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The mechanical long term behavior of polymers is usually determined by long term creep experiments up to 
10.000 h which are very time and cost consuming. Therefore these data are often not available for the engineer. 
But even if long term data is available FEA-tools used in industrial practice usually can not sufficiently 
represent the nonlinear time, temperature and load-dependency of the mechanical long term behaviour. Hence 
the dimensioning of polymer parts is still a rather difficult engineering task. As a consequence of this, additional 
time consuming and expensive component tests in combination with several iterations are often necessary to 
design a polymer part for long term behaviour. 
 
This paper develops a method for the modeling of the load and temperature-dependent mechanical behaviour of 
polymers over a wide time, load and temperature range by means of finite element analysis. The method includes 
a material model as well as the determination of material parameters to calibrate the model. As a special feature 
of this method the model is calibrated by using creep data generated from short term experiments. The 
procedure improves the simulation of the long term behaviour of plastic-components and reduces the 
experimental effort significantly. The simulation results are finally validated by creep experiments performed on 
an example part. 
 
 
1 Introduction 

 
FEA-tools used in practice usually offer linear viscoelastic models to simulate the long term behaviour of 
polymers. These models cannot sufficiently represent the load-dependence of the mechanical long term behavior 
of plastics that even occurs for non-finite strains. Therefore the dimensioning of plastics parts is still difficult for 
engineers. An adequate material model has to represent the mechanical long term behavior over a wide time and 
load range. Most of the existing nonlinear viscoelastic material models in literature need additional experiments 
to be calibrated (e.g. Blaese, 1999; J.H.J. Beijer, 2002; Schapery, 1969; Schmachtenberg, 1985; Yazici, 2004). 
The main focus of the following method is to calibrate a nonlinear viscoelastic model with uniaxial tensional 
creep data that are commonly available in data bases. So the additional experimental effort can be minimized.  
 
Besides the load-dependency the temperature-dependency has to be considered, too. Since in many cases 
temperature-dependent creep data is not available in material data bases, the question appears how to simulate 
the long term behaviour if the temperature-dependent creep curves are not available. As there are usually creep 
experiments over at least 10000 h at different temperatures necessary, the determination of the material data is 
time and cost intensive. For this purpose the time temperature superposition principle has to be modified. With 
this modification the temperature-dependent long term behaviour can be described over a wide time and 
temperature range just on the basis of short term creep data. 
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2 Experiments 
 
One of the most crucial issues in developing the nonlinear viscoelastic material model is to find an adequate 
parameter describing the load-dependency. In many publications it is shown that the free volume effects the 
mechanical behaviour of polymers significantly (e.g. McKenna, Leterrier and Schultheisz, 1995a; McKenna, 
Leterrier and Schultheisz, 1995b; P. A. OConnell and G. B. McKenna, 1997; Struik, 1980). Furthermore the 
concept of free volume has also proved to be useful in describing viscosity, glass transition and physical ageing 
(Doolittle, 1951; L. C. E. Struik, 1977; Robertson, Simha and Curro, 1984; Simha and Roberston, 2006; 
Williams, Landel and Ferry, 1955). This parameter seems to be appropriate to consider load-dependency as well 
as influences like temperature and ageing effects. So the influence of three different effects can be determined by 
only one parameter. In (Ferry and Stratton, 1960; Knauss and Emri, 1987; Kola řík, 2003; Kolarík and Pegoretti, 
2006; Losi and Knauss, 1992) volumetric strain is said to constitute a significant contribution to the free volume 
in the region of reversible strains beyond the yield strain. This assumption has to be proven by experiments. 
 
The influence of the free volume on the creep behaviour of polymers is confirmed by the experimental outcome 
shown in Figure 1-3. In Figure 1 a result of a dilatometer test is shown. A polycarbonate specimen is heated 
above its glass transition temperature (160°C) for 20 minutes and afterwards quenched to 90°C. Although the 
temperature is kept constant for 48 h and no load is applied, the volume decreases with increasing time. This 
phenomenon is known as physical ageing or volume relaxation (Struik, 1966, 1977; Struik, 1978). 
 
In a second run short term creep experiments were conducted at different ageing times. As represented in Figure 
2 the creep modulus increases with increasing ageing time and accordingly decreasing volume. When the short 
term creep modulus is plotted against the volume a nearly linear correlation can be stated for the investigated 
polycarbonate (see Figure 3). 
 

 
Figure 1. Volume relaxation of a polycarbonate at 90°C 

 
Figure 2. Increase of creep modulus with increasing ageing time 
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Figure 3. Correlation of volume and short term creep modulus at 1 second, 10 seconds, and 60 seconds 

The observation of a dependency between volume and creep modulus leads to the assumption that the creep 
modulus is a function of the hydrostatic pressure and the volumetric strain respectively. To verify this 
assumption creep tests under shear and tension are conducted. In a tension test the stress tensor can be separated 
in a hydrostatic part and an isochoric part 

devSpI +=σ  

The hydrostatic part is  

113
1σ=p  

In a shear test the hydrostatic part becomes zero and the stress tensor reduces to 
              devS=σ  

The creep curves obtained from these two tests are compared to determine if the creep behavior is influenced by 
the hydrostatic pressure. 
 
The shear creep curves measured in a shear creep test on an Iosipescu specimen (Figure 4) are shown in Figure 
5. Figure 6 shows the shear creep curves calculated according to (Krevelen, 2008) from tensile creep data with  
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The creep experiments are conducted at a constant temperature with a temperature tolerance of ±2°C according 
to (DIN, 1997). A comparison of the resulting curves in Figure 5 and Figure 6, shows that the load dependency 
in tension is much higher as in shear. Furthermore the error of measurement for these shear tests at the same load 
are about 10 %, which shows that the occuring load-dependency in the shear creep test could partially be a result 
of measuring inaccuracy. This confirms the assumption that the creep modulus is significantly influenced by 
hydrostatic pressure.  
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Figure 4. Experimental set up - shear test on a Iosipescu shear specimen 

 

 
Figure 5. Shear creep curves measured in shear creep test 

 
Figure 6. Shear creep curves calculated from tensile creep curves 

 
A further investigation of the dependency of the creep modulus on the hydrostatic pressure is carried out by 
experiments in a special test device for conducting creep experiments under hydrostatic pressure up to 300 bar 
(Stommel and Zimmermann, 2011).The specimen is placed in a metal cylinder filled with degassed water. The 
increase in pressure is realised by a reduction of volume due to screwing in a spindle of a choke valve. The 
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specimen’s elongation is applied by another spindle in the head and a nut. The resulting force can be indirectly 
measured via a compression spring combined with a path sensor. The known spring stiffness enables the 
determination of the resulting tensile stress. The experiments proof the significant influence of the hydrostatic 
pressure on the creep behaviour. For the three investigated materials an increase in the creep modulus is obtained 
for increasing pressure (Figure 8-10).  
 

 
Figure 7. Creep tests under different hydrostatic pressures for a Polycarbonate (PC) 

 

 
Figure 8. Creep tests under different hydrostatic pressure for a Polymethylmethacrylate (PMMA) 

 

 
 

Figure 9. creep tests under different hydrostatic pressures for a Polypropylene (PP) 

The conducted experiments show that the creep behaviour is significantly influenced by hydrostatic pressure or 
volumetric strain, respectively. Both the two amorphous polymers PC and PMMA and the semicrystalline 
polymer PP show this behaviour. These experimental results can now be used to develop a material model with 
regard to the real load-dependent long term behaviour of thermoplastic polymers.  
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3  Material  Model 

There exist different material models in the literature to describe the nonlinear viscoelastic behaviour of 
polymers (e.g. Drapaca, Sivaloganathan and Tenti, 2007; Aniskevich, Khristova and Jansons, 2000; Caruthers, 
Adolf, Chambers and Shrikhande, 2004; Cho and Kim, 2000; Spathis and Kontou, 2001; Wineman, 2009). Many 
models need additional experimental results (e.g. Blaese, 1999; J.H.J. Beijer, 2002; Schapery, 1969; 
Schmachtenberg, 1985; Yazici, 2004) or focus on the mechanical behaviour of special polymers (e.g. C.P. Lowe, 
2004; Diab and Wu, 2007; Drozdov, 1999). Furthermore there are a lot of nonlinear viscoelastic material models 
that do not focus on long term behaviour as Buckley and Jones, 1994; Buckley and Lew, 2011; Lin, 2001. In 
contrast to this, the aim of the approach presented here is to simulate the load-dependency of the long term 
behaviour of polymers just on the basis of tensile creep data and short term data so that the additional 
experimental effort can be minimized. 

The developed model bases on Wiechert model, that consists of a series of Maxwell elements and an single 
elastic spring in parallel and is well known for a good description of the linear viscoelastic behavior of polymers 
(Ferry, 1980; Findley, Lai and Onaran, 1976). Even in actual publications the model is frequently used to 
describe the linear viscoelastic material behavior of polymers (e.g. Yazici, 2004 ;F. Ellyin, 2007; Pittman and 
Farah, 1997; Schmachtenberg, Krumpholz and Brandt, 2005). The shear modulus G(t) is time-dependent and 
load-independent. The time-dependency of the bulk modulus is often not available in material databases. Hence 
the simplification is made to assume the bulk modulus K as time-independent or to take the same time-
dependency for both the shear and the bulk modulus.   

 

 
 
 
 
 
 

Based on the experimental results presented in the last Section, the change in free volume is taken as parameter 
to describe the load-dependency. It correlates with volumetric strain and can be calculated by equation (7). As 
described and validated in (Naumann and Stommel, 2010a, b, c) further assumptions in our model are a load-
dependent but time independent bulk modulus and a time and  load-dependent Poisson’s ratio which results in a 
time and load-dependent shear modulus. Besides these assumptions are also confirmed by different literature 
sources like (Krevelen, 2008) where the bulk modulus is said to be the only time-independent modulus and 
(Frank, 1984; Kolupaev, Moneke and Becker, 2005; Kolupaev, Moneke, Becker and Amberg, 2004; Lewen, 
1991 Wieser, 1998a) where the time-dependency of the Poisson’s ratio is proven. Furthermore the creep 
behaviour is seen as load-independent for Δf < 0. This assumption results from the observations of (Sarabi, 1984; 
Wieser, 1998) who show that the load dependency under compression appears only at very high loads. With 
these assumptions the material model develops from (7) to its final state  
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As mentioned before it is one main objective that calibrating the material model should not cause additional 
experimental effort. In the present case this requirement is fulfilled by making some reasonable assumptions (see 
Naumann and Stommel, 2010b, c) . So it is possible to calibrate the model only with tensional creep data, which 
are in most cases accessible in material data bases. Moreover a routine was developed, which allows a 
completely automated determination of the model parameters.  

With this model it is possible to cover the nonlinear load-dependency and deformations up to approximately 2 
%. Finite deformations and other geometric nonlinearities are momentarily not included in the model. But this is 
not a severe restriction as most technical thermoplastics are used at long term deformations beyond 2% technical 
strain as there occurs plasticity at higher deformations. 

 

4 Simulation Results – Load-Dependency  

Figure 10 shows the simulation results of an uniaxial tensile creep test for 5 different materials. For every 
investigated materials a parameter set is determined with the developed routine. As it is shown the model can 
represent the creep behaviour over a wide load range for all 5 materials. 
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Figure 10. Uniaxial creep behaviour - comparison of simulation and creep data 

Since most plastics components are usually exposed to multiaxial loadings, the model is verified by experiments 
on a multiaxially loaded part. The part is simultaneously loaded by bending and torsion. The torsional 
deformation and the deflection of the part are determined by an optical measurement system. The simulations are 
conducted with Abaqus CAE. The model was implemented as an Abaqus user-subroutine. The model consists of 
33490 quadratic tetrahedron solid elements. The experimental set-up and the simulation are shown in Figure 11. 
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Figure 11. Creep test on an example part - experimental set up (l) and simulation (r) 

In Figure 12 and Figure 13 the average value of the torsion angle α and the deflection of the part for applied 
loads of 200 N, 450 N over 1000 h are shown. The simulation results describe the real deformation behavior of 
the part for all load levels satisfactory.  
 

 
Figure 12. Torsional angle - comparison of experiment and simulation 

 

 

Figure 13. Deflection - comparison of experiment and simulation 

5 Simulation of the Temperature-Dependency 

Besides the load-dependency of the long term behavior the temperature-dependency has to be considered also. 
Since in many cases the temperature-dependent creep data is not available in material data bases, creep tests at 
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different temperatures have to be conducted. As the main aim of our approach is to minimize the additional 
experimental effort, the description of temperature-dependency is introduced in this approach on the basis of 
short term creep data.  

The time temperature superposition principle is often used in the literature for this purpose and is well known to 
deliver satisfying simulation results. This approach is used here to shift the mastercurve at a reference 
temperature along the time axis to a short term creep curve at another temperature, Figure 14.  

 

Figure 14.Horizontal shift at time temperature superposition principle 

With this modification the model in (3) develops to the following equation: 

 
 
 

 
The introduction of the time temperature shift factor a t results in a temperature-dependent scaling of the 
relaxation times and can be determined from approximately 2h short term creep tests. This approach is based on 
the iso free volume model. This model was proposed by (Fox Jr and Flory, 1950; Simha and Boyer, 1962) and 
claims that the free volume fraction below T g is constant and temperature-independent. Therefore the free 
volume fraction below Tg is still just load-dependent 
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Figure 15. Iso free volume approach 
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Figure 16. Simulation of the temperature-dependent creep behaviour with TTSP 

 
Although it is the usual practice to apply only a horizontal shift (e.g. Jazouli, Luo, Bremand and Vu-Khanh, 
2006; Knauss and Zhu, 2002; Zhao, Luo, Li and Chen, 2008) as it is done above, many publications describe a 
necessary vertical shift (Ferry, 1980; H. Markovitz, 1975; P.A. OConnell and G.B. McKenna, 1997). This 
vertical shift is caused by a change in density below the glass transition temperature. As it can hardly be 
quantified, this vertical shift is often ignored which can cause unrealistic simulation results as described in 
(Brinson and Brinson, 2008; O'Connell and McKenna, 2002). Therefore the model is further modified to apply 
also a vertical shift. 

 
 

 
Figure 17. Vertical shift at time temperature superposition principle 

 
The iso core model (Boyer and Spencer, 1944, 1945; Spencer and Boyer, 1946) claims that the whole thermal 
expansion below Tg is caused by free volume Figure 18. In this case the change in free volume below T g 
becomes from equation (13) to 
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Figure 18. Iso core volume approach 

 
With this modification, a change in temperature results in a change of shear modulus and a horizontal shift of the 
mastercurve, respectively. According to the iso core volume approach the coefficient of thermal expansion of the 
free volume correlates to the coefficient of thermal expansion of the material. This coefficient is available in 
material data bases for most materials, so no further experimental effort is necessary. For the present 
polycarbonate the linear coefficient of expansion is given in (CampusPlastics, 2011) as β=65·10-6 1/K. For an 
isotropic material follows the volumetric coefficient of expansion αfv≈3·β=19,5·10-5 1/K (Schwarzl, 1990). The 
simulation results for this approach are shown in Figure 19. 

 
Figure 19. Simulation of the temperature dependent creep behaviour (iso core volume approach) 

The change in free volume due to a variation in temperature proposed by this approach is too large and no 
reasonable additional horizontal shift can be applied (Figure 19). This is caused by the fact that the coefficient of 
thermal expansion is too large. Nevertheless, the iso core volume approach can be used to get a first estimation 
of the temperature-dependent long term behaviour, if no temperature-dependent creep data is available. But for 
an exact determination of the temperature-dependent long term behaviour a different approach has to be used so 
that both horizontal and vertical shift can be applied.  
 
The thermal expansion of the material is supposed to be caused by thermal expansion of free volume as well as 
by thermal expansion of the occupied volume. In (Dlubek, Pionteck and Kilburn, 2004; Hagiwara, Ougizawa, 
Inoue, Hirata and Kobayashi, 2000 ) the real thermal expansion behaviour of free volume for different polymers 
is measured by positron annihilation lifetime spectroscopy (PALS) and it is shown that the free volume as well 
as the occupied volume contribute to thermal expansion (Figure  21). This thermal expanision behaviour results 
in a smaller vertical shift as with the iso core volume model and an additional horizontal shift.   
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Figure 20. Combination of vertical and horizontal shift at time temperature superposition principle  

In a further simulation the thermal coefficient of expansion of free volume below T g for a polycarbonate is used. 
This coefficient is determined in (Hagiwara, Ougizawa, Inoue, Hirata and Kobayashi, 2000) by PALS as 
αfv=10,5·10-5 1/K. The simulation results using this value are shown in Figure 22. 

 

 
Figure 21. Real thermal expansion of free volume 

 
Figure 22. Simulation of the temperature-dependent creep behaviour  

 
The temperature-dependency of the creep behaviour can be described in a good approximation for all 
temperatures. Furthermore no time consuming creep experiments at different temperatures are needed to 
calibrate the model. Just the thermal expansion coefficient of the free volume is needed. This coefficient can be 
determined by Positron Annihilation Lifetime Spectroscopy (PALS). For several polymers information about 
this expansion coefficient already exists in the literature and can be used as well (e.g. Dlubek, Pionteck and 
Kilburn, 2004; Hagiwara, Ougizawa, Inoue, Hirata and Kobayashi, 2000). 
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7 Conclusion and Objectives 

The present paper describes a material model to simulate the nonlinear load-dependency of the long term 
behavior of real plastics components over a wide load range. By integrating a modified time temperature-
superposition-principle, the long term behavior over a wide temperature range can be simulated as well. This is 
shown on simulations on a multiaxially loaded part. The special feature of the derived method is that only creep 
curves and short term tests are necessary to calibrate the model. Hence the additional experimental effort for the 
engineer is minimized. 

A special advantage of the model is that the load-dependency as well as the temperature-dependency can be 
described with the same parameter, the change of free volume. This parameter can also be used to describe other 
influences on long term behaviour such as physical ageing. Further research will be necessary in modifying the 
model so that also these influences can be regarded by the model. 

Moreover this approach will be further validated by experiments. In these experiments more different materials 
as well as other example parts will be investigated. In addition the assumption that there is nearly no load-
dependency under compression will be investigated as this assumption is only based on literature sources 
(Krumpholz, 2005; Sarabi, 1984; Wieser, 1998a) at the moment. 
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