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Computational Homogenisation of Polycrystalline Elastoplastic
Microstructures at Finite Deformation

E. Lehmann, S. Loehnert, P. Wriggers

During sheet bulk metal forming processes, both flat geometries and three-dimensional structures change their
shape while undergoing large plastic deformations. As for metal forming processes, FE-simulations are often
done before in-situ experiments, a very accurate model for respective structures is required, performing well at
small geometries possessing small curvatures as forms with wide as well as lateral characteristics.
Because of the crystalline nature of metals, certain anisotropies have to be taken into account. Macroscopically
observable plastic deformation is traced back to dislocations within considered slip systems in the crystals causing
plastic anisotropy on the microscopic and the macroscopic level.
A crystal plasticity model for finite deformations is used to model the behaviour of polycrystalline materials in
representative volume elements (RVEs) on the microstructure. In order to circumvent singularities stemming from
the linear dependency of the slip system vectors, a viscoplastic power-law is introduced providing the evolution of
the plastic slips and slip resistances. The model is validated with experimental microstructural data under defor-
mation. Through homogenisation and optimisation techniques, effective stress-strain curves are determined and
can be compared to results from real forming processes, leading to an effective elastoplastic material model which
is suitable for processes in the sheet bulk metal forming field.

1 Introduction

Phenomenological macroscopic observations of metals do not acknowledge actual heterogeneities in the mi-
crostructure at once. For some time, the mechanics of heterogeneous and polycrystalline materials have been
limited to the formulation of simplified models taking into account some aspects of the microstructural character-
istics. However, the proceeding increase of computational capabilites enables a more elaborated approach towards
the development of a suitable material model for specific requirements and numerical simulations in the form-
ing field. At the same time, modelling the microstructure is already a complex task as certain microstructural
properties have to be considered. On the microscopic level of metals, anisotropies have to be taken into account
stemming from dislocations occurring on the atomic lattice within considered slip systems. Such mechanisms are
macroscopically observed as plastic anisotropic yielding.

In order to take into account the microstructural complexity on the one hand and aiming at the ability to compute
real manufacturing and forming processes on the other hand, a macroscopic effective material model which suf-
ficiently represents the microstructure has to be developed. Due to the various different boundary conditions the
material can be constrained to during fabrication stages, it has to be validated for these applications. A huge chal-
lenge appears in the attempt to fulfil the requirements of both sheet and bulk metal forming processes. In doing so,
the model approach has naturally to be performed in a three-dimensional way, although the structure can certainly
be constrained to any geometrical limit or constitution. A validation and comparison to real microstructures is
performed with two-dimensional specimen and distributed data within this contribution. However, the dislocation
movement on the microstructure evolves in three required directions.

2 Constitutive Framework: Finite Multiplicative Multisurface Elastoplasticity

The deformation gradientF = ∂x/∂X with Jacobian J= det F > 0 maps tangent vectors of material lines in the
reference configurationB ∈ R3 onto tangent vectors of deformed lines in the current configurationBt ∈ R3 and is
decomposed into an elastic and a plastic part. The elastic partF e contributes to stretching and rigid body rotation
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of the crystal lattice, the plastic partF p characterises plastic flow caused by dislocations on defined slip systems

F = F eF p. (1)

The multiplicative split assumes a local unstressed intermediate configuration defined by the plastic deformation
gradient, see Fig. 1, which can be determined through an evolution assumption and whose initial condition is as-
sumed to beF p
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Figure 1: Multiplicative elasto-plastic decomposition of the deformation gradientF

Further, a volumetric-deviatoric split of the deformation gradient and its constituents is performed

F iso = J−1/3F , F e
iso = Je−1/3F e, F p

iso = Jp−1/3F p, (2)

with J = Je due to fulfilling the requirement of present plastic incompressibility expressed through Jp = 1.

2.1 Thermodynamical Considerations

The deformation power per unit undeformed volume can be written as

P : Ḟ = P̄ : Ḟ e + Σ̄ : L̄
p
, (3)

whereP̄ = PF p T is the1st PIOLA -KIRCHHOFF stress tensor relative to the intermediate configurationB̄t and
Σ̄ = F e T PF p T = F e T τF e−T a stress measure conjugate to the plastic velocity gradientL̄

p
= Ḟ pF p−1 on

B̄t, τ being the KIRCHHOFFstress tensor onBt. Further, it is

P̄ = F eS̄, S̄ = C̄
e−1

Σ̄, C̄
e

= F e T F e, (4)

whereS̄ is the2nd PIOLA -KIRCHHOFF stress tensor relative to the intermediate configurationB̄t which is sym-
metric,C̄

e
is further the elastic right CAUCHY-GREEN tensor onB̄t.

The evolution of the plastic deformation gradientF p is defined by the plastic flow equation, resulting from the
plastic rate of deformation̄L

p
. In the presence ofnsyst systems undergoing plastic slip, represented by the plastic

shear rateṡγα, the plastic flow equation is further generalised

L̄
p

= Ḟ pF p−1, L̄
p

=
nsyst∑

α=1

γ̇αs̄α ⊗ m̄α, (5)

s̄α being the slip direction vector and̄mα being the slip plane normal vector of theα-th slip system{s̄α, m̄α}.
The slip system vectors have the propertiess̄ ∙ m̄ = 0 and thus(s̄α ⊗ m̄α)(s̄α ⊗ m̄α) = 0. The generalisation
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in (5) leads to the modified evolution equation of the plastic deformation gradient depending on the plastic slips

Ḟ p =

[
∑

α

γ̇α s̄α ⊗ m̄α

]

F p. (6)

2.2 The Resolved SCHMID Stress

The SCHMID stressτα is the projection of̄Σ onto the slip system̄sα ⊗ m̄α

τα = (dev[Σ̄] ∙ m̄α) ∙ s̄α = dev[Σ̄] : s̄α ⊗ m̄α. (7)

As the slip system tensor̄sα ⊗ m̄α is purely deviatoric, only the deviator of the stress tensor contributes to the
resolved stress. With the relations in (4) and some straightforward recast, it is

τα = Re T τRe : s̄α ⊗ m̄α. (8)

2.3 Elastic Response

The elastic part of the deformation is gained from a NEO-HOOKEean strain energy function. It is assumed that
large plastic strains occur during metal forming processes and dominate the forming behaviour and the elastic
strains remain small relative to the plastic strains. Thus, the choice of the appearance of the elastic response is
rather arbitrary and can be assumed to be isotropic. The description is hence given in terms of the elastic left
CAUCHY-GREEN tensorbe. Applying a volumetric-deviatoric split yields

ρψ(be
iso, Je) =

μ

2
(tr be

iso − 3) +
κ

2
(ln Je)2 (9)

τ = 2 ρ
∂ψ

∂be be = μ dev(be
iso) + κ ln Je 1, dev(τ ) = μ dev(be

iso), vol(τ ) = κ ln Je 1. (10)

Because slip-system tensors are deviatoric by construction, their internal product by the hydrostatic KIRCHHOFF

stress components vanishes and the SCHMID stress in (8) remains

τα = μ s̄α
iso ∙ m̄

α
iso, s̄α

iso = F e
iso ∙ s̄

α, m̄α
iso = F e

iso ∙ m̄
α. (11)

2.4 A Rate-Dependent Formulation via a Viscoplastic Power-Law

A rate-dependent theory enables the modeling of creep in single crystals and is performed by the introduction of a
power law-type constitutive equation for the ratesγ̇α of inelastic deformation in the slip systems

γ̇α = γ̇0
τα

τy

(
|τα|
τy

)m−1

= γ̇0 τα |τα|m−1 τ−m
y , (12)

γ̇0 andτy being the reference shear rate and slip resistance, andm being a rate-sensivity parameter. Within an
isotropic TAYLOR hardening model, the evolution for the slip resistanceτy is considered

τ̇y =
∑

α

H ∙ |γ̇α|, γ =
∫ t

0

γ̇ dt, γ̇ =
∑

α

γ̇α. (13)

3 Incremental Kinematics

The slip rate is discretised with a standard backward EULER integration in order to obtain incremental evolution
equations for the update of the evolving quantities

Δγα = Δt γ̇α (F e) . (14)
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The implicit exponential integrator is then used to discretise the plastic flow equation (6)

F p
n+1 = exp

[
∑

α

Δγαs̄α ⊗ m̄α

]

∙ F p
n. (15)

Due to the propertydet[exp(s̄α ⊗ m̄α)] = exp[tr (s̄α ⊗ m̄α)] = exp(0) = 1, it preserves the plastic volume.
Here,F e trial

n+1 = fn+1 F e
n, is thetrial elastic deformation gradient withfn+1 = F n+1 F−1

n = 1+gradn (Δu) and

Jn+1 = det F n+1, F e trial
iso = J−

1/3

n+1 F e trial
n+1 , so that an exponential update for the new elastic deformation gradient

can be obtained

F e
n+1 = F e trial

n+1 ∙ exp

[
∑

α

−Δγαs̄α ⊗ m̄α

]

. (16)

The currenttrial resolved shear stressτα trial
n+1 , cf. (11), is obtained with the current orientation of the crystal through

rotation of the slip system with the trial elastic deformation gradient

τα trial
n+1 = μ s̄α trial

iso ∙ m̄α trial
iso , s̄α trial

iso = F e trial
iso ∙ s̄α, m̄α trial

iso = F e trial
iso ∙ m̄α. (17)

3.1 Equilibrating the Plastic State

Omitting the subscriptn + 1, a residual based on the exponential map is defined to equilibrate the plastic state,
leading to a local NEWTON-RAPHSONalgorithm through a TAYLOR expansion about the reached pointF e

k

R(F e) := F e − F e trial ∙ exp

[
∑

α

−Δγαs̄α ⊗ m̄α

]

= 0, (18)

and

Rk + ∂F e
k
R(F e

k) : ΔF e
k = 0, (19)

ΔF e
k = −

[
∂F e

k
R(F e

k)
]−1

: Rk, F e
k+1 = F e

k + ΔF e
k, (20)

with the important derivatives

[∂F e R(F e)]ijkl = δikδjl + F e trial
im Emjpq

[
∑

α

s̄α ⊗ m̄α ⊗ ∂F e Δγα

]

pqkl

(21)

Emjpq =
∂ exp

(
[−
∑

α Δγα(F e) s̄α ⊗ m̄α]mj

)

∂ [−
∑

α Δγα(F e) s̄α ⊗ m̄α]pq

, (22)

and

∂F e Δγβ = Δt γ̇0 m |τα|m−1 τ−m
y

[
Ξα β

]−1
∂F e τα (23)

∂F e τα = −
2
3

τα F e−T + μ J−1/3 [m̄α
iso ⊗ s̄α + s̄α

iso ⊗ m̄α] (24)

Ξα β = δα β + Δt γ̇0 mτα |τα|m−1 τ−m−1
y

∑

β
H sign(Δγβ). (25)

4 Polycrystalline Model

4.1 VORONOI Cell Grains

The polycrystal is modelled with three-dimensional VORONOI cell shaped grains. Through the DELAUNAY tri-
angulation of a given random point seed, a polycrystal of arbitrary size can be obtained. The crystal grains are
embedded in a bounding box of stated size (Fig. 2(a)) and meshed with tetrahedral finite elements based on a
reasonable edge size ratio.
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(a) Polycrystal consisting of VORONOI

cell grains.
(b) Cut through polcrystalline structure. (c) Three-dimensional view into the cut-

ted polycrystal.

Figure 2: Polycrystalline model within bounding box200× 200× 200 μm. The VORONOI cell shaped
crystal grains are obtained through DELAUNAY triangulation of a random point seed.

4.2 Microstructural Effects

In order to understand the microstructural model, the modelled microstructural effects have to be analysed. Never-
theless, the microstructural validation is performed in order to be able to determine and capture particular macro-
scopic effects. The development of an overall macroscopic material model remains in focus. For the validation
of the model, a real structure which is analysed under a scanning electron microscope (SEM) is taken into con-
sideration. Experimentally obtained data is included in the simulation input, e.g. EULER angles and the grain
size distribution of the polycrystalline structure at hand. Whereas the orientations, e.g. the EULER angles and
the SCHMID factors, of the real structure in the SEM is taken pixelwise from a two-dimensional view onto the
polycrystal, those of the simulations are evaluated elementwise for a three-dimensional specimen. For differently
orientated grains, all slip systems are reorientated according to the BUNGE convention with the three anglesφ1, Φ
andφ2

RΨ =




1 0 0

cos φ1 − sin φ1

0 sin φ1 cos φ1



 RΘ =




cos Φ − sin Φ 0
sin Φ cos Φ 0

0 0 1



 RΦ =




1 0 0

cos φ2 − sin φ2

0 sin φ2 cos φ2



 , (26)

R = Rφ1 ∙ RΦ ∙ Rφ2 . (27)

For the finite element simulations, the bulk modulus isκ = 152.2 GPa and the shear modulusμ = 79.3 GPa.
The plastic parameters are the initial critical shear stressτy 0 = 80 MPa, the reference shear stressγ̇0 = 0.001 /s,
the hardening modulusH = 150 MPa and the rate sensivity parameterm = 5.0. The bcc slip system vectors
are chosen according to Tab. 1 for pre-texturing the material as in the experiment. The significant effect lies in
the rotation of the slip systems with EULER angles so that the crystalline structure is represented for a considered
ferritic steel (DC 04). The lattice constitution is thus present.

(a) Undeformed structure. (b) 10 % deformed structure. (c) 20 % deformed structure.

Figure 3: Deformed polycrystalline microstructure from SEM data.Source: Institute of Materials Science, Leibniz
Universiẗat Hannover, Germany.

In Fig. 3 a polycrystalline microstructure from the SEM is shown. In contrast, Fig. 4 shows the simulation of the
microstructure under uniaxial tension incorporating EULER angles and grain size distribution of the real structure.
The stretching of the grains in the tension direction can be covered, and also the necking of the specimen is
modelled.
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(a) Undeformed structure. (b) 10 % deformed structure. (c) 20 % deformed structure.

Figure 4: Deformed polycrystalline microstructure from finite element simulation.

Moreover, the SCHMID factor and the SCHMID stress are in focus of the analysis. For a uniaxial test, the definition
of the SCHMID factor is given through Fig. 5(a); a dislocation is moving due to a force acting in the direction of
the slip. Hence, the resulting shear stress in the slip system is significant for the dislocation movement, expressed
in terms of the SCHMID stressτα, see (11), or also the SCHMID factorSα of theα-th slip system. The SCHMID

factorSα is expressed through the angleθ between slip direction̄sα and forceF and the angleβ between slip
normalm̄α and forceF . As the increase of the SCHMID factorSα refers to a more favourable orientation of the
slip system with respect to plastic deformation, the maximal SCHMID factor is defined as

Sα = cos θ ∙ cos β (28)

S := max(Sα) for slip systemα = 1, . . . , nsyst. (29)

F

s̄α

m̄α

βθ

(a) Definition of the SCHMID factor: angle relations be-
tween stress state and slip system normalm̄α and direc-
tion s̄α in the single slip case for uniaxial tension.
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(b) Relative incidence of the maximal SCHMID factor in
a polycrystalline structure of 308 crystal grains in uniaxial
tension. Lines refer to simulation, dashed lines to experi-
mental results.

Figure 5: The SCHMID factor. Definition and relative incidence in a polycrystalline structure.

In Fig. 5(b), the relative incidence of the maximal SCHMID factorS is given for the experimentally analysed and
the simulated polycrystalline structure at hand. The increase of colour brightness corresponds to the increase of de-
formation, whereas simulated values are shown with lines and the experimentally obtained data with dashed lines.
The simulation varifies the large amount of high SCHMID factors from the experiment, whereas the simulation
results show more smaller factors. The height of the curves from simulation and experiment varies significantly,
however, this can be traced back to the fact that the experimental results refer to a two-dimensional, pixelwise
extract from the SEM and the simulation results to a three-dimensional, elementwise evaluation of the model. The
qualitative behaviour of simulation and experiment yet matches.

The SCHMID stressτα is a resolved shear stress on the slip system accounting for the activation of slip. Fig. 6
illustrates the occurring maximal SCHMID stress over all the finite elements throughout the polycrystalline struc-
ture. A smaller polycrystal of only 6 crystal grains is shown in Fig. 6(a), where the good resolution within the slip
plane can be observed. The 6 grains can be spotted through the varying orientation of slip systems in the grain,
for larger polycrystalline structures (Fig. 6(b)) the resolved stress response gets blurer due to the grain increase,
however, the same effect applies.
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(a) Polycrystalline structure with 6 crystal grains.
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(b) Polycrystalline structure with 32 crystal grains.

Figure 6: Maximal SCHMID stresses over all finite elements in the simulated polycrystalline structure.

5 Numerical Homogenisation

The calculation of the real structural component on the microscale fails due to inclusions, defects, crystallographic
slip and localisation effects on the large discretisation effort and the computational expense. Based on the mi-
crostructure, effective and position-independent material parameters are to be determined within a homogenisation
procedure, being representative for the heterogeneous structure in terms of a representative volume element (RVE).

5.1 Volume Average

In order to approach the prediction of an overall material behaviour of the representative volume element and hence
of the macroscopic material, the volume averages of the deformation gradientF and the1st PIOLA -KIRCHHOFF

stress tensorP over the volumeV =
∫
Ω

dΩ are defined as

〈F 〉Ω :=
1
V

∫

Ω

F dΩ (30)

〈P 〉Ω :=
1
V

∫

Ω

P dΩ. (31)

5.2 Boundary Conditions

Based on the construction of polycrystalline structures according to Sec. 4, polycrystals of several sizes are mod-
elled, representing the microstructure of the polycrystalline material, see Fig. 2. For a RVE various boundary
conditions are possible; uniform displacements can be applied leading to a stiffer response than the real response,
uniform traction boundary conditions end in a softer response. Also periodic boundary conditions are possible,
however, the VORONOI cell generation is complex for periodic structures. Further, a window of pre-homogenised
material properties can be added to the boundary of the polycrystalline microstructure, the response in this case is
yet scattering and presumes a larger computational expense. Within this contribution, uniform displacements are
chosen which also enable the realisation of volumetric and deviatoric deformations. The displacement fieldu is
given through a constant displacement gradientH on the entire boundary of the polycrystal

u| dΩ = H ∙ X| dΩ , H = const. (32)

Hence, the microscopic and macroscopic stress power are equal following the HILL theorem, and the eventually
found RVE can be considered as statistically representative

〈P : Ḟ 〉Ω = 〈P 〉Ω : 〈Ḟ 〉Ω. (33)

5.3 Overall Polycrystalline Behaviour

Differently sized polycrystals, from a size edge range between100 and 200 μm, see Fig. 7, are subjected to
pure shear loading through the displacement gradientH = γ e1 ⊗ e2. The number of crystal grains depend
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on the size and are shown in Tab. 2. The material parameters for all the microstructures are equal; it is the
bulk modulusκ = 152.2 GPa, the shear modulusμ = 79.3 GPa, and the parameters for the viscoplastic range
amount toτy 0 = 180 MPa, γ̇0 = 0.0005, H = 1.0 GPa andm = 3.0. The chosen material parameters do not
affect the qualitative behaviour of the microstructure and have to be determined later on for the overall material
response in terms of parameters for an effective model. In order to obtain a statistically admissible response of the
microstructure, 200 tests are computed for each size with body-centered cubic crystals with 24 slip system vectors
of Tab. 1.

Table 1: 24 slip system vectors for body-centered cubic crystals
s̄α m̄α s̄α m̄α s̄α m̄α s̄α m̄α s̄α m̄α s̄α m̄α

[1̄11] (01̄1) [1̄11] (101) [1̄11] (110) [1̄11] (211) [1̄11] (121̄) [1̄11] (11̄2)
[111] (01̄1) [111] (1̄01) [111] (1̄10) [111] (2̄11) [111] (12̄1) [111] (112̄)
[111̄] (011) [111̄] (101) [111̄] (1̄10) [111̄] (21̄1) [111̄] (1̄21) [111̄] (112)
[11̄1] (011) [11̄1] (1̄01) [11̄1] (110) [11̄1] (211̄) [11̄1] (121) [11̄1] (1̄12)

Table 2: Number of grains for polycrystal edge sizes
bounding box size edge [μm] 100 110 130 140 150 180 200

number of grains 6 13 20 32 45 107 157

(a) 100 μm (b) 110 μm (c) 130 μm (d) 140 μm (e) 150 μm (f) 180 μm (g) 200 μm

Figure 7: Polycrystals of different sizes. The shown cube represents a bounding box of size200 ×
200 × 200 μm.

As an example, the overall stress-strain relations for 200 polycrystalline structures of edge size100 and200 μm,
respectively, are shown in Fig. 8. The response is quite stiff as expected. Given are the mean values of[〈P 〉Ω]12
over [〈F 〉Ω]12 of all computations with the variation of results in terms of ocurring minimal and maximal values.
Whereas the response of the smaller polycrystal shows a rather scattering stress-strain behaviour due to the re-
maining high influence of the boundary loading, the larger polycrystal presents a more distinct behaviour of the
microstructure. Expressing this in terms of the relative error in the homogenised1st PIOLA -KIRCHHOFF stresses
〈P 〉Ω, the error[〈P 〉Ω]num,k

12 −〈P 〉Ω/〈P 〉Ω reaches the amount of20% and more over the whole deformation. Increas-
ing the size of the polycrystal results in a decrease of the relative error to about5%, which is the defined tolerance
within this contribution.
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(a) Polycrystal within the bounding box100×100×100 μm.
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Figure 8: Mean, minimal and maximal value of homogenised stress-strain responses of variously sized polycrys-
tals.
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The same effect applies for the normalised standard deviationσ(〈Pij〉Ω)/||〈Pij〉Ω|| with

σ(〈Pij〉Ω) =

√√
√
√ 1

n

n∑

k=1

(
〈Pij〉kΩ − 〈Pij〉Ω

)2

(34)

〈Pij〉Ω =
1
n

n∑

k=1

〈Pij〉
k
Ω (35)

||〈Pij〉Ω|| =
1
n

n∑

k=1

∣
∣
∣
∣〈Pij〉

k
Ω

∣
∣
∣
∣ (36)
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Figure 9: Normalised standard deviation of the polycrystals of different sizes for a population of 200 com-
putations.

Fig. 9(a) shows the normalised standard deviation of the component[〈P 〉Ω]12 for different polycrystals over the
deformation, Fig. 9(b) represents it over the polycrystal size in terms of the crystal grain quantity. From a grain
number of about 20 on, the standard deviation does not decrease significantly anymore, whereas the± 5% error
measure requires polycrystalline structures of 100 grains and more.

(a) Polycrystal of 6 grains.γ = 0.1 (b) Polycrystal of 6 grains.γ = 0.5 (c) Polycrystal of 6 grains.γ = 0.7

(d) Polycrystal of 157 grains.γ = 0.1 (e) Polycrystal of 157 grains.γ = 0.5 (f) Polycrystal of 157 grains.γ = 0.7

Figure 10: Stereographic projection of principal directions of homogenised1st PIOLA -KIRCHHOFF 〈P 〉Ω and
deformation gradient〈F 〉Ω for pure shear〈F 〉Ω = 1 + γ e1 ⊗ e2. Above a polycrystalline structure within
100 × 100 × 100 μm (6 grains), below a polycrystalline structure within200 × 200 × 200 μm (157 grains).

The anisotropy which is induced by the plastic deformation is illustrated by the principal directions of a suitable
stress and strain measure,〈P 〉Ω and〈F 〉Ω (Fig. 10). With the evolution of the plastic state, the principal axes
rotate against each other and thus, stress and strain do not commute with each other once plastic deformation
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occurs. The above figures, Figs. 10(a) to 10(c), show the stereographic projection of the principal directions for
the small polycrystal of 6 grains; here, a more distinct rotation takes place than for the polycrystal of 157 grains
in the lower figures (Figs. 10(d) to 10(f)). Due to the increasing boundary effect and the differently reoriented slip
systems, the material behaves more isotropically and the direction of plastic deformation is not as perscribed as for
fewer grains.

6 Conclusion and Outlook

6.1 Effective Material Properties

Assuming that the stresses from the volume averaging procedure are the same as from an effective material as-
sumption

〈P 〉Ω = P eff = P (〈F 〉Ω) = P (F eff), (37)

the determination of the effective material parameters can be performed based on a least square fit between the
mean stresses out ofn performed computations and the stresses from an effective constitutive assumption

Π :=

[
1
n

n∑

k=1

(
〈P 〉kΩ

)
− P (F eff(κeff))

]2

→ minimum (38)

κeff :=
[
κeff

el , κ
eff
pl

]T
. (39)

Due to the volumetric-deviatoric split of the constitution, see (10), both parts of the deformation can be separated
and reveals quite an easy way to determine first the isotropic elastic material parametersκeff

el by remaining in the
elastic range of the deformation. Having determined the parameters with (38), also for varying elastic parameters
within the crystal grains, the assignment of the plastic parametersκeff

pl can be done. Eventually, the gained effective
material model representing the microstructural behaviour has to be validated for different kinds of boundary
conditions and constraints of real forming processes.

7 Acknowledgements

Financial support for this research was provided by the Deutsche Forschungsgemeinschaft (DFG) under grant
SFB TR 73.

378



References

Anand, L.: Single-crystal elasto-viscoplasticity: Application to texture evolution in polycrystalline metals at large
strains.Comput. Meth. Appl. Mech. Eng., 193, (2004), 5359–5383.

Anand, L.; Kothari, M.: A computational procedure for rate-independent crystal plasticity.J. Mech. Phys. Solids,
44, 4, (1996), 525–558.

Asaro, R. J.: Crystal plasticity.J. Appl. Mech., 50, (1983), 921–934.

Brekelmans, W. A. M.: Crystal plasticity. In:Constitutive Modeling of Solids – Mechanical Characterization,
chap. 8, Lecture Notes (course 4H100), Faculteit Werktuigbouwkunde, TU/e Eindhoven (2006).

Bridgman, P. W.: The thermodynamics of plastic deformation and generalized entropy.Rev. Mod. Phys., 22, 1,
(1950), 56–63.
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Address:Dipl.-Ing. Eva Lehmann and Dr.-Ing. Stefan Löhnert and Prof. Dr.-Ing. habil. Peter Wriggers, Leibniz
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