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A Model for the Threshold of the Rolling Transition 
 
F. Rioual 
 
    
A dynamic transition has been identified recently by numerical simulations in the case of a granular flow along 
a  rotating boundary (Rioual and Le Quiniou (2011)). We showed that this transition appears above a certain 
critical microscopic friction coefficient particle/boundary *µ  from which the particles roll without any sliding. 
We propose here a model at the scale of the microstructure which aimes to be close to the physical process 
considered and predicts also a threshold for the apparition of this dynamic transition. We discuss the 
discrepancy on a quantitative level in terms of friction properties at the contact. 
 
 
1 Introduction 
 
The hydrodynamics of dense granular flows is of interest in several areas of nature and engineering. It still  
presents unexpected issues in these different contexts. As the energy in granular flows is dissipated mainly at the  
scale of the contacts between naturally polydisperse grains by surface friction, attrition and eventually  
comminution (Davies and McSaveney (2009)), an understanding of the physical mechanisms involved at the 
scale of the micro structure would  be of high relevance (see for instance de Gennes (1996)). Bridging the gap 
between the scale of the contact (scale of the dissipation) and the scale of the continuum is still an open challenge 
in the dynamics of granular matter. 
On a more practical point of view, a local study of the flow may at the same time represent an important 
complementary input for hydrodynamic theories which have been commonly used to model granular flows as in  
depth averaged approaches and in which microstructural studies have not always been considered.  
 

 
     
 
 
Figure 1: Sketch of a granular packing  flowing along a vertical boundary rotating (direction of the flow (Ox);  
axis of rotation (Oz)) at a velocity Ω 
 
We treat here the specific case of a granular packing flowing along a vertical rotating boundary (See Figure 1).  
The packing flows under the effect of the rotating boundary driven by the inertial forces (Coriolis and Centrifugal 
force). This situation is here directly inspired from a practical situation encountered in environmental engineering  
(spreading of a dry granular material). 
At the scale of the entire packing, we observed by numerical simulations a localisation of the deformation at the  
basis of the flow (involving typically the first layers of grains at the basis of the flow). This may be reminiscent of 
a shear banding phenomenon observed in other contexts in granular physics (Shall and Van Hecke (2010); 
Koval-Junior (2008)). This confirms that the stress field in the flow is not invariant in the direction perpendicular 
to the boundary and may have to be carefully considered for modelling the bulk properties of this kind of flow. 
This phenomenon is not described in the course of this short article where we will be more concerned by the 
motion of the first layer of particles at the contact with the boundary. 
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2  Friction of the Granular Flow along the Boundary 
 
We used recently experiments and numerical simulations by the discrete element method (D.E.M.) to study the 
friction properties of a granular material flowing along a vertical rotating wall (Rioual and Le Quiniou (2011)). 
In the case of a single particle under flow, we showed the relevance of defining two friction coefficients 
specifically related to an impact  process impactµ  for a particle in collisional interaction with a boundary (as in  

Foerster and Louge (1994)) and an enduring contact  process contactµ  for a particle sliding continuously along the 
same boundary (Le Quiniou and Rioual (2009)). 
In the case of a collective flow of particles along the same rotating boundary, we calculated an effective friction  
coefficient effµ  (Eq.(1)) defined as the ratio between the sum of the tangential forces to the sum of the normal  
forces on all the contacts between the particles and the boundary inside a specific characteristic box (typical size 
of the sample equal to 10  bead  diameters). 
 
     ∑∑= NTeffµ                                           (1) 
 
We observe on Figure 2 that two regimes appear in the evolution of the effective friction coefficient as a function  
of the microscopical friction coefficient. (i) a first regime corresponding to solid body friction where the effective 
friction coefficient is equal to the microscopic friction coefficient. (ii) a second regime above a critical  
microscopic friction coefficient *µ at the basis of the flow from which the effective friction coefficient saturates.  
Numerical simulations showed furthermore that this critical value corresponds to a dynamic transition towards a 
rolling regime where the particles roll without any sliding at the boundary. In this rolling phase, the saturated  
value of the effective friction coefficient depends only on the tangential elastic component of the contact force 
law as shown recently (Rioual and Le Quiniou (2011)). 
We would like here to propose a model for the prediction of the critical friction coefficient *µ . 
 

                                
Figure 2: Mean effective friction at the boundary as a function of the friction coefficient particle/vane for 
particles with and without rotational degrees of freedom (friction particle/particle              )  ) 

 
3    Balancing Theory for the Rolling Transition 
 
3.1 Rolling Transition for a Single Particle along the Boundary 
 
We suppose a particle (mass m) moving in permanent contact along a boundary under a given force field. 
- We consider here the case where the boundary is rotating at a velocity Ω . 
We can place ourselves in the rotating frame. In such case, the applied force field is composed of the inertial  
forces (Centrifugal force xm 2Ω , Coriolis force dtdxmΩ2 ) as well as the friction force NT µ= . The 
equations of motion for the particle can be written as: 
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As the dynamics of the particle is essentially controlled at the scale of the contact with the boundary, a natural  
variable to characterize the dynamics of the particle at this scale is the sliding velocity of the flowing particle  
with respect to the static boundary: V 
The sliding velocity is here defined as the velocity of the point at the lower extremity of the particle minus the  
velocity of the boundary at the same position x (which is 0): 

dt
Rd+

dt
dx=V θ

  

 
- The other variable remains the position of the center of gravity of the moving particle: 

x 
 
Using eqs. (3) and (4), we deduce: 
 

( ) αµθ +Ω= xRdtd 5      
 
whereα depends on the initial conditions. We can choose the origin of the axis such that 0=dtdθ  for 0=x . 
Newton’s law of mechanics for the moving particle can be written again as a dynamical equation with respect to  
these two new variable ),( Vx  as the following: 
 
              
   
 
Equ.6 is supposed to describe the temporal evolution of the sliding velocity of the particle in contact with the 
boundary. The first term on the right hand side is a forcing term which represents the competition the centrifugal 
force and the friction at the contact point. 
We see as a consequence that the system defined by: ( 00 =

dt
dV;=V ) allows a solution if the following  

condition is fulfilled: 1510 ≥µ  (0,25) 
 
We can note also that this situation can occur in other contexts as for instance for the flow of a particle under 
gravity along an inclined boundary (inclination at an angle α). In this situation, the evolution equation for the 
sliding velocity at the contact can be expressed in the same way as: 
 
  
 
 
In this case, the rolling transition corresponding to the condition that the above equation cancels occurs above a 
critical friction coefficient equal to      
 
 
3.2 Rolling Transition in the Case of a Dense Flow of Particles 
 
We propose to take into account the influence of the neighbourhood of the bead in contact with the boundary in 
the force balance presented above (Fig.3). We propose also to model the phenomenon based on the two 
following hypothesis: 
 

a- The existence of enduring contacts between the upper beads and the beads along the boundary. The  
impulsive transfer of momentum and associated fluctuations are not taken into account here. This 
hypothesis is based on the simulations of  (Rioual and Le Quiniou (2011)). 

b- A two dimensional scheme considering that the bead is placed at the basis of the flow and on average,  
the considered bead has two neighbours which contribute significantly to the spin because of the  
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traction/compression deformation rate imposed by the force field and equal friction forces apply in the 
transverse direction (Oz) on both sides of the bead. 

 
 
 
 

 

       
       

 Figure 3: A scheme of the geometrical configuration along the boundary in a 2D representation 
 
Considering that on average the contacts occur at an angular position between 0 and a maximal angular  
position 0θ , we get an additional purely frictional contribution in the force balance at the contact on both side of 
the bead   equal to 

'N corresponds to the normal force exerted by the upper layers of the packing applied at the contact NN α=' . 
We can choose here a value 1=α  as the size of one bead is small compared to the typical height of the flow. 
The averaging applies thus only on the angular position of the contact point. 
We see then that the condition (                           ) is fulfilled if  
 
 

( )0sin2151 θµµ p+=∗  
 

0θ  can here be related to the local compacity of the granular flow. We obtain thus a formula for the critical 
friction coefficient with respect to the micromechanical parameters of  the problem. 
 
 
4     Discussion 
 
Experiments have been performed on the flow of a single particle along a rotating wall where a first bouncing 
phase was accounted for (Le Quiniou and Rioual (2009)). We show a discrepancy with the predicted value of the 
critical friction coefficient in the case of a single particle remaining in permanent contact along the boundary  
which is the value derived here and in the case of a dense flow, the matching with the results from numerical  
simulations (Fig.2) is doubtful for a reasonable range of parameters as 0θ . As pointed out recently ((Le Quiniou  
and Rioual (2009)), the choice of constant friction coefficients in the model is still questionable. This is  
problematic in this kind of situation and may limit any quantitative prediction at this stage. 
 
 
5     Conclusion 
 
We proposed in this article an analytical derivation of the threshold for the rolling transition which was studied in  
experiments (for a single particle) and in discrete element numerical simulations (for a dense granular flow) 
without any  precise knowledge of the microstructural properties in the bulk of the flow. 
We introduced for this purpose a new dynamical variable: the sliding velocity which is the relevant quantity for 
characterizing the dynamics at the scale of the contact between the particle and the boundary and we  
reformulated the dynamic equations for the particle with respect to this new variable. We were able to give a 
prediction for the threshold of the friction coefficient at the boundary using a mixed local/global approach i.e. 
based on a local description of the force balance in the granular flow. The ability to reproduce quantitatively the 
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values for the threshold friction coefficient is uncertain. We point out the difficulty to treat correctly the frictional 
interactions between particles in contact in the present model at this stage where rigid body mechanics may find 
here partially its limits. 
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