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Modelling of Thin Films of Shape-Memory Alloys

G. Path́o

After a brief introduction to the physical and mathematicalproblem related—not only—to shape-memory alloys
and a review of different variational models for thin martensitic films, a numerical approach based on the first
laminate is proposed, followed by computational experiments.

1 Introduction

Shape-memory alloys (SMAs) have been subject to extensive theoretical and experimental research since the last
half a century—when the martensitic phase transformation was first explained in the AuCd alloy in 1951.

This non-diffusive, solid-to-solid phase transformationleads to a change in the crystallographic structure of the
material. The SMAs exist in two phases: at high temperature the austenite phase (having one crystallographic con-
figuration with high symmetry—usually cubic structure) while lower temperatures lead to a low-symmetric grid,
e.g., tetragonal, orthorhombic, monoclinic, which is thencalled martensite phase and may occur inM different
variants (hereM = 3, 6, 12 for the cases mentioned above).

Shape-memory alloys belong to the group of intelligent materials: they do not only have the ability to detect
changes of their environment—stress and temperature, in particular—but they are also able to react to these
changes. Furthermore, this behaviour being induced by the mere transformation of the crystallographic lattice
of the alloy, the size of an SMA component can be reduced significantly—up to the order of10 µm—without
affecting its functionality.
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Figure 1: Power–weight ratio for different types of actuators; P – piezoelectric transducers, E – electromotors, M –
modeller motors, H – hydraulic motors, B – piston gas-engines, D – piston diesel-engines, T – internalcombustion
turbines, SMA - shape-memory alloy actuators (picture in accordance with Figure 6 of̌Sittner and Nov́ak (2002))

Due to this delicate feature, miniature components made of shape-memory alloys have found numerous appli-
cations in many different areas of science and technology from microrobotics to thin films—particularly the
sputter-deposited NiTi thin films, which are widely used as microactuators in the micro-electro-mechanical sys-
tems (MEMS), e.g., cantilevers, diaphragms, micropumps, microvalves, dumpers (cf. Pan and Cho (2007) for the
demonstration of such a dumper), different grippers, springs or mirror actuators. For an extensive overview of the
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moderndecompositiontechniques, key engineering characteristics and applications of NiTi thin films cf. Miyazaki
et al. (2009).

2 Mathematical Model of SMA Static Problems in 3D

In what followsLp will denote the standard Lebesgue space of measurable mappings which are integrable with the
p-th power for1 ≤ p < +∞ or essentially bounded forp = +∞. Further,W k,p will stand for the Sobolev space
of mappings belonging together with their derivatives up tothe orderk toLp.

Usually, the formulation of the mathematical minimizationproblem related to the static description of bulk shape-
memory alloys at a given temperatureθ is

Minimize I(y) =

∫

Ω

ϕ(∇y(x))dx

subject to y ∈ Ay0 , (1)

wherey is the deformation of the reference configurationΩ ⊂ R
3, Ω open bounded domain, furthermore, the set

Ay0 :=
{

w ∈W 1,p(Ω,R3) : det∇w > 0 a.e. inΩ, w|Γ0
= y0

}

denotes the set of admissible deformations with
1 < p < +∞ andy0 defining a suitable Dirichlet boundary condition on a prescribedΓ0 ⊂ ∂Ω, meas(Γ0) > 0
such thatAy0 6= ∅.

The Helmholtz free energy densityϕ : R3×3 → R is a continuous function defined on the set of real3×3 matrices
obliging the physical property of material frame-indifference, more precisely

ϕ(QF ) = ϕ(F ) ∀Q ∈ SO(3), (2)

whereSO(3) = {Q ∈ R
3×3 : QTQ = QQT = I, detQ = 1} denotes the set of all rotations andI the3 × 3

identity matrix.

Without loss of generality let us consider the energy density normalized, so thatϕ ≥ 0. Then different variants of
the particular phases are modelled through the multi-well structure ofϕ, i.e.,

ϕ(F ) = 0 = min
Ay0

ϕ(·) ⇔ F ∈ A ∪M, (3)

whereA := SO(3)U0, resp.M := SO(3)U1∪SO(3)U2∪· · ·∪SO(3)UM stands for all the matrices related to the
austenitic phase, resp. the martensitic phase (consistingof M variants)—bearing in mind the frame-indifference
of the stored energy density, too—the particular matricesU0, resp.U1, . . . UM are then the so called Bain matrices
of the austenite, resp. martensite.

Furthermore, the energy density should satisfy the growth condition

c(|A|p − 1) ≤ ϕ(A) ≤ C(1 + |A|p) ∀A ∈ R
3×3 (4)

for somec, C ∈ R.

Due to the multi-well character ofϕ—implying its lack of quasiconvexity—(1) may not admit any solution in the
class of Sobolev spaces as for any minimizing sequence is allowed to—and does for certain conditions ony0 and
betweenUi—develop finer and finer oscillations between the wells.

Let us recall that a functiong : Rm×n → R is quasiconvex if the inequality

g(A) ≤
1

|O|

∫

O

g(A+∇ψ(x))dx (5)

holds valid for anyA ∈ R
m×n and anyψ : O → R

m smooth, whereO ⊂ R
n is an open domain (in fact, the

property of quasiconvexity is independent of the chosen domainO).

Two procedures have been proposed to overcome the aforementioned problem of non-existence of classical Sobo-
lev minimizers to (1). Dacorogna (1989) showed that one can extend the functionalI to a relaxed functionalIQ

508



which defines a minimization problem delicately related to the initial one but exhibiting a solution in the related
Sobolev space, cf. the last paragraph, the first equality in (10), in particular. Let us recall that the relaxed problem
is connected to the quasiconvexification ofϕ, namely

Minimize IQ(y) =

∫

Ω

Qϕ(∇y(x))dx

subject to y ∈ Ay0 , (6)

whereQϕ is the quasiconvex envelope of the energy density, i.e.,

Qϕ = sup{ψ : ψ ≤ ϕ, ψ quasiconvex}. (7)

The other method for introducing a meaningful solutionof (1) stems from extending the notion of solution to the
objects called gradient Young measures, which are weakly∗ measurable mappingsx 7→ µx : Ω → rca(R3×3)—i.e.,
the mappingΩ → R : x 7→ 〈µx, v〉 =

∫

R3×3 v(s)µx(ds) is Lebesgue measurable for every continuous function
with compact supportv ∈ C0(R

3×3)—with values in probability measures generated by sequencesof gradients of
Sobolev maps.

Then defining the set of all gradient Young measuresGp as

Gp(Ω;R3×3) =
{

µ ∈ L∞
w (Ω; rca(R3×3)) : ∃{yk}k∈N bounded inW 1,p(Ω;R3) such thatδ∇yk

∗
⇀µ

}

, (8)

whereδx is the usual delta function with support at the pointx and the weak∗ convergence is understood in the
dual spaceL∞

w (Ω; rca(R3×3)) ≃ L1(Ω;C0(R
3×3))∗—the subscriptw indicating the above mentioned weak∗

convergence of measures—, one is led to formulate the relaxedminimization problem as

Minimize IY (µ) =

∫

Ω

∫

R3×3

ϕ(s)µx(ds)dx

subject to µ ∈ Gp(Ω;R3×3), (9)

yµ ∈ Ay0 ,

whereyµ ∈W 1,p(Ω;R3)—called the underlying deformation of the measureµ—is the weak limit of the generat-
ing sequence{yk}k∈N from definition (8).

It can be shown—among others—that

min (6) = inf (1) = min (9), (10)

whereas any minimizery ∈ Ay0 of (6) admits a minimizing sequence of (1) converging weaklytoy inW 1,p(Ω;R3)
and every minimizer of (9) is generated by gradients of minimizing sequences of (1). The advantage of the Young-
measure approach lies in its ability of capturing the microstructure beyond the macroscopic deformation as well.
For further details cf. e.g. Dacorogna (1989); Müller (1999); Pedregal (1997); Roubı́ček (1997).

3 Dimension Reduction

3.1 Limiting Energy Densities

Modelling of thin films of shape-memory alloys relies on aΓ-convergence procedure when going to zero with the
material thicknessh > 0 of the domainΩh = ω × (−h/2, h/2), ω ⊂ R

2 open and bounded. In order to do so one
transforms the total energyIh(y) to a scaled integral of a reference configurationΩ1 = ω × I, I := (−1/2, 1/2),
not depending onh by a scaling factor of1/h; cf. Friesecke et al. (2006) for a hierarchy of different nonlinear
plate theories arising from different scaling of the free energy and the power of external forces.

More precisely, one is looking for the variational limit

lim
h→0+

Ih(y) = lim
h→0+

1

h

∫

ω×I

ϕ
(

∇py(x)
∣

∣

∣

1

h
∇3y(x)

)

dx, (11)
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where the expressions∇py ∈ R
3×2, resp. ∇3y ∈ R

3 denote the planar gradient ofy, i.e., the gradient of
y = y(xp), xp = (x1, x2), resp. the partial derivative ofy = y(x) in the directione3 perpendicular to the basis
{e1, e2} of the film ω; the notation(A|a3) for a 3 × 2 matrixA with columnsa1 anda2 means then the3 × 3

matrix
∑3
i=1 ai ⊗ ei.

The first rigorous results were due to Le Dret and Raoult (1995) who obtained the limit functional

ILDR(y) =

∫

ω

Qϕ0(∇py)dxp, (12)

which involvedQϕ0 the quasiconvex envelope of the effective energy densityϕ0 defined forF ∈ R
3×2 as

ϕ0(F ) = min
z∈R3

ϕ(F |z), (13)

capturing well the average macroscale deformation of the material but with the obvious drawback of losing the
finer scale oscillations of the deformation gradient forming the structure of laminates.

For this purpose gradient Young measures introduced above should be taken into account when determining the
Γ–limit of the total energy functionals. Freddi and Paroni (2004) arrived at the following expression

IFP(µ) =

∫

ω

∫

R3×2

ϕ0(F )dµxp
dxp, (14)

whereµ ∈ L∞
w (ω; rca(R3×2)). In addition, they have shown a certain uniqueness of the limiting stored energy

density,i.e., that among all continuous integrands withp-th growthϕ0 is the sole function the Young-measure
relaxation of which is equal toIFP for every linear boundary condition.More precisely, if denoting

W 1,p
A (ω;R3) = {w ∈W 1,p(ω;R3) : w(x) = Ax onγ0 ⊂ ∂ω, meas(γ0) > 0} (15)

for a real matrixA ∈ R
3×2 and let, on one hand,Q[Iψ, A] be the relaxation, i.e., the lower-semicontinuous

envelope, of

Iψ(y) =

∫

ω

ψ(∇py)dxp, (16)

whereψ : R3×2 → R is continuous withp-th growth, cf. (4) withA ∈ R
3×2, onW 1,p

A (ω;R3) with respect to the
weak topology, andY [Iψ, A] be the relaxation of

I∗
ψ(ν) =

{

Iψ(y) if ν = δ∇py for somey ∈W 1,p
A (ω;R3),

+∞ otherwise inL∞
w (ω; rca(R3×2))

(17)

with respect to the weak∗ topology ofL∞
w (ω; rca(R3×2)). Then it can be shown that

ILDR(y) = Q[Iϕ0
, A](y) and IFP(µ) = Y [Iϕ0

, A](µ). (18)

Furthermore, for allA ∈ R
3×2 it holds that

Y [Iψ, A] = Y [Iϕ0
, A] ⇒ ψ ≡ ϕ0. (19)

cf. Freddi and Paroni (2004), Section 7 for more details.Note thatan analoguedoes not hold in the case ofILDR

as there are infinitely many functions with a quasiconvex envelope equal toQϕ.

Another approach was chosen by Bhattacharya and James (1999) who considered the total energy as the Helmholtz
free energy augmented withan interfacial energy, a term penalizing the oscillations of the deformation gradient
between different phases (as real materials do not develop inifinitely fine-scale lamination either), namely,Ih(y)
of the form

Ih(y) =

∫

Ωh

ϕ(∇y) + κ|∇2y|2 dx, (20)
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whereκ > 0 taken small but fixed. This additional term—yielding a smoothing effect—results in a limit energy
density which needs no relaxation, an interfacial term still present, though, namely

IBJ (y, b) =

∫

ω

ϕ(y,1|y,2|b) + κ2{|∇2
py|

2 + 2|∇pb|
2}dxp. (21)

Note that the deformation of the thin film is described by two vector fields,y : ω → R
3 holding the information

about the mid-plane deformation of the filmandb : ω → R
3 outlining the behaviour of the cross-section of the

film under loading.

One year later it was Shu (2000) who showed that ifκ is also taken dependent on the material thicknessκ = κ(h)
then the limit functionalILDR may be recovered forh→ 0+ andκ(h) → 0+—independently of the ratioκ/h.

More recently, in order to derive rigorously a limiting thinfilm theory in the absence of an interfacial term while
still recovering the aforementioned Cosserat vector fieldb Bocea (2007) introduced the scaled gradient Young mea-

sures, which are Young measures generated by sequences of scaled gradients of the form
{(

∇pwk

∣

∣

∣

1
hk

∇3wk
)}

k∈N
,

hn → 0+.

When defining the set of all scaled gradient Young measures with underlying deformationy ∈ W 1,p(Ω;R3) and
associated Cosserat vectorb ∈ Lp(Ω;R3) as

Gpy,b(Ω;R
3×3) :=

{

µ ∈ L∞
w (Ω;R3×3)

∣

∣

∣

∣

∃hn → 0+ ∃{yn} ⊂W 1,p(Ω;R3) :

yn⇀y,
1

hn
∇3yn⇀c, δ(

∇pyn

∣

∣ 1
hn

∇3yn

)

∗
⇀µ

}

, (22)

where the weak convergences are taken subsequently in the spacesW 1,p(Ω;R3), Lp(Ω;R3) and the dual space
L∞
w (Ω; rca(R3×3)), respectively, then the following assertion for the asymptotic limit holds:

IB(y, b) = min
µ∈G

p
y,c(Ω;R3×3)

∫

Ω

ϕdµ. (23)

This results from the decomposition of the sequence of scaled gradients into ap-equiintegrable part carrying the os-
cillations and a remainder accounting for the concentrations (but converging to zero in measure), cf. Bocea (2008);
Bocea and Fonseca (2002); Braides and Zeppieri (2007). However, the set of scaled gradient Young measures still
lacks any effective analytical description analogous to the one of gradient Young measures by Kinderlehrer and
Pedregal (1994).

3.2 Compatibility Condition for the Deformation

In what follows, we will concentrate on the thin-film model proposed by Bhattacharya and James (1999) in order
to implement it and make numerical simulations for a NiMnGa alloy.

For a deformation which does not tear the film apart,the Hadamard jump condition ought to be satisfied, which
turns out to be essentially different from the bulk case. This condition requires in the thin film theory the exis-
tence of an invariant line interface between two (suitably rotated) zero-energy deformation gradients under a given
deformation (the deformation gradient and the Cosserat vector may, however, suffer jumps across the interface).
More precisely, letω = ω1 ∪ ω2 ∪ L, whereω1 andω2 are two disjoint subsets andL is a line segment between
them. Then, if

(y,1|y,2|b) =

{

Q1U in ω1

Q2V in ω2,
(24)

y denoting the deformation,b the associated Cosserat vector, whileU 6= V are two Bain matrices, Bhattacharya
and James (1999) showed that the thin-film twinning equationmay be expressed as

QU − V = a⊗ n+ c⊗ e3, (25)
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for suitableQ ∈ SO(3), a, n, c ∈ R
3 such thatn · e3 = 0. Note that this condition is much weaker than the

one required in 3D, i.e., rank(QU − V ) = 1, which predicts the need of a planar interface between the energy
wells. As a consequence, there might exist interfaces between particular phases in thin films which do not in the
bulk material. E.g., there are certain materials which may exhibit a sharp interface between the austenite and the
martensite, this phenomenon being theoretically impossible in the 3D setting.

4 Numerical Experiments

4.1 Sequential Laminates

Due to the non-local character of quasiconvexity it is difficult in most of the cases to compute the quasiconvex
envelope of a particular function explicitly.

Therefore, one is pursuaded to consider a more general type of convexity, namely, the rank-one convexity which is
defined as the property of a functionf : Rm×m → R being convex along rank-one connected matrices, i.e.,

f(λA+ (1− λ)B) ≤ λf(A) + (1− λ)f(B) whenever rank(A−B) ≤ 1 and0 ≤ λ ≤ 1. (26)

When introducing the rank-one convex envelope, analogouslyto the quasiconvex envelope, as

Rϕ = sup{ψ : ψ ≤ ϕ, ψ rank-one convex} (27)

one can easily see that it provides an upper bound for the quasiconvex envelope

Qϕ ≤ Rϕ ≤ ϕ. (28)

A useful approximation procedure of this envelopeis proposed by Kohn and Strang (1986), namely

Proposition 1. (see (Kohn and Strang, 1986, II)) Letf : R3×3 → R
3 be bounded from below, then for every

A ∈ R
3×3 it holds that

Rf(A) = lim
k→+∞

Rkf(A), (29)

where

R0f(A) = f(A), (30)

then subsequently fork = 1, 2, . . .

Rkf(A) = inf
(λ,A0,A1)∈MA

(

λRk−1f(A0) + (1− λ)Rk−1f(A1)
)

, (31)

Rkf calledk-th order laminate, and the set of admissible microstructuresMA ⊂ [0, 1] × R
3×3 × R

3×3 for the
matrixA defined as

MA = {(λ,A0, A1) : A = λA0 + (1− λ)A1 and rank(A1 −A0) ≤ 1}. (32)

Hence, utilizing this latter characterization of rank-oneconvex envelope one can state the minimization problem
for k ∈ N as

Minimize IRk
(y) =

∫

Ω

Rkϕ(∇y(x))dx

subject to y ∈ Ay0 , (33)

and observe that

min (6)= inf (33)= inf (1) (34)

for all k ∈ N, which follows from the inequalityQϕ ≤ Rϕ ≤ · · · ≤ R2ϕ ≤ R1ϕ ≤ ϕ and relation (10).
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In our simulations the first order laminate was used to approximate the rank-one convex envelope of the free energy
density (21) while considering the contribution of the interfacial energy negligible, therefore setting the interfacial
parameterκ = 0.

In order to set the numerical model let us first, by combining the thin-film twinning equation and the expression
for the first order laminate, i.e.,

(y,1|y,2|b) = λA0 + (1− λ)A1,

A1 −A0 = a⊗ n+ c⊗ e3, (35)

for somea, n, c ∈ R
3 such thatn · e3 = 0, express

A0 = (y,1|y,2|b)− (1− λ)(a⊗ n+ c⊗ e3),

A1 = (y,1|y,2|b) + λ(a⊗ n+ c⊗ e3). (36)

Furthermore, let us consider the finite element discretization, more precisely element-wise affine approximation
for the deformationy and element-wise constant one for the other variables, by introducing

Ud ≡ {v ∈ C(ω̄;R3) : v|K ∈ P0 for eachK ∈ Td, v = y0 onΓ},

Vd ≡ {v : ω → R
3 : v|K ∈ P0 for eachK ∈ Td}, (37)

Wd ≡ {v : ω → [0, 1] : v|K ∈ P0 for eachK ∈ Td},

whered > 0 is the discretization parameter andTd a triangulation of the reference domainω.

Hence, the numerical minimization problem written in termsof the variablesy, b, a, n, c andλ is

Minimize JR1
(y, b, a, n, c, λ)

subject to y ∈ Ud,

b, a, n, c ∈ Vd, (38)

n · e3 = 0,

λ ∈ Wd,

where the total free energy takes the form

∫

ω

{

λϕ((y,1|y,2|b)− (1− λ)(a⊗ n+ c⊗ e3)) + (1− λ)ϕ((y,1|y,2|b) + λ(a⊗ n+ c⊗ e3))
}

dx, (39)

following from (31) fork = 1.

4.2 Tension and Compression Experiment for a Ni-Mn-Ga Single Crystal

Let us consider the Ni2MnGa alloy and demonstrate using the numerical scheme described above the predicted
austenite-martensite interface.

This alloy exhibits a cubic-to-tetragonal phase transformation with martensitic wellsU1 = diag(ν1, ν2, ν2), U2 =
diag(ν2, ν1, ν2), U3 = diag(ν2, ν2, ν1) for lattice parametersν1 = 1.13, ν2 = 0.9512, and is modelled by a St.
Venant–Kirchhoff type free energy density

ϕ(F ) = min
i=0,...,3

ϕi(F ) = min
i=0,...,3

1

2
(F − Ui) · C

i(F − Ui) (40)

for all F ∈ R
3×3, where the tensors of elastic moduliC

i take—using the Voigt notation—the valuesC0
11 = 13.6

GPa,C0
12 = 9.2 GPa,C0

44 = 10.2 GPa for the austenite andCi11 = 136 GPa,Ci12 = 92 GPa,Ci44 = 102 GPa,
i = 1, 2, 3, equally for all martensitic variants, inspired by the workof Kruž́ık and Roub́ıček (2004).

In both the tension and compression experiments as reference configurationω = (0, 9) × (0, 4) is taken in the
stress-free austenitic phase, cf. Figure 2 prescribing zero displacement Dirichlet boundary condition onΓid. On
Γpre we have prescribed a given elongation.
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Figure 2: Reference configuration of Ni2MnGa single crystal thin film in stress-free austenite (white)—Γid fixed
boundary segment,Γpre boundary segment with prescribed elongation

The first-order laminate is, however, capable only of capturing two phase variants, therefore we had to select the
competing wells with the greatest impact on the behaviour ofthe specimen, in our cases these were the austeniteU0

and the martensitic variantU1 = diag(ν1, ν2, ν2), resp.U2 = diag(ν2, ν1, ν2) for the tension, resp. compression
test.

The minimization procedurehas beendone with the aid of the limited memory L-BFGS-B routine—developed by
Byrd et al. (1995)—which is, however,designedfor local optimization. Therefore, a successful computation of
our global minimization problem, being, moreover, non-convex, is a challanging task which requires a good initial
guess of the variables—involving the explicit computation of the interface between compatible wells. Afterwards,
the visualization of the different fractions of the martensitic variants was completed by evaluating

γ(K) =

1
∑

l=0

λl
|(AKl )TAKl − UTi Ui|

2

|(AKl )TAKl − UT0 U0|2 + |(AKl )TAKl − UTi Ui|
2

(41)

on each elementK of the triangulation withλ0 = λ andλ1 = 1 − λ, then interpolating on the black–white scale
as seen on Figure 3 and Figure 4 (the austenite is coloured white, the martensite black).

Note that as a result of the simplied model we used, the first-order laminate and the method of prescribing the
elongation onΓpre, the elements at the fixed boundary parts cannot undergo phase transformation. Therefore
Figure 3 exhibits certain unnatural symmetries in the volume fraction of the martensite—the austenite–martensite
transformation is known to start in a corner of the specimen.However, our simulation was able to recover the
nonlinear response of the material, specific for SMAs, understrain, cf. the stess–strain plot in Figure 3.

The compression experiment in Figure 4 shows a specific feature of thin films not observed in the bulk. When
compressed, under a small back pressure, they bulge up without changing phase, i.e., the material persists in the
austenite. This buckling effect has been proposed in Bhattacharya and James (1999), here simulated explicitly, and
predicts that some theoretical tools, e.g., the non-buckling-type assumption (3.18) in Mielke and Roubı́ček (2003),
might be natural in the bulk, but are never in the thin-film theory and should be avoided.

Another specific type of buckling related to the microactuation character of shape-memory alloys has been numer-
ically investigated by Dondl et al. (2007).

5 Conclusion

The aim of this contribution was to draw attention to the difference between the modelling of bulk and thin film
shape-memory materials with particular stress on richer structure of interfaces in some alloys, which first appeared
in Bhattacharya and James (1999).
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Figure 3: Tension experiment for Ni2MnGa single crystal with 1, 2, 4, 6, 8 and 10% elongation in thex-direction
and its stress–strain curve
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Figure 4: Side and top view on a 2% compressed Ni2MnGa single crystal sheet with small back pressure exhibiting
buckling with negligible phase transformation

To this behalf, after a brief overview of the different approaches to the derivation of a 2D model we have done
some simple numerical calculations on an academic SMA alloyto justify the theoretical tools introduced.

As already pointed out before, a gradient-based optimization algorithm is not the most effective way to treat
the non-convex minimization problem related to SMAs which usually possessesmany local minima. Another
interestingconcept is to adopt a global optimization routine, e.g., particle swarm optimization(PSO), cf. Beněsov́a
(2011) for some promising results in 3D.However, these metaheuristic algorithms, such as the PSO and other
genetic algorithms, do not guarantee that an optimal solution is ever found at all. Cf. Yang (2008) for an extensive
overview of the topic.

Other future work will focus on the evolutionary problems inthe thin film theory of shape-memory alloys which
lacks an effective description till nowadays, the numerical method described above could then be easily extended
to the dissipative evolutionary model.

Acknowledgement The author wishes to thank GǍCR for the support through the grant P105/11/0411 and MFF
UK for the support through the project SVV-2011-263310 (GAUK ČR).
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