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Fracture Toughness of Fibrous Membranes

C. T. Koh, M. L. Oyen

Random fibrous networks exist in both natural biological @amdjineering materials. While the nonlinear de-
formation of fibrous networks has been extensively studliedyunderstanding of their fracture behaviour is still
incomplete. To study the fracture toughness of fibrous riedderthe near-tip region is crucial because failure
mechanisms such as fibril rupture occur in this region. Thesaderation of this region in fracture studies is,
however, a difficult task because it involves microscopichaeical responses at a small length scale. This pa-
per extends our previous finite element analysis by incatonyg the microscopic responses into a macroscopic
domain by using a submodeling technique. The detailed stfidhicrostructures at crack tips show a stochastic
toughness of membranes due to the random nature of fibrowsret Further, the sizes of crack tip region, which
are sufficient to provide a reasonable prediction of fraetbehaviour in a specific type of fibrous network, were
presented. Future work includes improving the currentdinessumption in the macroscopic models to become
nonlinear.

1 Introduction

Biological materials such as the actin cytoskeleton in b(t@tleg et al., 2010), collagen in tissues (Kendra et al.,
2010) and fibrin in blood clot (Brown et al., 2009), and engimgg materials such as electrospun scaffolds (Blond
et al., 2008) and paper materials (Isaksson, 2010), havestiactures in the form of random fibrous networks.
The understanding of the fracture of these materials cammigtfacilitate the production of new materials with
improved toughness, but also provides insights for newirtreat of diseases and conditions that involve network
failure. Despite its importance, the understanding of taetfire of fibrous materials is stillincomplete. One of the
main challenges is that fracture study involves multiplegtl scales: overall material failure at millimeter scale,
nonlinear responses of fibrous networks at micrometer saatéfibril rupture at nanometer scale.

The fracture toughness of fibrous materials has been stbgiesing various experimental and modeling tech-
nigues based on their length scales. For instance, the damaghanisms of non-woven felts, which have fiber
diameters approximately 1%, were studied by considering fibrous networks up to 10 mmh stiedy can con-
sidering microstructure responses in a length scale,slwtmparable with the macroscopic length scale (Ridruejo
et al., 2010). On the other hand, for fibrous materials, thaeta small fiber diameter (e.g. micro-scale fiber diam-
eter in paper (Hagglund and Isaksson, 2008); nano-scaledignmeter in polymer (Treloar, 2009) and electrospun
scaffold (Sundarrajan and Ramakrishna, 2007)), the ceraidn of fibrous networks up to millimeter scales re-
quires large computational resources. The damage meamapissuch materials have been studied by either only
considering detailed study of fibrous networks in the ngaregion (Isaksson and Hagglund, 2007) or localized
strain mapping at macro-scale without detailed consideraif fibrous networks (Stachewicz et al., 2011). In
addition to these one-length-scale studies, two-lengéttesstudies such as modeling of effective-medium approx-
imation of fibrous networks in a macroscopic domain have la¢sn studied (Astrom and Niskanen, 1993).

The objective of the work presented here is to examine fradbehaviour of fibrous materials at two length
scales. Finite element analysis was used to incoorperatmseopic responses in the crack-tip region into a
macroscopic domain by using a submodeling technique. Thideting technique was compared to the technique,
which applied K-dominant displacement fields at the outeshmef microstructures, i.e. cross-linked fibrous
networks. Detailed modeling of fibrous networks capturesrfibptures, which cause cracks to start propagating.
Further, the stochastic nature and size effect of fibrousorés were examined.
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2 Finite Element Modeling at Two Length Scales

Mechanical responses of fibrous materials were studiedaalkemgth scales: the macroscopic model at millimeter
scale and the microscopic model at micrometer scale (Figur&he macroscopic model consists of a strip with
25 mm width and 3 mm height, modeled by two-dimensional pisiness elements in finite element software
ABAQUS (Version 6.11, SIMULIA, Providence, RI). It was pedl uniformly in vertical direction along the upper
edge and constrained vertically at the bottom edge. Notetlieawidth of the strip is approximately eight times
greater than the height of the strip, and the length of thekdsaapproximately one third of the width of the strip.
Such specimens exhibit fracture in shear-dominant regsoftdenesky and Cohen, 2010). All simulations were
performed using nonlinear finite element analysis, whialsters large strains and rotations.

The microscopic models consist of two dimensional fibrousvaoeks, constructed in circular unit cells. These
fibrous networks were generated in MATLAB (The MatWorks, islgt MA) by constructing lines from random
points with random angles. The cross-linked fibrous netaavkre modeled by rigid bonding at all intersection
points among fibrils. The fibrils were modeled with a lengti 6fum. However, these fibrils were cut whenever
they exceeded the model cell edges. Further, a radiusHeraith was assigned in the circular fibrous networks
by cutting the fibrils that cross the notch path.

The network properties including fibril modulds; = 100 MPa, cross-link densitygensity = 2.35+0.15 wm =2

and fibril diameterl; = 50 nm (Oyen et al., 2005) are representative of collagenous mksan amnion (i.e. a
thin collagenous membrane continuous with the placent&ii@y al., 2004)). However, the networks presented
here have two features (i.e. fiber length and bonding cangislightly different than in amnion (Koh and Oyen,
2011). The fibrils were modeled by less than 1 um length beamagits in ABAQUS. The beams were defined
by stretching stiffness p (i.e. axial force needed to dtratanit axial strain) and bending stiffnesgi.e. bending
moment needed to bend a unit radius of curvature). A nodkitebkehavior resembling collagen fibrils was defined:
the fibrils were very easy to bend (u = 1XfONm?) but difficult to stretch £ = 5 N). Both the stretching and
bending stiffness depend not only on the Young’'s moduluataat the cross-sectional area of fibrils (Onck et al.,
2005).

The macroscopic model was linked with microscopic modela Bubmodeling technique. First, the macroscopic
model was simulated to obtain the macroscopic responsés atack tip field. Then, the displacement field ob-
tained from the macroscopic model was further assignedeaaphlied displacement of the microscopic models.
Note that the macroscopic model was modeled in the meshhwhé&nodes were matched with the microscopic
models at the boundaries. Furthermore, nonlinear fracasjgonses of fibrous networks was studied by applying
a displacement at the outer boundary of the circular fibrogeshas (Koh and Oyen, 2011). The imposed displace-
ment componentéu;, us) were based on linear elastic fracture mechanics (LEFM) agre wxpressed in terms
of the polar co-ordinateg, ) as (Kanninen and Popelar, 1985):
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whereK is the mode | stress intensity factor aBds shear modulus. The fibrous networks are assumed to be in
plane stress by having= (3 — v)/(1 + v) with Poisson’s ratiar = 0.3. The shear modulus was defined as 4
MPa. As the displacement fields obtained from the macrosaopidel shall be in a good agreement with Eq. (1)
and Eqg. (2), the nonlinear responses of fibrous networksxgreceed to be similar for our previous and current
modelling approaches, but this was tested explicitly here.

The failure criterion was defined as following: a fiber rupgiwhenever local stress exceeds the tensile fracture
strength of fibrils, defined as; = 30 M Pa. The experimental measurements of the fracture strengtbliaigen
fibrils vary from 20 MPa to 600 MPa (Grant et al., 2008). In ABA&, failure (e.g. critical crack opening) was
determined whenever the local maximum stress of fibrilstreddhe strength of fiber. These local maximum
stresses were, however, not a fixed value; they have an @m0 — 32 MPa as shown in table 1) due to discrete
time steps in ABAQUS. The critical crack opening was obtdimdnen the first fibril ruptures and allows crack
propagation.
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The size of the crack-tip region in a network was studied byugating microscopic models with four radii:8n,
6.25um, 12.5um and 25um. These different sizes of circular networks were obtairredhfthe same master
network and thus had the same network configuration at thek ¢ija (figure 2). The nodes at the periphery of
the circle were used as the boundary nodes to connect to tbeseapic model. Furthermore, four additional
networks which followed the same randomization procedusesvgenerated with 2bm in radius, to study the
stochastic nature of different random fibrous networks. §tbehastic properties among these networks as shown
in Table 1 include (1) stochastic fiber density, i.e. sum dffilength per unit area, and (2) cross-link density, i.e.
sum of cross-links per unit area.
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fixed R=(6.25,12.5, 25) um

Figure 1. Schematic illustraion of the inelastic regionddie) in the macroscopic models (left) and the fibrous
networks in the microscopic models (right).

Figure 2: Mesh and boundary nodes (highlighted in red (Yats)the microscopic models of radik =
(3, 6.25, 12.5, 25) um.

Networks | Fiber density xm~—!) | Cross-link densitym—") | Maximum stress (MPa
1 2746.2 2.4665 29.96
2 2773.9 2.4421 31.05
3 2783.6 2.4619 30.01
4 2703.3 2.3922 32.17

Table 1: Fiber density, cross-link density and actual maxinstress at critical crack opening of four random
fibrous networks.
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3 Results

3.1 Failureat Crack Tip

Figure 3 shows the initial mesh and the stress distributfdhecrack-tip region in macroscopic model at macro-
scopic crack opening../h = 0.024. Different crack-tip region sizes, i.e. radiis= (3, 6.25, 12.5, 25) um,
studied in this paper are highlighted with red lines. Notat the displacement of nodes which were located at
these lines was used as the applied displacement of thesoapic models.

Figure 4 shows the undeformed and deformed fibrous netwoitksfour different model sizes when the crack
starts propagating. Note that these networks have appadeiynthe same cross-link density. Each of them has
size twice larger than the network on the left. The stresd@tctack tip predicted by the macroscopic model
(both S and Sy) is smaller than the prediction of microscopic models. Tihess distribution indicated in fibrous
networks is the stress of individual fibril. The maximum streccurred at the crack tips and this stress would have
caused the fibril to rupture. The maximum stress always dociension rather compression. Fibrils, which have
very small bending stiffness, bent rather than compressed.

Figure 5 shows that the maximum stress of fibers in fibrous arsvwas increased when the crack opening
increased. The fiber streng#ty = 30 MPa indicates the initiation of crack propagation. The cracktstprop-
agating at the corresponding macroscopic crack opening /) of approximate 0.02125. By comparing the
network with different sizes, the fibrous network with regli® = 3 um exhibits significantly larger maximum
stress than the fibrous networks with radRis= (6.25, 12.5, 25) um. Note that the large radius fibrous networks
i.e. R = (6.25, 12.5, 25) um exhibit a consistent prediction of maximum stress. On tleiohand, there is a
variation in maximum stress among four random fibrous neksvof sizeR = 25 um due to the stochastic nature
of the networks.

_________________ +1.943e+00 +6.232e+00
N +1.531e+00 +4.578e+00
=i R=6.25 pm +1.119e+00 +3.525e+00
_____ R=12.5pm +7.070e-01 +2.171e+00
+2.950e-01 +8.180e-01

R=25.0 pm -1.169e-01 -5.355e-01

Figure 3: The initial configuration (left), stress distritoun S, (middle), and stress distributiosy,, (right) of the
crack-tip region in the macroscopic model. The red linescig four sizes of crack-tip regions studied in this
paper.
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Figure 4: The undeformed (upper) and deformed (lower) fibroetworks at critical crack openings, with model
radii: (@) R = 3.0 um, (b) R = 6.25 um, (¢) R = 12.5 yum and (d)R = 25.0 um.

T U T B T J T i T A T L T
50 I- Radius 3, 6.25,12.5,25mm: ® ® & A .
L Networks 1, 2, 3, 4: A < > v |
—~ 40 | b i
g y -
A
= 3 (] 4 4
e 6,=30+3MPa o
L e e . -
R A =
a i N AD g 1
[0]
g 20+ PR G i
£ | 4° ~ ]
2 *
x 10 me’ AR .
= > 1 6w
i > AAS — I 1
N
0+ fixed -1
1 I 1 L 1 L 1 "

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Remote Displacement/Height, 5 _/ h

Figure 5: Maximum stress of fibrils in the fibrous networksdicéed by the microscopic models with different
radius and different random networks.
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3.2 Critical Crack Openings

Figure 6 shows the critical crack openings, i.e. the notatnom profile when crack starts propagating. These
crack openings were obtained whenever a fiber in the micpisooodels reached the assigned fiber strength. The
corresponding macroscopic responses when a crack stapagating were also shown. The comparisons shown
in figure 6 include (1) the prediction of the two-length-gcalodels using a submodeling technique versus the
prediction of our previous models (Koh and Oyen, 2011) bylyapg the K-displacement fields at the outer mesh,
which was based on LEFM, (2) the prediction of the macroscapddel versus of the microscopic models, and
(3) the variation among responses of fibrous networks gty the same randomization procedure. First, the
submodeling technique provide similar predictions as tB&M equation technique. Second, the critical crack
opening predicted by the macroscopic model and the micpdsanodel are similar. However, note that the
critical crack opening profiles of the macroscopic modelevatained based on the corresponding responses of
the microscopic models. Third, there is a significant vaaraamong different random networks; this difference is
similar to the variation of the maximum stress of fibrous reks (figure 5), which determines the network failure.
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Figure 6: The comparison of critical crack opening profilEskastic fibrous networks, predicted by the macro-
scopic model and microscopic models using a submodelifmigque, and the LEFM-equation approach.

3.3 Energy Analysis

Figure 7 shows the strain energy of fibrous networks, which eeculated from microscopic models with differ-
ent radius and different random networks. The strain eneag/increased when the crack opening was increased.
Microscopic models with radiu® = (3, 6.25, 12.5, 25) um predicted similar strain energy per notch length
(U/L,). Most of the predictions have similéf/L,, curves, but there is a significant variation among the pre-
dictions. Networks 1, 2 and 3, which have approximately &slidentical of fiber density (table 1), have similar
energy curves while network 4, which has a smaller fiber dgrsas a substantially different strain energy curve.
This variation becomes more apparent when the crack opé&mingases.
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Figure 7. Strain energy of fibrous networks predicted in pscopic models with different radius and different
networks.

4 Discussion

4.1 Stochastic Toughness

Due to the singular nature of the elastic stress field, theketip region responds mechanically in an inelastic
manner, where the processes of fiber rupture and bond breakagrs (figure 1 (middle)). Within this region,
the linear elastic solution is invalid (Livne et al., 2010jhe fracture criterion defined in continuum mechanics
considers particular components of the stress or stragoteat the crack tips. The definition of such a fracture
criterion hardly captures the physical failure of the miatemainly because failure happens at a smaller scale
than the continuum elements. This study therefore corsttierdetailed study of microstructures at crack-tips and
defines failure based on a physical basis, i.e. fiber rupture.

A region surrounding this nonlinear crack-tip region is Wmoas the K-dominant region, which exhibits linear
responses and can be described by the stress intensity facto K (o, a) (Kanninen and Popelar, 1985). Based
on LEFM, by describing the mechanical responses with stnésasity factors, the K-dominant region is directly
connected to the far-field displacement in the macroscaopicain. The prediction of a submodeling technique is
in good agreement with the prediction of LEFM-equation apph. However, both the submodeling technique and
the LEFM-equation approach assume the materials respogatliy elastic in macroscopic scale, but many fibrous
materials including biological polymers and rubber-likaterials exhibit nonlinear strain stiffening behaviours
(Kendra et al., 2010). The invalidity of linear assumptiarfibrous materials motivates further work to consider
nonlinear behaviour in the macroscopic domain.

The stochastic nature of fracture toughness of the fibrousnats were observed in (1) maximum stress at critical
crack opening (figure 5), (2) critical crack opening profi{gure 6), and (3) strain energy (figure 7). These
variations result from four main factors. First, the vadatof network topology (e.g. fiber orientation and fiber
length between two cross-links) at the crack tips resultifferent maximum stress across networks. Second, the
variation of fiber density (table 1) resulted from the vadatof the total fiber length in the microscopic models,
and further influenced the variation of strain energy. Thiheé cross-link density can affect the deformation of
fibrous networks and thus its variation (table 1) contridutethe stochastic nature of fracture toughness. Fourth,
the maximum local stress which determines the criticallcopening has an overshoot due to discrete time steps
in ABAQUS.
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4.2 The Size of Microscopic Models

In order to eliminate any variation caused by different B&stic random networks, the fibrous networks with four
different radii presented here were obtained from the sash&ark and have the same fibril configuration at the
crack tip. The size of microscopic models were studied bypamng their maximum stress (figure 5) and strain
energy. Fibrous networks with radius R = 6,2%, R = 12.5um and R = 25:m exhibit similar quantitative values
in both maximum stress and strain energy while fibrous nétwith radius R = 3um exhibited different values
from the rest of the networks. This suggests that the comtmassumption at crack tip region smaller tham3

is physically unrealistic. A crack tip region with a radiasder than 6.2%m is sufficient to provide a reasonable
prediction of fracture behavior.

The material toughness can be quantified by the energy needeitiate crack propagation. The total enetdy

of the fibrous networks can be describedas- Up + Ue + Us WhereU, is the potential energy of the applied
boundary conditions at the periphefy; is the strain potential energy stored in deformed fibrougvords and

Us is the free energy expended in creating the new crack swf&#sed on the Griffith energy balance concept,
fibrous networks with crack lengthare in equilibrium by the means @f//dc = 0. During crack propagation
with creation of new fracture surfaces, the mechanicalg@ndecreases!(Ua + Ug)/dc < 0) while the surface
energy increaseglUs/dc > 0). A crack would extend whedU /dc was negative (Lawn, 1998). Similar strain
energy per notch lengti{/ L,,) for microscopic models with radil® = 6.25um, R= 12.5um andR = 25 um
suggest similar predictions for toughness.

5 Conclusions

The submodeling technique used in the finite element arsalysable to capture the stochastic nature of failure
mechanisms, i.e. fiber ruptures at the crack tips. The mugledipresented in this paper was compared with our
previous study, which investigated nonlinear responséibimfus networks by applying K-dominant displacement
fields. Both the current and previous studies are suitableé&terials which exhibit linear behavior at macroscopic
scale. Future work will involve relaxing the linear assuimptto utilize a nonlinear response in the macroscopic
domain. Further, the microscopic model with a small radRis 6.25.m) can capture similar failure behavior as
the microscopic model with a large radilR £ 25 pm); such understanding provides a guideline to help reduce
computational usage in future studies of microstructyredntrolled fracture.
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