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Effects of Local and Nonlocal Substructure Spin on Localization in
Tantalum Top-Hat Specimen

D. Luscher, C. Bronkhorst, D. McDowell

Effects of local and nonlocal substructure spin on the localization behavior of tantalum top-hat specimens sub-
jected to high-rate compression are investigated. The orientation of a quadratic yield surface within the space
of the intermediate configuration second Piola Kirchhoff stress is defined by a triad of substructure unit director
vectors. Local evolution kinetics for the substructure directors are based on a plastic constitutive spin proportional
to the non-coaxiality between stress and plastic rate of deformation within the spinless intermediate configuration.
An extension of the local plastic constitutive spin to reflect nonlocal kinetics is made by attenuating or amplify-
ing the spin rate depending on the misorientation of the substructure directors at a material point with those at
adjacent material points within some neighborhood. Increased local spin rates tend to accentuate localization of
plastic deformation and acts as a constitutive softening mechanism. On the other hand, the constraint imposed by
nonlocal evolution of substructure orientation affects the plastic deformation field by reducing the propensity for
flow, thus delaying localization and increasing the spatial coherence of the director vector field.

1 Introduction

During high strain-rate deformation of polycrystalline metals, locally concentrated deformation is typically a pre-
cursor to strong localization. The latter can be appreciated from differing perspectives; physically, the effective
material stiffness degrades such that additional deformation within a region is most easily accommodated within an
ever collapsing localized region, mathematically, the boundary value problem has changed in character, e.g. a loss
of hyperbolicity, which is manifest in a non-positive definite acoustic tensor. Such conditions often lead to the for-
mation of localization (or shear) bands in the material. Localization is triggered by apparent constitutive softening,
i.e., a decrease in the tangent stiffness of the material’s stress-strain response. Softening mechanisms in polycrys-
talline metals include heat generation from inelastic dissipation, accumulation of damage, and reorientation of the
yield surface into a configuration more favorable for inelastic flow.

The initiation and growth of such shear bands has significant influence on the development of macroscale fracture
and potential for subsequent fragmentation. In order for macroscale models to be predictive in cases of fragmenta-
tion, the constitutive approach must adequately capture the details of deformation localization, especially aspects
that attenuate or accentuate the formation of shear bands.

A classic laboratory specimen for investigating deformation localization is the so-called top-hat specimen (Nemat-
Nasser et al., 1994; Bronkhorst et al., 2006). As illustrated in Figure 1, the specimen consists of an upper hat
region and a lower brim region separated by a shear zone. The shear zone is so named because the configuration
causes localization and shear bands (if they form) to occur in this predetermined location. Bronkhorst et al. (2006,
2007) conducted numerical and experimental investigations into the formation of shear bands in stainless steel
top-hat specimen and lack thereof for tantalum specimen. In that work, top-hat specimens were loaded under
compression at a high rate in a split Hopkinson pressure bar (SHPB) apparatus. Bronkhorst et al. (2006) note that
while shear band instabilities did not form for tantalum specimen, localized shear deformation was accommodated
by extensive grain rotation and elongation. This alludes to reorientation of the lattice, an inference generally
supported by electron backscatter diffraction (EBSD) data collected from the shear zone region prior to and after
the experiments as shown in Figure 2.

From these observations, a natural question arises as to the influence of substructure reorientation on the localiza-
tion behavior. Does such reorientation merely accompany the deformation process whose localization character-
istics are dominated by thermal softening and heat generation, or does such reorientation enhance the localization
process in its own right? This is one of two central questions addressed by the present paper.
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Figure 1: Top-hat specimen geometry and key dimensions

Figure 2: Before and after pole figures

A review of relevant literature reinforces the idea that reorientation of preferred directions in the substructure of the
material has consequence to the localization behavior (Kuroda, 1996; Tvergaard and van der Giessen, 1991; Zbib
and Aifantis, 1988a,b; Zbib, 1993; Dafalias, 1998, 2000; Lee et al., 1995). Amongst the expansive work of Dafalias
establishing the importance of constitutive aspects of plastic spin, substructure orientation evolution was asserted to
be an important aspect of localization (Dafalias, 1998). Zbib and Aifantis (1988a,b) and later Zbib (1993) defined
the plastic constitutive spin (although this terminology was not introduced at that time) using the non-coaxiality
between the Cauchy stress and plastic rate of deformation tensor. Lee et al. (1995) used a hypoelastic stress-update
scheme whose objective stress-rate was based on plastic spin associated with non-coaxiality of the stress and plastic
rate of deformation to show that reorientation of orthotropic material axes can hasten or delay strain localization.
Similarly, Tvergaard and van der Giessen (1991) assessed the influence of different stress-rates, some of which
employed plastic spin, on localization behavior. Kuroda (1996) cast the problem in the current configuration with
a hypoelastic update scheme showing thatincreasingplastic spindelayedor prevented localization in simulations
of plane strain tension.

Presuming, in this introduction, that reorientation of underlying material substructure has important consequence
to localization behavior, another question arises. Are nonlocal kinetics for substructure evolution important to the
localization behavior? Clearly, it is the collective reorientation of the crystal lattice associated with neighborhoods
of grains that leads to evolution of polycrystal anisotropy. Bunge and Nielsen (1997) show that after strong texture
forms, grains with close orientation remain grouped together during subsequent deformation. This suggests nonlo-
cal evolution kinetics may be appropriate. A supporting physical argument is that there should be some energetic
consequence penalizing sharp contrast in substructure orientation, i.e., substructure at adjacent material points
should not spin independently. This question is the second central focus of the present paper. Having introduced
the two underlying questions, i.e.,

• Does substructure reorientation enhance the localization process?

• Are nonlocal kinetics for substructure evolution important to the localization behavior?

The remainder of this paper is organized as follows in order to address these questions in the context of high
rate deformation of tantalum top-hat specimens. Section 2 presents the constitutive framework employing finite
deformation strain measures in a hyperelastic setting. Details of the numerical implementation and simulations are
given in Section 3 and a discussion of the generated results is provided in Section 4. A summary of the paper with
conclusions is provided in Section 5.
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Figure 3: Configurations corresponding to multiplicative decomposition with substructure orientation.

2 Anisotropic Constitutive Framework with Substructure Spin

In particular, we address constitutive response that is described with an initial orthotropic symmetry although the
framework is readily extended to other cases of material symmetry or induced anisotropy. In the orthotropic case
there exists a set of orthogonal unit vectors defining the orientation of material symmetry, i.e.,n1,n2,n3, where
ni ∙ nj = δij

2.1 Kinematics

The finite deformation theory employs a multiplicative decomposition of the deformation gradient,F into elastic
and plastic parts according to

F = FeFp (1)

where the subscripts ’e’ and ’p’ are used to denote elastic and plastic parts, respectively. This decomposition
provides the basis for mappingcontinuumtensors between reference, intermediate, and current configurations
consistent with Figure 3. On the other hand, materialsubstructurevectors, such as the unit directorsni in Figure
3 do not map according to the continuum motion. Instead we define the orientation of such vectors as

ni = Λno
i (2)

whereΛ is a proper orthonormal rotation belonging to the special orthogonal group SO(3) and, consequently, can
be parameterized by three independent variables which we refer to as the rotation vector,θ.

The Green-Lagrange strain in the intermediate configuration is obtained by the plastic push forward of the same
from the reference configuration,φp

∗ (E), which decomposes additively into elastic and plastic parts in that config-
uration,

Ẽ =
1
2
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)
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The plastic push-forward of the time rate of the plastic part of the deformation gradient, i.e.,φp
∗

(
Ḟp

)
, yields the

plastic velocity gradient with respect to the intermediate configuration,

L̃p = ḞpF
−1
p (4)

which can be additively decomposed into symmetric and skew-symmetric parts,D̃p = Sym
[
ḞpF−1

p

]
andΩ̃p =

Skw
[
ḞpF−1
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]
, respectively. Recognizing the contentious source of confusion in the literature in the past regarding

these concepts, we employ the convention of Dafalias (2000), in which the plastic continuum spin,Ω̃p, is related

to the plastic constitutive spin,̃Wp

j
, and the substructure spin,ωj , for thejth substructural element according to

Ω̃p = W̃p

j
+ ω̂j (5)
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Here we consider only one mechanism associated with substructure directors. Consequently the superscriptj can
be dropped from Equation 5, but it is worth mentioning that the theory readily accommodates multiple sets of
separately evolving directors because aspinlessrather than isoclinic intermediate configuration is adopted. The
rate of reorientation is obtained using the Lie derivative of Equation 2, i.e.,ṅi = Λ̇no

i , where the time derivative
of the rotation tensor iṡΛ = ω̂Λ such that the rate of change of unit director vectors isṅi = ω × ni. We use the
notationv̂ to represent the skew tensor whose axial vector isv.

Clearly, the plastic constitutive spin,̃Wp, which must be prescribed, defines the relative rate of reorientation of
the material substructure,ω, with respect to the plastic continuum motion,̃Ωp. If one selectsω = 0 then Equation
5 corresponds to an isoclinic intermediate configuration, such as is commonly used in crystal plasticity. On the
other hand, we emploỹΩp = 0 corresponding to a spinless intermediate configuration. This choice offers the
advantage that multiple substructure orientations corresponding to, for example, different physical mechanisms
can be handled in a straight-forward manner.

2.2 Thermodynamics

We assume that the Helmholtz free energy can be expressed in the intermediate configuration as a state function of
temperature, elastic strain, orientation of director vectors, and a set of internal state variables introduced to augment

the kinematic description of the underlying physical processes, i.e.,ψ = ψ̂
(
T, Ẽe, θ, ξj

)
. Application of the first

and second laws of thermodynamics to reversible (isentropic) and, in turn, isothermal or isoelastic processes yields
traditional state relations,

Σ̃ = ρ̃
∂ψ

∂Ẽe

m̃ = ρ̃
∂ψ

∂θ
χ̃j = ρ̃

∂ψ

∂ξj

(6)

whereΣ̃ is the second Piola-Kirchhoff stress with respect to the intermediate configuration,m̃ is an elastic force
conjugate to substructure rotation for cases of elastic anisotropy,χ̃j is the thermodynamic driving force conjugate
to the internal state variable,ξj , and ρ̃ is the mass density per unit volume of the intermediate configuration.
Temperature change due to deformation is identified by further manipulation of the first law under arbitrarily
dissipative processes,

Ṫ =
1
ρ̃c̄

(
Σ̃ : D̃p − m̃ ∙ θ̇ − χ̃j ∗ ξ̇j
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−
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(7)

wherec̄ is the specific heat per unit mass and the symbol ’∗’ is used to reflect the appropriate operator in construct-
ing an inner product for the particular choice of internal state variable. For the model used in this paper we employ
isotropic elasticity (thus̃m = 0), do not directly represent energy storage, and neglect the thermoelastic coupling
such that the temperature change is approximated as

Ṫ ≈
B

ρ̃c̄

(
Σ̃ : D̃p

)
(8)

whereB is the inelastic heat fraction, taken here as a constant parameter, introduced to reflect the aforementioned
effects.

2.3 Evolution Kinetics

We consider a threshold (yield) hypersurface in stress space,Υ
(
Σ̃;ni, T, D̃p, ξj

)
= 0. For stress states within

the yield surface neither inelastic deformation nor orientation evolution occur, while stress states associated with
irreversible processes lie exactly on the yield surface, i.e.,Υγ̇ = 0. The following form for the yield surface is used

Υ
(
Σ̃;ni, T, D̃p

)
=

τ̃ (Σ,ni)

σy

(
T, D̃p, ξj

) − 1 (9)

where τ̃ is a scalar valued function of the second order tensor,Σ̃ and the orthogonal set of material directors,
n1,n2,n3 and the flow stress,σy, is a scalar valued function of the temperature, plastic strain rate, and internal
state variables. Employing representation theory, an isotropic scalar valued function of tensoral arguments can
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be expressed in terms of invariants forming the integrity basis. One irreducible set of such invariants for three
orthogonal vectors and a symmetric second-order tensor is

I1 = Tr
[
M1Σ̃

]
I2 = Tr

[
M2Σ̃

]
I3 = Tr

[
M3Σ̃

]

I4 = Tr
[
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2
]

I5 = Tr
[
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2
]

I6 = Tr
[
M3Σ̃

2
]

(10)

I7 = Tr
[
Σ̃3
]

where the structural tensorsMi = ni ⊗ ni have been introduced and are subjected to the constraintM1 + M2 +
M3 = I to ensure orthonormality. For this work we employ a quadratic function of the invariants, thus

τ̃ =
1
2
A1I

2
1 +

1
2
A2I

2
2 +

1
2
A3I

2
3 + A4I4 + A5I5 + A6I6 + A8I1I2 + A9I2I3 + A10I1I3 (11)

The evolution of plastic deformation,Fp, is defined through the plastic velocity gradient referred to the intermedi-
ate configuration according to (4) which is decomposed into symmetric and skew parts as

L̃p = D̃p + Ω̃p (12)

The plastic rate of deformation (refered to the intermediate configuration) is assumed normal to a flow pseudopo-

tentialΦ
(
Σ̃;ni, T, D̃p, ξj

)
according to

D̃p = γ̇NΦ (13)

where the flow surface normal has been introduced as

NΦ =

∂Φ

∂Σ̃∥
∥
∥
∥

∂Φ
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∥
∥
∥
∥

(14)

In general the flow pseudopotential may be distinct from the yield function, i.e.,Φ 6= Υ; however, in the current
work we restrict the model to associated flow such thatΦ = Υ.

Following Dafalias (1998) and more recently in a finite deformation context Ulz (2011), thelocal plastic constitu-
tive spin is prescribed to be proportional to non-coaxiality betweenΣ̃ andD̃p,

W̃p = −
η

σ̄

(
Σ̃ ∙ D̃p − D̃p ∙ Σ̃

)
(15)

whereη is a spin rate coefficient and̄σ is a normalizing stress parameter. Note the negative sign pre-multiplying
ourη is introduced in order that the corresponding parameter values be positive (as a distinction from the work of
Dafalias (1998) and Ulz (2011)). Again, a spinless intermediate configuration is adopted such thatΩ̃p = 0 and,
accordingly, the substructure spin isω̂ = −W̃p.

The local substructure spin kinetics are here extended to a nonlocal theory by amplifying or attenuating the lo-
cal rate of spin based on the extent of misorientation within a nonlocal neighborhood of a material point. The
nonlocally enhanced substructure spin is introduced as

W̃p

?
= W̃p + ‖W̃p‖βθ̄ (16)

whereβ is a nonlocal spin coefficient and̄θ is a nonlocal measure of misorientation between a material point
and its surrounding neighborhood. The nonlocal substructure misorientation is defined as the integral of Gaussian
weighted difference in orientation angle surrounding the material point atx,

θ̄ (x) =
1

CLθ

∫

y∈Ωθ(x)

exp

[

−

(
|y − x|
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)2
](

θ(y)− θ(x)

)

dΩθ (17)

where the normalizing coefficient is computed as

CLθ =
∫

Ωθ
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[

−

(
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)2
]

dΩθ (18)
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Table 1: Parameters defining shape of yield surface

Description A1 A2 A3 A4 A5 A6

Isotropic - J2 -1.00 -1.00 -1.00 1.50 1.50 1.50
Tantalum (Bronkhorst et al. 2006) -1.12 -2.89 -1.12 1.68 2.45 1.68

Ωθ is the nonlocal volume to be integrated over, andLθ is a length scale parameter reflecting the nonlocal inter-
action distance. While there can be two separate size scales associated withΩθ andLθ, respectively, the former
reflects a cutoff distance for considering nonlocal interaction, whileLθ itself describes the region of emphasis
within Ωθ provided4

3πL3
θ < Ωθ.

3 Numerical Simulations

3.1 Constitutive Details

Isotropic and linear hyperelasticity is employed to relate stresses to strains according toΣ̃ = C : Ẽe, whereC is
the standard fourth order elasticity tensor. The top-hat specimens under consideration here were machined from
rolled tantalum plate whose initial texture and anisotropic yield surface has been previously characterized (Maudlin
et al., 1999, 2003; Bronkhorst et al., 2006). Figure 4 presents pole figures illustrating the initial texture of the stock
material and the relationship between the rolled plate material axes and the top-hat specimen axes. Maudlin et al.
(1999, 2003) fit a quadratic orthotropic (Hill) yield surface to both experimental and polycrystal simulation results
based on the initial texture shown in Figure 4c. Their yield surface was subsequently ‘symmetrized’ about the
geometric axis of symmetry for modeling convenience in Bronkhorst et al. (2006). For the top-hat specimen, the
initial orientation of the yield surface is assumed to be aligned with the problem axes of symmetry, i.e.,no

1 = er

andno
2 = ez, whereer andez are the reference system base vectors aligned in the radial and axial directions,

respectively. Substitution of the initial orientation into Equations 10 and 11 and equating to the surface used in
Bronkhorst et al. (2006) allows identification of constantsAk of Equation 11 reported in Table 1.

The flow stressσy

(
T, D̃p, ξj

)
is defined by the mechanical threshold stress model (MTS)

σy = σa +
μ(T )
μ0

(

σ̂ISI(γ̇, T ) + σ̂ESE(γ̇, T )

)

(19)

whereσa is the long-range athermal resistance to dislocation glide, for example, due to grain boundaries,σ̂I

reflects the intrinsic lattice resistance to dislocation motion, andσ̂E reflects evolving barriers to dislocation motion
such as interactions with dislocation forests. The thermal activation functions,SI andSE , reflect the increased
probability of a dislocation overcoming the threshold resistance at increasing temperature and decreasing strain
rate consistent with thermally activated processes as described by Kocks et al. (1975). For details of the MTS flow
stress model cf. Follansbee and Kocks (1988); Chen and Gray (1996); Maudlin et al. (1999); Bronkhorst et al.
(2006). Figure 5 compares uniaxial stress-strain data from experiments to the MTS model fit for tantalum. The
experimental data is from Chen and Gray (1996) and all constitutive parameters and form of evolution equation
for σ̂E are the same as those given in Maudlin et al. (1999); Bronkhorst et al. (2006). From this figure the MTS
model does a reasonable job representing the temperature and rate-dependence of the flow stress for these uniaxial
(moreover monotonic and proportional) strain histories.

3.2 Implementation

The model was implemented as a total-Lagrangian stabilized selectively-reduced-integration axisymmetric solid
element within the user defined subroutine VUEL in Abaqus. At each integration point within an element, the
update of the constitutive state employs semi-implicit integration via an exponential map of the plastic increment
to evolve the plastic part of the deformation gradient. The algorithm is implicit in the plastic strain rate,γ̇, but
explicit in the flow direction, temperature, mechanical threshold stress, and substructure spin update. Given the
small time steps required for global stability, this semi-implicit scheme is presumed sufficient. The calculation
of stresses employs a hyperelastic update in the intermediate configuration which is pulled back to the reference
configuration by the plastic part of the deformation gradient.
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Figure 4: Initial orthotropic texture and orientation. (a) rolled plate stock and material axes (b) top-hat specimen
and specimen axes (c) pole figures indicating initial texture viewed along normal direction (ND)

Figure 5: Stress vs. strain behavior for tantalum solid indicates experimental data and dashed represents the MTS
model fit
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Table 2: Dimensions (mm) used for top-hat simulations corresponding to diagram in Figure 1

r1 r2 r3 h1 h2 h3

2.09 2.28 4.30 2.60 3.47 5.11

(a) (b)

Figure 6: Finite element model details. (a) geometry and boundary conditions (b) velocity time history applied to
upper platen

The finite element model of the top-hat utilizes the axisymmetry of the specimen geometry as depicted in Figure
6a. The physical dimensions of the top-hat specimen are provided in Table 2. Boundary conditions are specified
along the bottom edge of the finite element model to restrain only vertical components of motion, i.e., nodes along
this edge are unrestrained in the radial direction. The velocity time history shown in Figure 6b is prescribed for
the vertical motion of nodes along the top surface of the model. Only the specimen is modeled; details of the
split Hopkinson pressure bar apparatus are not modeled and, consequently, the reflection of inertial waves in the
actual system cannot be accurately predicted. Accordingly, a smoothed velocity profile was used to reduce inertial
ringing in the model otherwise caused by reflection of momentum off the perfectly rigid boundaries. Contact
surfaces are specified as indicated in Figure 6a to prevent material inter-penetration under severe deformation of
the sharp corner regions. Constitutive parameters for the MTS flow stress model are taken directly from Maudlin
et al. (1999); Bronkhorst et al. (2006). Simulations were run to approximately35μs in simulation time employing
a fixed time step size ofΔt = 2.0e − 10s under varying parameter values as discussed in the next section. A
contour plot of the effective plastic strain,ε̄p, from a representative case is shown in Figure 7. The deformation
is concentrated in a relatively sharp band within the shear zone. For that reason, subsequent contour plots only
show the shear zone as indicated by the red inset region in Figure 7. Additionally, the white arrow in this plot
approximately indicates a reference axis across which contour results are sampled to compare spatial distributions
of field variables such as plastic strain across the shear band. For example, consider the plot of effective plastic
strain versus distance along this reference axis shown in Figure 8a. Finally, we also compare results for the normal
stress, i.e., the total applied force normalized by initial top surface area, versus displacement of the top platen
toward the bottom platen as shown in Figure 8b.

4 Results and Discussion

Classic finite element discretization of local continuum theories is well known to exhibit artificial mesh dependence
for problems that exhibit strong localization. Traditionally, this behavior is demonstrated by comparing results for
increasingly refined spatial meshes. To assess this tendency simulations were conducted using meshes with five
different characteristic element sizes. Figure 9 shows the finite element grid within the shear zone region for each
element size,h. The mesh transitioned to a coarser size of approximatelyh = 150μm outside the shear zone
region for all cases. These simulations were conducted using a spin rate coefficient ofη = 100 combined with a
purely local constitutive plastic spin, i.e.,β = 0.

Nominal stress versus platen displacement results shown in Figure 10a exhibit convergence of simulation results
toward the experimental values. While not quantified here, such convergence indicates that the global response is
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Figure 7: Contour plot of plastic strain,ε̄p. Magnified inset region approximately corresponds to shear zone and
is used for all subsequent contour plots. White arrow in inset region indicates position axis used for plots such as
Figure 8b

(a) (b)

Figure 8: Example results. (a) Distribution of equivalent plastic strain across shear zone. (b) Comparison between
experiment and simulation of normal stress versus top platen displacement
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h = 100μm h = 60μm h = 40μm h = 20μm h = 10μm

Figure 9: Finite element meshes used in mesh refinement study. Only the shear zone region is shown.

(a) (b)

Figure 10: Results for varying mesh element size,h. (a) Normal stress versus platen displacement (b) Distribution
of equivalent plastic strain,PEEQ, across shear zone.

not artificially dependent on the mesh. On the other hand, Figure 10b indicates that the distribution of effective
plastic strain,̄εp, across the shear zone is exhibiting an artificial dependence on the finite element mesh. Essentially,
there is some degree of localization occurring within the shear zone, but it is subdued such that the global character
of the problem is unchanged. Subsequent simulations employ the mesh whose characteristic element size ish =
20μm.

To assess the influence of local substructure spin rate on these results, simulations using local evolution kinetics,
i.e., β = 0 and varying values of the local spin coefficientη were conducted. Nominal-stress versus platen-
displacement results shown in Figure 11a indicate that increases in local spin coefficient are associated with de-
creased global hardening. Figure 11b compares the effective plastic strain across the shear zone for differing spin
rate coefficients at the final deformed state,t = 37.5μs. Increasing values of spin rate coefficient from 0 to 10
result in a sharper more pronounced band of effective plastic strain; however, the plastic strain distribution for a
spin rate coefficient of 100 is relatively subdued by contrast to theη = 10 case.

The substructure orientation vector field,n2, at the final deformed state is represented by white arrows superposed
over contour plots of effective plastic strain in Figure 12 for each value of spin rate coefficient simulated. In all
cases there is a locally enhanced region of plastic deformation at the sharp reentrant corners of the specimen. The
reorientation of substructure within the band of plastic deformation, and likewise, the extent that enhanced plastic
deformation propagates from each corner toward the center, both increase with spin rate coefficient to a value of
η = 10. However, consistent with Figure 11, the plastic strain in the center of the band has been subdued relative
to that in theη = 10 case. For casesη = 10 andη = 100 substructure reorientation is significant in a region
extending beyond the zone of intense plastic deformation. Profiles of the (clockwise) rotation angle of material
substructure vectorn2 across the shear zone are plotted in Figure 13a and the evolution time history corresponding
to the center of these profiles are shown in Figure 13b. Fromx = 100 to 500 there is a region of clockwise
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(a) (b)

Figure 11: Results for various values of spin coefficient,η. (a) Normal stress versus platen displacement (b)
Distribution of equivalent plastic strain,ε̄p, across shear zone.

η = 0 η = 1 η = 10 η = 100

Figure 12: Contour plots of effective plastic strain,ε̄p, at the final deformed state (t = 37.5μs) for various values
of spin rate coefficientη. White arrows indicate the orientation of substructure director vector,n2.

reorientation for all cases of nonzero spin rate. Forη = 1, this reorientation and its gradient tend toward zero
outside the shear zone. On the other hand, the cases ofη = 10 and100 result in a counterclockwise reorientation
outside this region. The temporal evolution of substructure orientation shows a monotonically increasing angle
with monotonically increasing spin rate forη = 1. Forη = 10 the reorientation increases monotonically as well;
however, the early spin rate is much higher than forη = 1 and decreases subsequently. The case ofη = 100
begins with an even larger initial spin rate as plastic deformation initiates, but appears to overshoot some preferred
orientation and exhibits a non-monotonic ‘correction’ that subsequently becomes similar to theη = 10 curve.
None of these cases saturate to a final orientation such as observed in experiments and simulations with a fixed
orientation of loading (Dafalias, 1998, 2000; Bunge and Nielsen, 1997; Ulz, 2011). The continued evolution is
characteristic of non-proportional loading, i.e., the orientation of stress continues to evolve during the deformation
process.

The substructure reorients such that the principal axes of the orthotropic yield surface align in an orientation more
favorable for continued yielding with respect to the current stress state. Increasing the spin rate coefficient enables
such reorientation to occur more immediately, while reducing the spin rate coefficient resists such reorientation.
Clearly, the reorientation of substructure is an additional constitutive softening mechanism independent of soft-
ening due to damage or dissipative heat generation. This contributor to softening behavior is often overlooked in
application to formation of shear band or necking instabilities in high deformation-rate applications.

The spatial misorientation exhibited in Figure 12 as characterized by strong fluctuations in orientation angle ex-
poses a conceptual disconnect between local theories of substructure evolution and the observations made in the
introduction of this paper supporting a nonlocal theory for substructure reorientation kinetics. Conceptually, the
orientation of the yield surface at any macroscopic material point reflects the collective orientation of active slip
systems at a finer (crystal) scale within some neighborhood of influence. Gradients of substructure orientation
then, in effect, are reflective of underlying lattice curvature combined with evolution of intragranular misorienta-
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(a) (b)

Figure 13: Orientation evolution for various values of spin coefficient,η. (a) Distribution of orientation,θ, across
shear zone att = 37.5μs. (b) Orientation time history at location in center of shear zone

tion. Both of these mechanisms have energetic consequence, thus one expects some resistance to sharp gradients
in spatial misorientation at the coarse scale. In other words, the material substructure associated with neighbor-
ing continuum material points cannot spin independent of each other. This reasoning combined with previous
observations motivated the nonlocal form of constitutive plastic spin of Equation 16. To demonstrate the influ-
ence of nonlocal substructure evolution, results for a simulation withβ = 8 andLθ = 100μm are compared to
corresponding local simulations, i.e.Lθ = 0 andβ = 0, for a spin coefficient ofη = 10.

In particular, the effective plastic strain,ε̄p, and clockwise rotation angle,θ, are plotted versus position for the
local and nonlocal cases in Figure 14 (a) and (b), respectively. The band of plastic deformation is broader with a
lower peak for the nonlocal case relative to the local case. Likewise, the distribution of orientation angle is flattened
considerably for the nonlocal case. While the maximum gradient of rotation (curvature) appears consistent between
the two cases the second gradient of rotation, corresponding to a curvature gradient, is significantly reduced.

The suppression of curvature gradients, while leaving the maximum curvature essentially unaltered can be ex-
plained by expanding the misorientation in the vicinity of a material point into a Taylor series,

Δθ (x) = θ (y)− θ (x) = θ
←−
∇|x ∙ (y − x) + θ

←−
∇
←−
∇|x : (y − x)⊗ (y − x) + . . . (20)

The leading term on the right hand side (RHS) of Equation 20 is the linear variation ofθ associated with its first
gradient or curvature evaluated at the material point located atx. Within Equation 17, the weighted integral of the
first term from the RHS of Equation 20 overΩθ is zero because the variation is linear across the volume and the
weighting is symmetric. Consequently, the curvature is not penalized by the nonlocal spin kinetics of Equation
16. The same argument does not apply to the next term in the Taylor series reflecting the gradient of curvature,
because

∫
(y − x)⊗ (y − x) is not zero over the domain,Ωθ.

Comparison of the effective plastic strain contours and substructure orientation shown in Figure 15 illustrates that
the transition in orientation across the band appears more coherent for the nonlocal case than for the local case.
For the nonlocal case, within the banded region, the preferred direction of the yield surface reorients essentially
parallel to a (virtual) line connecting the sharp specimen corners within the shear zone. Overall, the constraints
presented by nonlocal evolution of substructure orientation affects the plastic deformation field by reducing the
propensity for flow.

5 Summary and Concluding Remarks

In this work, we have implemented local and nonlocal kinetics for substructure orientation evolution into a finite-
deformation hyperelastic-plastic constitutive framework. The constitutive implementation employs an isotropic
hardening based on an evolving mechanical threshold stress suitable for application to high strain-rates. The yield
surface is of Hill type, quadratic in deviatoric stress space and possessing orthotropic symmetry. Substructure
evolution reflects the reorientation of this surface within stress space of the intermediate configuration, while the
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(a) (b)

Figure 14: Distribution of field variables across shear zone att = 35μs for β = 8 and varying length scale
parameter,Lθ. (a) Effective plastic strain,̄εp (b) Orientation,θ

Lθ = 0μm Lθ = 100μm

Figure 15: Contour plots of effective plastic strain,ε̄p, at the final deformed state (t = 37.5μs) for various values
of nonlocal length scale parameterLθ. White arrows indicate the orientation of substructure director vector,n2.
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isotropic hardening provides for an affine enlargement of the surface. The theory can be extended to accommodate
more general evolution of the shape of the yield surface.

Application of the local and nonlocal substructure reorientation kinetics to the problem of high-rate compression
of top-hat specimen provides several insights regarding the role of such reorientation on the formation of shear
bands and potential for fragment formation. Firstly, when anisotropy of the yield surface is cast in the intermediate
configuration, restraint of substructure reorientation resists the formation of shear bands. Conversely, increased
substructure spin enables the substructure to align in a preferred orientation that most readily accommodates plas-
tic deformation. However, increasingly larger values of the spin coefficient lead to misorientation fields that are
perhaps aphysical. A nonlocal plastic constitutive spin was prescribed by penalizing the local substructure evo-
lution rate based on the weighted misorientation within a neighborhood of a material point resulting in increased
spatial coherence of substructure orientation accompanied by restrained plastic deformation.

The results presented demonstrate that substructure evolution is an important contributor to constitutive softening
beyond such degradation attributed to damage or thermally decreased flow stress caused by dissipative heat gen-
eration. This aspect of constitutive softening takes on an important role in enhancing or attenuating the formation
of macroscale shear bands; thus, the kinetics of substructure reorientation are an important aspect of macroscale
constitutive modeling in cases of localization and potential ductile fracture or fragmentation. Furthermore, there
are both physical and numerical grounds justifying nonlocal evolution kinetics for substructure orientation. Such
nonlocal kinetics require explicit specification of a length scale parameter, the value of which directly relates to the
size of neighborhood that influences the response at a material point. It is conceivable that such a parameter will
depend upon both the long range character of the boundary value problem and the current state of the material,
although identification of such relationships is beyond the scope of the present work.

While the extension of classical local plastic constitutive spin kinetics to reflect nonlocal interactions was intro-
duced in a relatively ad hoc manner, the results presented here motivate and provide some context for a finite-
deformation micropolar theory of substructure reorientation. Ideally, the development of such a theory should be
tightly coupled with ongoing experiments studying texture evolution and finer scale simulations to relate polycrys-
tal texture evolution to generally nonassociative shape and orientation of macroscale yield surfaces.
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