antisymmetric part of the stress tensor is equal to zero

q = 0 ⇒ ψ̃a = −
A

Da
γ ⇒ M̃a =

(

Da −
AΓa

Da

)

γ. (73)

Taking into account the condition (73) we reduce Eqs. (2), (14), (15), (18), (20), (23), (26) to the equation with
respect to∇×v. Let us neglect the terms characterizing the external effects and the terms contain the second time
derivatives. As a result we obtain

ηq Δ∇× v = ρ∗
d

dt
∇× v + ρ∗Ψq, Ψq =

2AJa

DaBa − AJa

d2ϕ

dt2
. (74)

VectorΨq in Eq. (74) has the sense of the source term. The parameterηq represents the shear viscosity the value
of which, generally, differs from the value of the isentropic shear viscosityηs.

9 Coupled Problem of Thermoviscoelasticity

Now we write down Eqs. (18), (20), (60), (61), (63) in view of expressions for the parameters of the model (64),
(67), (69), (70):

∇ ∙ τ s −∇× q + ρ∗f = ρ∗
d2u
dt2

−
αKizT

∗
a

βcvηv

d2θa

dt2
, ∇× μv = 2q , ∇× ϕ = 0,

∇T̃a −∇× M̃a +
αKizT

∗
a

cvηv

(
du
dt

+
1
β

d2u
dt2

)

−
T ∗

a

λ

(
dθa

dt
+

1
β

d2θa

dt2

)

= −ρ∗L
a
h,

τ s =

[(
Kiz −

2
3

G
)
ε − αKiz T̃a

]

E + 2G εs, εs =
1
2

(
∇u + ∇uT

)
, ε = tr εs,

q =
λ (ηq − ηs)(Kad − Kiz)

cvη2
v

γ −
αKizT

∗
a ηs

ρ∗cvηv
∇× θa , γ = ∇× u − 2ϕ ,

∇ ∙ θa =
ρ∗cv

T ∗
a

T̃a + αKiz ε, M̃a = −
αKizT

∗
a ηs

ρ∗cvηv
γ +

(ηq − ηs) T ∗
a

λ ρ∗
∇× θa .

(75)

Here the reference values ofϑa andψa are considered to be equal to zero. Hence,ϑ̃a = ∇∙θa andψ̃a = ∇×θa.

The first equation in (75) is the linear momentum balance equations for the gyrostats. This equation differs from
the analogous equation for the classical Cosserat continuum by the last term on the right-hand side of the equation.
The second equation is the reduced angular momentum balance equation for the carrier bodies of gyrostats, and
the third one represents the kinematic restriction related to the rotation of the carrier bodies. The fourth equation in
(75) is the angular momentum balance equation for the rotors of gyrostats. It has the thermodynamical sense. If we
take the divergence of both sides of this equation and exclude∇ ∙ θa by using the tenth equation in (75) we obtain
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the heat conduction equation. The other equations in (75) are the constitutive equations and the expressions for
the strain tensors. Let us discuss the fourth equation in (75) in more detail. The motion of the rotors of gyrostats
cause the appearance of waves in the thermal ether. As a result the certain part of energy of the material particles is
spent on the formation of these waves. We suppose that the internal damping mechanism and the heat conduction
mechanism are provided due to the material medium energy dissipation into the thermal ether, and the third and
fourth terms on the right-hand side of the fourth equation in (75) are account for this process. To be exact, the
third term (containingu) provides the internal damping mechanism and the fourth term (containingθa) provides
the heat conduction mechanism.

Let us transform Eqs. (75) to the form corresponding to the classical continuum without microstructure. It is well-
known that an arbitrary vector can be represented in terms of the scalar and vector Helmholtz potentials. We use
this representation for dynamic term containing vectorθa in the first equation (75)

−ρ∗Ba
d2θa

dt2
= ∇p −∇× t, ∇ ∙ t = 0. (76)

Herep is the scalar potential,t is the vector potential. By using notation (76) we rewrite Eqs. (75) in the form

∇ ∙ τ̃ s −∇× q̃ + ρ∗f = ρ∗
d2u
dt2

, ∇× μ̃v = 2q̃ , ∇× ϕ = 0,

τ̃ s =

[(
Kiz −

2
3

G
)
ε − αKiz T̃a + p

]

E + 2 G εs, εs =
1
2

(
∇u + ∇uT

)
,

q̃ =
λ (ηq − ηs)(Kad − Kiz)

cvη2
v

γ −
αKizT

∗
a ηs

ρ∗cvηv
ψ̃a + t , γ = ∇× u − 2ϕ ,

Δp =
αKiz

βηv

[

ρ∗
d2T̃a

dt2
+

αKizT
∗
a

cv

d2ε

dt2

]

, Δt =
αKizT

∗
a

βcvηv

d2ψ̃a

dt2
, ε = tr εs,

ΔT̃a −
ρ∗cv

λ

[
dT̃a

dt
+

1
β

d2T̃a

dt2

]

= αKizT
∗
a

(
1
λ
−

1
cvηv

)[
dε

dt
+

1
β

d2ε

dt2

]

− ρ∗∇ ∙ La
h,

(ηq − ηs)Δψ̃a − ρ∗

(
dψ̃a

dt
+

1
β

d2ψ̃a

dt2

)

=

=
λαKiz

cvηv

[

ηs Δ∇× u − ρ∗

(
d∇×u

dt
+

1
β

d2∇×u
dt2

)]

−
λ ρ2

∗

T ∗
a

∇×La
h.

(77)

The first equation in (77) is the dynamic equation of the Cosserat continuum consisting of the ordinary classical
particles whose interaction is characterized by the symmetrical stress tensorτ̃ s = τ s + pE and stress vector
q̃ = q + t. Quantitiesp and t are the thermodynamic stresses. The constitutive equations forp and t are
represented by the differential equations (the eighth and ninth equations in (77)). The eleventh equation in (77)
is the heat conduction equation. The twelfth one is an auxiliary equation which is necessary to determine vector
t. Notice that the eleventh and twelfth equations follow from the angular momentum balance equation for the
rotors of gyrostats (the fourth equation in (75)). It is easy to see that the thermodynamic stressesp andt vanish
whenηv → ∞. In that case the problem of thermoviscoelasticity turns into the hyperbolic type thermoelasticity
problem.

10 Comparison with the Quantum Mechanical Approach

According to the quantum-mechanical ideas of Landau and Lifschitz (1989, 1979), in solid bodies the dependence
of the acoustical absorption factorγ on the frequencyω is determined by the following formula (see Prokhorov
(1992), p. 658)

γ = 1, 1 cv Ta Γ2
∗

ω2τ

c3ρ∗(1 + ω2τ2)
, (78)

whereΓ∗ is the Gr̈uneisen constant (Γ∗ = αKad/cv), τ is the relaxation time scale (of order10−11 sec). The
diagram of dependence of the acoustical absorption factor on frequency (78) is represented in Figure 5. According
to Eq. (78) in the range of relatively low frequenciesγ is proportional toω2 (Akhiezer mechanism of absorption),
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at frequencies of1010 – 1011 Hz the acoustical absorption factorγ is proportional toω (Landau–Rumer mechanism
of absorption), and at higher frequenciesγ tends to a constant.

Figure 5. Dependence of the acoustical absorption factor on frequency

According to the classical theory of thermoelasticity the acoustical absorption factorγ is proportional toω2 at
all frequencies. The dependence ofγ on the frequency obtained by using of the hyperbolic type theory of ther-
moelasticity is in qualitative agreement with Eq. (78). Notice that the hyperbolic type theory of thermoelasticity
contains one additional parameter compared with the classical theory of thermoelasticity. Neither the classical
nor the hyperbolic type theory of thermoelasticity does not allow us to achieve quantitative agreement between
theoretical and experimental values ofγ. The proposed theory of thermoviscoelastisity, as well as the hyperbolic
type theory of thermoelasticity, is in qualitative agreement with the dependence given by Eq. (78). Furthermore,
the proposed theory contains the additional parameters which can be chosen so that the theoretical values of the
acoustical absorption factor and the absorption factor of transverse waves will be in quantitative agreement with
the their experimental values.

11 Conclusion

Thus, we construct the theory of thermoviscoelasticity (in frame of the continuum mechanics) which possesses
the following properties. In the area of low frequencies it leads to the consequences similar to the consequences
obtained from the classical theories. In the area of hypersonic frequencies the proposed theory leads to the con-
sequences similar to the consequences obtained from the quantum-mechanical theories. Moreover the proposed
theory allows us to give the mechanical interpretation of the mechanism of the thermal conductivity and the mech-
anism of the internal damping. In future we plan to carry out further development of the proposed theory. The
first direction of the development is concerned with consideration of nonlinear effects in the context of the same
mechanical model. This is necessary for describing the behavior of substance in the states near the phase transi-
tions and heat-conduction processes under the circumstances of quickly varying and superhigh temperatures. The
second direction is modification of the mechanical model by taking into account the additional degrees of freedom.
This is necessary for introducing the chemical potential and a number of additional physical characteristics of the
medium.
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