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Modelling of Thin Films of Shape-Memory Alloys

G. Patld

After a brief introduction to the physical and mathematipedblem related—not only—to shape-memory alloys
and a review of different variational models for thin madéit films a numerical approach based on the first
laminate is proposed, followed by computational experisien

1 Introduction

Shape-memory alloys (SMAS) have been subject to extensaa ¢tical and experimental research since the last
half a century—when the martensitic phase transformationfirst explained in the AuCd alloy in 1951.

This non-diffusive, solid-to-solid phase transformatleads to a change in the crystallographic structure of the
material. The SMAs exist in two phases: at high temperahgatistenite phase (having one crystallographic con-
figuration with high symmetry—usually cubic structure) vehibwer temperatures lead to a low-symmetric grid,
e.g., tetragonal, orthorhombic, monoclinic, which is tlrafied martensite phase and may occuindifferent
variants (herél/ = 3,6, 12 for the cases mentioned above).

Shape-memory alloys belong to the group of intelligent male they do not only have the ability to detect
changes of their environment—stress and temperature, bcyar—but they are also able to react to these
changes. Furthermore, this behaviour being induced by t@ tnansformation of the crystallographic lattice
of the alloy, the size of an SMA component can be reduced f&ggntly—up to the order of0 pm—without
affecting its functionality.
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Figure 1. Power—weight ratio for different types of actuaj® — piezoelectric transducers, E — electromotors, M —
modeller motors, H — hydraulic motors, B — piston gas-engiie- piston diesel-engines, T — internalcombustion
turbines, SMA - shape-memory alloy actuators (picture toadance with Figure 6 dBittner and No#ék (2002))

Due to this delicate feature, miniature components maddapes-memory alloys have found numerous appli-
cations in many different areas of science and technologwy fmicrorobotics to thin films—particularly the

sputter-deposited NiTi thin films, which are widely used dsroactuators in the micro-electro-mechanical sys-
tems (MEMS), e.g., cantilevers, diaphragms, micropumpsrawalves, dumpers (cf. Pan and Cho (2007) for the
demonstration of such a dumper), different grippers, gjgrior mirror actuators. For an extensive overview of the
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moderndecompositiortechniques, key engineering characteristics and apjaitaof NiTi thin films cf. Miyazaki
et al. (2009).

2 Mathematical Model of SMA Static Problemsin 3D

In what follows L? will denote the standard Lebesgue space of measurable nggpphich are integrable with the
p-th power forl < p < 400 or essentially bounded for= +o0o. Further, )" will stand for the Sobolev space
of mappings belonging together with their derivatives uth®sorderk to L?.

Usually, the formulation of the mathematical minimizatigmoblem related to the static description of bulk shape-
memory alloys at a given temperaturés

Minimize I(y):/ga(Vy(x))d;L'
Q
subjectto y € 2, Q)

wherey is the deformation of the reference configuratidrc R3, 2 open bounded domain, furthermore, the set
Ay, = {w e WHP(Q,R?) : det Vw > 0 a.e. in2, w|r, = yo } denotes the set of admissible deformations with
1 < p < 400 andy, defining a suitable Dirichlet boundary condition on a prisd I’y C 02, meagly) > 0
such tha®l,,, # 0.

The Helmholtz free energy density: R3*3 — R is a continuous function defined on the set of Beal3 matrices
obliging the physical property of material frame-indiféace, more precisely

P(QF) =¢(F)  VQ e 50(3), )

whereSO(3) = {Q € R**3 . QTQ = QQT = I, detQ = 1} denotes the set of all rotations afndhe 3 x 3
identity matrix.

Without loss of generality let us consider the energy dgmsitmalized, so thap > 0. Then different variants of
the particular phases are modelled through the multi-virelcture ofyp, i.e.,

@(F)ZOZIQI[IiH@(') & Fe AuM, 3)

whereA := SO(3)Up, resp.M := SO(3)U1USO(3)UsU- - -USO(3)Uy, stands for all the matrices related to the
austenitic phase, resp. the martensitic phase (consisting variants)—bearing in mind the frame-indifference
of the stored energy density, too—the particular matrié¢gsesp.Us, . .. Uy, are then the so called Bain matrices
of the austenite, resp. martensite.
Furthermore, the energy density should satisfy the growttition

c(JAP —1) < p(4) < C(1+ |APP) VA € R3*3 4)
for somec, C' € R.
Due to the multi-well character @s—implying its lack of quasiconvexity—(1) may not admit anygin in the
class of Sobolev spaces as for any minimizing sequenceoisedl to—and does for certain conditions gnand

between/,—develop finer and finer oscillations between the wells.

Let us recall that a function: R™*™ — R is quasiconvex if the inequality
1
o) < g [ oA+ Vula) de ©)
0] Jo

holds valid for anyA € R™*" and anyy: O — R™ smooth, wherg) C R"™ is an open domain (in fact, the
property of quasiconvexity is independent of the chosenaioid).

Two procedures have been proposed to overcome the aforiemehproblem of non-existence of classical Sobo-
lev minimizers to (1). Dacorogna (1989) showed that one s&ene the functional to a relaxed functional

508



which defines a minimization problem delicately relatedhte initial one but exhibiting a solution in the related
Sobolev spacecf. the last paragraph, the first equality in (10), in paitic Let us recall that the relaxed problem
is connected to the quasiconvexificationgfnamely

Minimize Zg(y /Q@ Vy(z

subjectto y € Ay, (6)

whereQy is the quasiconvex envelope of the energy density, i.e.,

Qy = sup{y: ¥ < ¢, 1 quasiconvex. @)

The other method for introducing a meaningful solutadr{1) stems from extending the notion of solution to the
objects called gradient Young measures, which are wéakasurable mappings— . : Q — rcaR3*?)—i.e.,

the mapping? — R: x — (fi5,v) = [gaxs v(s)pz(ds) is Lebesgue measurable for every continuous function
with compact support € Cy(R3*3)—with values in probability measures generated by sequesfagadients of
Sobolev maps.

Then defining the set of all gradient Young measyiess
GP (U R?%) = {p e Ly (Q;rcaR**?)) : 3{yx }ren bounded i 17 (Q; R?) such thaby,, —pu}, (8)

where,. is the usual delta function with support at the poirdnd the weak convergence is understood in the
dual spacel2°(Q;rcaR3*3)) ~ L1(;Co(R?*3))*—the subscriptw indicating the above mentioned weak
convergence of measures—, one is led to formulate the relakgchization problem as

Minimize Zy (u / / ) (ds) dx
Rsxs
subjectto u € GP(Q; R3*3), 9)

yﬂ € Q[yo’

wherey,, € W?(Q; R*)—called the underlying deformation of the measureis the weak limit of the generat-
ing sequencéyy, }xen from definition (8).

It can be shown—among others—that

min (6) = inf (1) = min (9), (10)
whereas any minimizey € 21,,, of (6) admits a minimizing sequence of (1) converging weadlyin W17 (£; R3)
and every minimizer of (9) is generated by gradients of miring sequences of (1). The advantage of the Young-

measure approach lies in its ability of capturing the mictagure beyond the macroscopic deformation as well.
For further details cf. e.g. Dacorogna (1989)ilMr (1999); Pedregal (1997); Roidiek (1997).

3 Dimension Reduction
3.1 Limiting Energy Densities

Modelling of thin films of shape-memory alloys relies ol @onvergence procedure when going to zero with the
material thicknesé > 0 of the domair2;, = w x (—h/2,h/2),w C R? open and bounded. In order to do so one
transforms the total enerdy, () to a scaled integral of a reference configuration=w x I, I := (—1/2,1/2),

not depending otk by a scaling factor of /h; cf. Friesecke et al. (2006) for a hierarchy of different lioear
plate theories arising from different scaling of the freergly and the power of external forces.

More precisely, one is looking for the variational limit

lim Ij(y) = lim 1/ @(pr(a:)‘%V;),y(z)) dz, (112)

h—04 h—04 h
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where the expressiong,y € R**?, resp. V3y € R? denote the planar gradient of i.e., the gradient of
y = y(zp), xp = (z1,22), resp. the partial derivative of = y(x) in the directiones perpendicular to the basis
{e1,e2} of the film w; the notation(A|as) for a3 x 2 matrix A with columnsa; anda, means then thd x 3
matrix 3°_ a; @ e;.

The first rigorous results were due to Le Dret and Raoult (198® obtained the limit functional

Tepr(y) = / Q0(V,y) dey, (12)

which involvedQy, the quasiconvex envelope of the effective energy densitgtefined forF” € R**2 as
wo(F) = min p(F|z), (13)
z€R3

capturing well the average macroscale deformation of theriah but with the obvious drawback of losing the
finer scale oscillations of the deformation gradient forgniine structure of laminates.

For this purpose gradient Young measures introduced alfauddsbe taken into account when determining the
I'—limit of the total energy functionals. Freddi and Paroi(2) arrived at the following expression

Irp(p) = / A3X2 ©o(F) dpu, dzy, (14)

whereu € L°(w;rcaR3*2)). In addition, they have shown a certain uniqueness of thititigistored energy

w

density,i.e., that among all continuous integrands wijthth growth ¢ is the sole function the Young-measure
relaxation of which is equal té = for every linear boundary conditioMore precisely, if denoting

W}"p(w;R?’) = {w € W'P(w;R?): w(z) = Az onvyy C dw, meagyy) > 0} (15)

for a real matrixA € R3*? and let, on one hand)[Z,, A] be the relaxation, i.e., the lower-semicontinuous
envelope, of

Ty(y) = / (V) dy, (16)

wherey : R3*? — R is continuous withp-th growth, cf. (4) withA € R3*2, on W} (w; R?) with respect to the
weak topology, and’[Z,;, A] be the relaxation of

5= {52 sy
with respect to the weakopology of LS (w; rca(R3*2)). Then it can be shown that

Teor(y) = Qpe Ally) and Zrp(n) = YT, A(1). (18)
Furthermore, for alld € R3*? it holds that

Y[Zy,Al=Y[Z,, 4] = ¢ = (19)

cf. Freddi and Paroni (2004), Section 7 for more detaiiste thatan analogueloes not hold in the case 8fpr
as there are infinitely many functions with a quasiconvexepe equal t@) .

Another approach was chosen by Bhattacharya and Jameg (#88@onsidered the total energy as the Helmholtz
free energy augmented witin interfacial energy, a term penalizing the oscillationshe teformation gradient

between different phases (as real materials do not deveifapitely fine-scale lamination either), namely,(y)
of the form

In(y) = /Q o(Vy) + 6| V2y|? dz, (20)
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wherex > 0 taken small but fixed. This additional term—yielding a smaugheffect—results in a limit energy
density which needs no relaxation, an interfacial ternhstésent, though, namely

Tss(y,b) = / o(yalyalb) + m2{[ V22 +2|V,b[?} d,. (21)

Note that the deformation of the thin film is described by tveater fieldsy: w — R? holding the information
about the mid-plane deformation of the filamdb: w — R? outlining the behaviour of the cross-section of the
film under loading.

One year later it was Shu (2000) who showed thatig also taken dependent on the material thickmessr(h)
then the limit functional . pz may be recovered fdt — 0, andx(h) — 0;—independently of the ratie/h.

More recently, in order to derive rigorously a limiting thiilm theory in the absence of an interfacial term while
still recovering the aforementioned Cosserat vector fi@dcea (2007) introduced the scaled gradient Young mea-

sures, which are Young measures generated by sequenceseaf gradients of the forry(V,w;, ‘ n-Vawy)
hp — 04

}kGN’

When defining the set of all scaled gradient Young measuréswwmitierlying deformatioy € W1»(Q2;R?) and
associated Cosserat vector L?(£2;R?) as

P (R = {u € L (Q;R33) | 3h, — 04 Hy,} € WHP(Q;R?)

w

1
Yn —Y, 7v3yn —c, 5

hn (Vpyn | Vs ) AM}, (22)

where the weak convergences are taken subsequently indbes$p!?(Q; R?), LP(Q2;R3) and the dual space
L2 (; rea(R3*3)), respectively, then the following assertion for the asyatiptimit holds:

In(y,b) = min du. 23
5(y,b) pegr o |, P (23)

This results from the decomposition of the sequence of dgakedients into a-equiintegrable part carrying the os-
cillations and a remainder accounting for the concentnat{but converging to zero in measure), cf. Bocea (2008);
Bocea and Fonseca (2002); Braides and Zeppieri (2007). owhe set of scaled gradient Young measures still
lacks any effective analytical description analogous ®dhe of gradient Young measures by Kinderlehrer and
Pedregal (1994).

3.2 Compatibility Condition for the Defor mation

In what follows, we will concentrate on the thin-film modebpiosed by Bhattacharya and James (1999) in order
to implement it and make numerical simulations for a NiMnGaya

For a deformation which does not tear the film ap#te Hadamard jump condition ought to be satisfied, which
turns out to be essentially different from the bulk case.sTdandition requires in the thin film theory the exis-
tence of an invariant line interface between two (suitabtated) zero-energy deformation gradients under a given
deformation (the deformation gradient and the Cosserabr@cay, however, suffer jumps across the interface).
More precisely, letv = w1 Uws U L, wherew; andws are two disjoint subsets andlis a line segment between
them. Then, if

QlU in w1

Q2V  inwsg, (24)

(1/,1|y72|b) = {

y denoting the deformatior, the associated Cosserat vector, wiiileZ V' are two Bain matrices, Bhattacharya
and James (1999) showed that the thin-film twinning equatiay be expressed as

QU -V =a®n+c® ez, (25)
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for suitableQ € SO(3), a,n,c € R3 such thatn - e3 = 0. Note that this condition is much weaker than the
one required in 3D, i.e., rafi@U — V) = 1, which predicts the need of a planar interface between theggn
wells. As a consequence, there might exist interfaces tegtyparticular phases in thin films which do not in the
bulk material. E.g., there are certain materials which mdyitet a sharp interface between the austenite and the
martensite, this phenomenon being theoretically impsgibthe 3D setting.

4 Numerical Experiments
4.1 Sequential Laminates
Due to the non-local character of quasiconvexity it is diffidn most of the cases to compute the quasiconvex

envelope of a particular function explicitly.

Therefore, one is pursuaded to consider a more general fygoagexity, namely, the rank-one convexity which is
defined as the property of a functigh R™*™ — R being convex along rank-one connected matrices, i.e.,

FOAA+ (1 =XNB) <Af(A)+ (1 =N f(B) whenever rankd — B) <1land0 <\ <1. (26)
When introducing the rank-one convex envelope, analogdaghye quasiconvex envelope, as

Ry = sup{v: ¥ < ¢, ¢ rank-one convek 27)
one can easily see that it provides an upper bound for theaqumex envelope

Qe < Rp <. (28)
A useful approximation procedure of this envelapproposed by Kohn and Strang (1986), namely

Proposition 1. (see (Kohn and Strang, 1986, 1)) L¢gt R**3 — R3 be bounded from below, then for every
A € R3*3 it holds that

Rf(A) = lim Ryf(A), (29)

k——+oco
where
Rof(A) = f(A)v (30)

then subsequently fér=1,2, . ..

Rif(4) = (A,Ao,iflf)eMA (M1 f(Ao) + (1= N s £ (A1), (31)

Ry f calledk-th order laminate, and the set of admissible microstrestin 4 C [0, 1] x R3*3 x R3*3 for the
matrix A defined as

MA = {(A,Ao, Al)l A= AAO + (1 — )\)Al and ranKA1 — Ao) < 1} (32)

Hence, utilizing this latter characterization of rank-amsavex envelope one can state the minimization problem
fork € Nas

Minimize IRk(y)z/RW(Vy(ﬂf))dx
Q
subjectto y € 2A,,, (33)

and observe that
min (6)= inf (33) = inf (1) (34)

for all £ € N, which follows from the inequalitf)y < Ry < --- < Ry < R1p < ¢ and relation (1Q)
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In our simulations the first order laminate was used to apprate the rank-one convex envelope of the free energy
density (21) while considering the contribution of the iféeial energy negligible, therefore setting the inteidac
parameter = 0.

In order to set the numerical model let us first, by combinimg thin-film twinning equation and the expression
for the first order laminate, i.e.,

(y1]y,2[b) = Mo + (1 — N Ay,
Ai—Ap=a®@n+c®es, (35)

for somea, n, ¢ € R3 such that: - e3 = 0, express

Ag = (aly2lb) — (1 =N (a®@n+c®e3),
A= (Yaly2lb) + AMa®@n +c®e3). (36)

Furthermore, let us consider the finite element discrétinatmore precisely element-wise affine approximation
for the deformationy and element-wise constant one for the other variables,thydacing

Uy = {v e C(w;R?): v|g € Py foreachK € Ty, v = yo onT},
Va={v:w— R* v|g € P, foreachK € T}, (37)
Wi ={v:w—[0,1]: v|g € P, for eachK € T},

whered > 0 is the discretization parameter afigla triangulation of the reference domain
Hence, the numerical minimization problem written in tewhshe variableg, b, a, n, c and\ is

Minimize Jg, (y,b,a,n,c,\)

subjectto y € Uy,
b,a,n,c € Vy, (38)
n-ez =0,
A€Wy,

where the total free energy takes the form

/w {Me((ya

following from (31) fork = 1.

y2lb) —(1=XN)(a®@n+c®ez))+ (1 —No((y1ly2d) + AMa@n+c® 63))} dz, (39)

4.2 Tension and Compression Experiment for a Ni-Mn-Ga Single Crystal

Let us consider the NMnGa alloy and demonstrate using the numerical schemeibdedcabove the predicted
austenite-martensite interface.

This alloy exhibits a cubic-to-tetragonal phase transtiom with martensitic wellé/, = diag(v1, va,v2), Us =
diag(ve, v1, 10), Us = diag(ve, 19, 1) for lattice parameters; = 1.13, v» = 0.9512, and is modelled by a St.
Venant—Kirchhoff type free energy density

. 1 .
p(F) = min ¢;(F)= min o (F-U) C(F-Ui) (40)

for all F € R3*3, where the tensors of elastic moddli take—using the Voigt notation—the valu€$, = 13.6
GPa,CY, = 9.2 GPa,C}, = 10.2 GPa for the austenite aritf, = 136 GPa,C’, = 92 GPa,Ci, = 102 GPa,
i =1,2,3, equally for all martensitic variants, inspired by the woflKruzik and Roultek (2004).

In both the tension and compression experiments as refe@ntigurationy = (0,9) x (0,4) is taken in the

stress-free austenitic phase, cf. Figure 2 prescribing displacement Dirichlet boundary condition Bry. On
I'vre We have prescribed a given elongation.
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Figure 2: Reference configuration offMinGa single crystal thin film in stress-free austenite (@l ;g fixed
boundary segment;;,,. boundary segment with prescribed elongation

The first-order laminate is, however, capable only of captutwo phase variants, therefore we had to select the
competing wells with the greatest impact on the behaviotm@specimen, in our cases these were the austénite
and the martensitic varianf, = diag(v1, vz, 1), resp.Us = diag(ve, 1, v2) for the tension, resp. compression
test.

The minimization procedurieas beemone with the aid of the limited memory L-BFGS-B routine—deped by
Byrd et al. (1995)—which is, howevedesignedor local optimization. Therefore, a successful compotatf
our global minimization problem, being, moreover, nona@q is a challanging task which requires a good initial
guess of the variables—involving the explicit computatibthe interface between compatible wells. Afterwards,
the visualization of the different fractions of the martiéins/ariants was completed by evaluating

(41)

HE) =3 [(AF)TAF — UL U2
NARTAE —UTUo? + [(AF)TAK — UTU, 2

=0

on each elemenk’ of the triangulation with\o = XA and\; = 1 — A, then interpolating on the black—white scale
as seen on Figure 3 and Figure 4 (the austenite is colourdd e martensite black).

Note that as a result of the simplied model we used, the fid#rdaminate and the method of prescribing the
elongation onl',,,, the elements at the fixed boundary parts cannot undergee frassformation. Therefore
Figure 3 exhibits certain unnatural symmetries in the vadraction of the martensite—the austenite—martensite
transformation is known to start in a corner of the specimidowever, our simulation was able to recover the
nonlinear response of the material, specific for SMAs, ustiain, cf. the stess—strain plot in Figure 3.

The compression experiment in Figure 4 shows a specificieatiuthin films not observed in the bulk. When
compressed, under a small back pressure, they bulge upurithanging phase, i.e., the material persists in the
austenite. This buckling effect has been proposed in Bifstga and James (1999), here simulated explicitly, and
predicts that some theoretical tools, e.g., the non-bogilype assumption (3.18) in Mielke and Ratdk (2003),
might be natural in the bulk, but are never in the thin-filmdiyeand should be avoided.

Another specific type of buckling related to the microadtwatharacter of shape-memory alloys has been numer-
ically investigated by Dondl et al. (2007).

5 Conclusion

The aim of this contribution was to draw attention to theeti#hce between the modelling of bulk and thin film
shape-memory materials with particular stress on ricliactire of interfaces in some alloys, which first appeared
in Bhattacharya and James (1999).
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Figure 3: Tension experiment for lWInGa single crystal with 1, 2, 4, 6, 8 and 10% elongation inatkdirection
and its stress—strain curve
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Figure 4: Side and top view on a 2% compressefMiGa single crystal sheet with small back pressure exhipiti
buckling with negligible phase transformation

To this behalf, after a brief overview of the different apgeches to the derivation of a 2D model we have done
some simple numerical calculations on an academic SMA &ligystify the theoretical tools introduced.

As already pointed out before, a gradient-based optinaragigorithm is not the most effective way to treat
the non-convex minimization problem related to SMAs whicually possessemany local minima. Another
interestingconcept is to adopt a global optimization routine, e.g.tigiarswarm optimizatiofPSO) cf. Ben&owa
(2011) for some promising results in 3Blowever, these metaheuristic algorithms, such as the PEtaer
genetic algorithms, do not guarantee that an optimal swius ever found at all. Cf. Yang (2008) for an extensive
overview of the topic.

Other future work will focus on the evolutionary problemglie thin film theory of shape-memory alloys which
lacks an effective description till nowadays, the numénicathod described above could then be easily extended
to the dissipative evolutionary model.
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