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Martensitic Thin Wires under Restrained Recovery: Theoretical and
Experimental Aspects

R. Rizzoni, M. Merlin, V. Mazzanti

A one-dimensional model for the evolution of microstructure in single crystal shape memory wires has been re-
cently proposed in (Rizzoni (2011)). The model is based on theconstrained theory of martensiteintroduced by
(Ball et al. (1995); De Simone and James (2002)) and on the assumption that stable equilibrium configurations
are deformations lying at the energy wells on most parts of the wire. In this paper we compare the response sim-
ulated for restrained recovery conditions (Rizzoni (2011)) with experimental data obtained in restrained recovery
tests performed on NiTi wires. As an application, we consider a truss made of shape memory wires and rigid
elements, and we calculate its deformation after thermal activation of the shape recovery.

1 Introduction

Shape memory alloys (SMAs) are characterized by a reversible, diffusion-less, solid-solid phase transformation
between two different crystalline phases, austenite (or parent) and martensite. At low temperatures the martensite
phase is stable and the material can be deformed with strains up to 8%. Increasing the temperature causes the
material to transform back into the austenite phase. During reverse transformation from martensite to austenite,
the material returns to the prestrained shape. After that, if the temperature is decreased once again, the alloy goes
into direct austenite to martensite transformation. In direct transformation the specimen shape remains unchanged
until an external force is applied. The recovering of the original shape upon heating is known as the shape memory
effect. Therestrained shape memory effectis observed when an external constraint prevents the material from
returning to the shape it had in the parent phase. For example, shape recovering induced by phase transformation
is restricted in shape memory wires used for actuation purposes or for those embedded in an elastic matrix. In these
situations, large recovery stresses are generated up to 700 MPa (S̆ittner et al. (2000); Tsoi et al. (2002, 2004b)).

Several studies have proposed constitutive phenomenological models that are able to reproduce the macroscopic
response of shape memory materials in restrained recovery conditions (Brinson (1993); Kato et al. (2004); Kosel
and Videnic (2007)) and in shape memory composites (Briggs and Ponte Castaneda (2002); Marfia (2005); Marfia
and Sacco (2005)). Recent experimental work has shown that the evolution of the material microstructure plays
an important role in the mechanism at the basis of the recovery stress generation. In particular, Zheng et al. have
shown the role of the transformation of preferentially oriented martensite variants (Zheng et al. (2004)). A one-
dimensional model for the evolution of the microstructure in single crystal shape memory wires has been recently
proposed (Rizzoni (2011)). The model is based on the theory of thin wires developed in (Le Dret and Meunier
(2003)) and onconstrained theory of martensiteintroduced in (De Simone and James (2002)); the latter is based
on the assumption that stable equilibrium configurations are deformations lying at the energy wells on most parts
of the wire. The model is summarized in Section 2. Its input parameters are a small number of fundamental
material constants: the Bain transformation matrices, describing the transformation strains from austenite to the
martensite variants, and the depths of the austenite and martensite energy wells, which can be related to the latent
heat of the phase transformation. On the other hand, the hysteretic behavior typical of shape memory materials
cannot be captured because the equilibrium configurations are identified with the global minimizers of the energy.
In (Rizzoni (2011)) the model is applied to analyze self-accommodated and detwinned microstructures and to
simulate superelasticity and restrained recovery. In particular, it is shown that the model qualitatively reproduces
the behavior of SMA wires in restrained recovery conditions, providing a connection between the transformation
of preferentially oriented martensite variants and the experimental observation that reverse (from martensite to
austenite) transformation is spread over a much wider temperature range than the transformation of a fibre in free
conditions (Tsoi et al. (2004a); Zheng and Cui (2004)).
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In Section 3 of this paper we compare the response of the shape memory wires under restrained recovery simulated
in (Rizzoni (2011)) with the experimental data obtained in restrained recovery tests performed on NiTi wires. The
percentage error between the theoretical response and the measured data is about50%. A possible cause of the error
can be attributed to the elastic deformations of the wire, which are neglected by the model proposed in (Rizzoni
(2011)). Another source of error is expected to be the thermal expansion effects of the brass rods connecting the
wires to the cross heads in the system used in the experiment of restrained recovery.

These results encourage the model to be applied to the analysis of smart structures. In the literature, adaptive SMA
truss structures have been numerically analyzed (Bandeira et al. (2006); Toi and Tsukamoto (2011)) and their
applications to hyper-redundant manipulators and shape morphing structures have been discussed (Miura et al.
(1985); Sofla et al. (2009)). In Section 4 of this paper we focus on a truss made of shape memory wires and rigid
elements; by selective heating of the SMA wires, it is possible to control their lengths and to create various truss
shapes. We consider the simple geometry illustrate in Figure 4 and we calculate the curvature of the truss beam
after thermal activation of the shape recovery. We also calculate the tip deflection and show that for the shape
memory material studied in this paper, large deflections can be achieved with a reasonable number of truss units.
For these reasons, this type of application is expected to offer a good potential in the design of variable geometry
truss actuators.

2 Single Crystal Shape Memory Wires under Restrained Recovery Conditions

Let ω ⊂ R2 be an open bounded domain with Lipschitz boundary and unit area and letω× (0, L) be the reference,
undeformed configuration of the wire. We introduce a coordinate system so that thex3-axis coincides with the
undeformed axis of the wire and we denotee3 as thex3-axis unit vector. When the wire is very thin, Le Dret
and Meunier (2003) show that its deformation is described by the deformation fieldy : (0, L) 7→ R3 of the center
line of the wire. It is shown in (Rizzoni (2011)) that, if the elastic moduli of the material are large enough, the
microstructure of the material can be approximately described by a family of Young measuresx3 7→ νx3 , x3 ∈
(0, L), supported on the setA ∪ M, whereA andM are the sets of the austenite and martensite wells, defined
respectively as

A := SO(3) , M =:
N⋃

i=1

{QUi : Q ∈ SO(3)}. (1)

HereSO(3) is the set of all proper rotations andU1, U2, . . . UN denoteN symmetric and positive definite3 × 3
matrices describing the transformation strains from the austenite to martensite variants (Ball and James (1987,
1992); Bhattacharya (2003)). The macroscopic deformation gradient turns out to be the center of mass of the
Young measure

y,3(x3) =
∫

A∪M

Fe3 dνx3(F ) , a.e. x3 ∈ (0, L). (2)

Thus, a couple(νx3 , y) completely describes a configuration of the wire, in the sense that it embeds information
on both the actual microstructure and on the macroscopic deformed configuration.

The stable equilibrium configurations of the wire globally minimize the free energy

E((ν, y); θ) =| ω |
∫ L

0

(
lm(θ)

∫

M

dνx3(F ) + la(θ)
∫

A

dνx3(F )
)

dx3, (3)

where la(θ), lm(θ) are the heights of the austenite and martensite wells at temperatureθ, respectively. After
introducing the averaged martensite volume fraction

λ :=
1
L

∫ L

0

∫

M

dνx3(F ) ∈ [0, 1], (4)

the energy (3) can be written in the simple form

E((ν, y); θ) =| ω |
(
lm(θ)λ + la(θ)(1 − λ)

)
. (5)
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Figure 1: Simulated stress-temperature response during restrained recovery

To model the exchange of the global minimum between austenite and martensite that occurs when the temperature
is changed, we takeΔl(θ) := lm(θ) − la(θ) to denote a monotonic increasing function inθ, and vanishing atθcr.
The derivativeΔl′(θcr) can be related to the latent heat of the phase transformation in the following way

Δl(θ) ≈
qρ

θcr
(θ − θcr), (6)

whereρ is the density of the material andq is the latent heat of transformation per unit mass.

To summarize, the input parameters of the model are the following material constants: the Bain transformation
matricesU1, U2, . . . UN , of which the components can be obtained from X-ray measurements of lattice parameters
of the austenite and martensite phases; the equilibrium transformation temperatureθcr; and the density of the
materialρ and the latent heat of transformationq. Both the transformation temperature and the latent heat can
be obtained from differential scanning calorimetry measurements. Experimental data obtained in DSC tests are
presented in the next section.

To study the restrained shape memory effect, Rizzoni (2011) has considered a martensitic wire with initial length
L and deformed by a uniaxial extension of amountεc > 0. After the deformation, the wire is bonded to a linear
elastic spring of stiffnessk > 0 and then heated aboveθcr while keeping the sum of the lengths of the wire and
spring fixed. On heating, the material, initially made of a mixture of martensite variants, changes to a mixture of
austenite and martensite, the wire partially recovers the prestrainεc, the spring deforms and stress is generated.

The theoretical stress-temperature profile is represented in Figure 1. The stress linearly increases, starting from
zero atθcr and reaches a saturation levelσf at the temperature

θf = θcr(1 +
kL(γM − 1)

qρ
εc) , (7)

whereγM := max{| Uie3 | : i = 1, 2, . . . N} is the maximum elongation achievable during the phase transfor-
mation. As illustrated in Figure 1, the saturation stress

σf :=
qρ

θcr

(θf − θcr)
(γM − 1)

(8)

increases with both prestrain and spring stiffness. These results are in qualitative agreement with some thermo-
mechanical characteristics of shape memory alloys observed in experiments of restrained recovery; in particular,
the maximum recovery stress was found to increase with increasing prestrain and the increase of constraining
stress produces a shift in the transformation temperatures to higher temperatures (S̆ittner et al. (2000); Vokoun
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Figure 2: DSC heating (lower) and cooling (upper) curves.

et al. (2003)). Further qualitative comparison of the results of the model with other experimental findings can be
found in (Rizzoni (2011)). In the next section, we compare the theoretical stress-temperature profile given by (8)
with the first heating cycle obtained in a test of restrained recovery.

3 Material Characterization, Instrument and Test Methodology

A commercial NiTi wire provided by SAES Getters S.p.A. (Italy), with a normal composition of 50.5 at.% Ni was
investigated. The wire was martensitic and polycrystalline at room temperature with a nominal diameter of 0.48
mm. The wire was tested without any further surface treatment or modifications.

A Differential Scanning Calorimetry (DSC) test was carried out on small fractions of the wire. The DSC samples
had a weight of 12 mg and we used a constant heating/cooling rate of 10 °C/min. Figure 2 shows the DSC thermo-
gram. According to literature the characteristic martensitic and austenitic starting and finishing temperatures,Ms,
Mf , As, andAf , were determined by the intersection between the baseline of the DSC curves and the tangents
to the peaks. Table 1 presents the results and the latent heats per unit mass of the alloy in the range of the phase
changes on heating and cooling. The mean of the characteristic temperatures,88.5°C, is assumed to provide an
estimate forθcr.

Free recovery tests were performed on samples with two different lengths (150 mm and 115 mm) to determine the
prestrainεc, not specified by the manufacturer. After heating up to 200°C and cooling down to room temperature,
the final lengths of the wires were measured. A prestrain of 5.5% was estimated for both sets.

To evaluate the maximum recoverable strainεL, uniaxial tensile tests were performed at 25°C on100 mm long
wires. An Instron 4467 testing machine with a 500 N load cell was used and all tests were performed under
displacement controlled loading conditions and at the relatively low loading rate of 1 mm/min. The maximum
strain achievable during the phase transformation was of6% Merlin (2008). This value is assumed to provide a
reasonable estimate forγM .

Experiments of restrained recovery were carried out heating a120 mm long wire from 25°C to 150°C under
zero displacement conditions. The Instrom4467 and a convective air thermal bath (Criotest - Mazzali system)
were used. The temperature was measured with a thermocouple placed close to the wire. The rate of heating

Table 1: Transformation temperatures and latent heats per unit mass of the reverse (M → A) and direct (A → M )
phase transformation as determined by DSC.

As Af ΔHM→A Ms Mf ΔHA→M

[°C] [°C] [J g−1] [°C] [°C] [J g−1]

92 118 31.9 82 62 33.1
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was 4°C/min. This rate was chosen because it produces a smooth and slow temperature trend during heating and
cooling, which allows a pseudo-steady state to be maintained inside the wire. The stress-temperature profiles of
two first heating cycles are presented in Figure 3. Linear interpolation of the two profiles between the temperatures
80°C and 150°C provides slopes of 6.9 MPa °C−1 and 6.1 MPa °C−1 and horizontal intercepts of 81.0 °C and
87.0 °C.

Substituting the valuesq = ΔHM→A = 31.9 J g−1, θcr = 82.5 °C, γM = 0.06, and assuming a density of
ρ = 6.45 g cm−3, relations (7) and (8) provide a stress rate of 9.64 MPa °C−1. The percentage error between this
theoretical value and the mean of the measured values is about50%. A possible explanation of the error is that the
model used to obtain relation (7) neglects the elastic deformations of the wire, which are expected to reduce the
stress rate. Another source of error is expected to be the thermal expansion effects of the brass rods connecting
the wires to the cross heads in the Criotest - Mazzali system. Finally, it should be noted that relations (7) and (8)
provide for the stress ratedσ/dθ a relation which coincides with the Clausius-Clapeyron equation. This equation
is known to be appropriate to single crystals and to a single variant transformation. In polycrystalline materials,
dσ/dθ is found to depend on temperature and to increase with increasing prestrain (Tsoi et al. (2004a);S̆ittner
et al. (2000); Vokoun et al. (2003)).

Figure 3: Stress-temperature profiles of two first heating cycles in restrained recovery conditions.

4 A Variable Geometry Truss

In this section we study the planar truss composed of SMA wires and rigid members as represented in Figure 4.
Before being connected to the rigid elements, the SMA wires first had a lengthL in the austenitic phase, they
were then cooled below the transformation temperature and, finally, they underwent elongation imposing them on
a recoverable axial strainεc ∈ (0, γM − 1]. By heating the SMA wires, it is possible to vary their lengths and
create various truss shapes. Here we consider the case when all the SMA wires depicted in red are simultaneously
activated, i.e. simultaneously heated above the transformation temperature. In absence of external loads and under
the assumption that each unit undergoes the same deformation, the structure takes the form of a circular arch whose
radius is known if the deformations of the activated and unactivated SMA wires are known. In the model recalled
in section 2, the deformation of an SMA wire is related to the average martensite volume fraction via the Young
measure (cfr. (2)) and the relevant parameter is the average martensite volume fraction (cfr. (4)). Moreover, ifm
is taken to denote the number of units, the equilibrium configuration of the structure minimises the total energy

E((ν, y); θ) = m | ω | L(Δl(θ1)λ1 + Δl(θ2)λ2 + 2la) (9)
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Figure 4: Initial and deformed configurations of a planar variable geometry truss built with rigid members (bold
lines) and SMA wires (activated wires are presented as dotted lines, unactivated wires are presented as thin solid
lines).

whereθ1 > θc andλ1 ∈ [0, 1] are the temperature and average martensite volume fraction in each activated SMA
wire, andθ2 < θc andλ2 ∈ [0, 1] are the temperature and average martensite volume fraction in each unactivated
SMA wire. AsΔl(θ1) > 0 andΔl(θ2) < 0, a lower bound for the energy (9) is attained atλ2 = 1, meaning that
it is energetically more convenient for the unactivated SMA wires to remain in the martensitic state. On the other
hand, the unactivated wires have to lengthen in order to allow prestrain recovery in the activated wires. In other
words, the unactivated wires undergo detwinning. In Rizzoni (2011), detwinning is analyzed by introducing the
average volume fractions of the martensite variants:

ηi :=
1
L

∫ L

0

∫

SO(3)Ui

dνx3(F ) ∈ [0, 1], i = 1, 2, . . . N, (10)

with

N∑

i=1

ηi = λ2 = 1. (11)

Figure 5: Analysis of the truss unit.
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It should be noted that, in view of (2), the deformation of the unactivated SMA wires is given by

y,3(x3) = (
N∑

i=1

γiηi)e3 a.e. x3 ∈ (0, L), (12)

whereγi :=| Uie3 | is the axial strain corresponding to thei-th martensite variant and it should also be noted that
the deformation of the unactivated bar, referred to the austenitic state here taken as reference configuration, is also
given byl2L

−1, wherel2 is taken to denote the length of the unactivated SMA wires after heating (Figure 5). From
(12) we obtain

N∑

i=1

γiηi =
l2
L

. (13)

As ηi ∈ [0, 1] andγi > 0, the latter relation imposes the following restriction on the lengthl2

Lγm ≤ l2 ≤ LγM , (14)

whereγm := min{| Uie3 |: i = 1, 2, . . . N} is the minimum strain achievable in the martensitic state. The lengths
l1 andl2 and the hinge angleθ are related by the following geometric constraint:

l1 = l
√

2 cos θ, (15)

l2 = l
√

2 sin θ. (16)

Finally, condition (2) imposes the following restriction on the lengthl1 :

l1 = L((γM − 1)λ1 + 1). (17)

To summarize, a lower bound for the total energy (9) can be found by minimizing the quantity:

m | ω | L
( Δl(θ1)

(γM − 1)
(
√

2(1 + εc) cos θ − 1) + Δl(θ2) + 2la

)
→ min (18)

under the constraints:
√

2
2(1 + εc)

γm ≤ sin θ ≤

√
2

2(1 + εc)
γM , (19)

√
2

2(1 + εc)
≤ cos θ ≤

√
2

2(1 + εc)
γM . (20)

This minimization problem is equivalent to minimizing (18) under the condition

max{arcsin
( √

2γm

2(1 + εc)

)
, arccos

( √
2γM

2(1 + εc)

)
} ≤ θ ≤ min{arcsin

( √
2γM

2(1 + εc)

)
, arccos

( √
2

2(1 + εc)

)
}.

(21)

As Δl(θ1) > 0, the minimum is attained at

θmin = min{arcsin
( √

2γM

2(1 + εc)

)
, arccos

( √
2

2(1 + εc)

)
}, (22)

and two cases arise, depending upon the value of the prestrainεc. Let us putε∗c :=
√

2
2

√
γ2

M + 1 − 1.

• If 0 ≤ εc ≤ ε∗c , thenθmin = arccos
( √

2
2(1+εc)

)
. Correspondingly, we havel1,min = L, meaning that the

activated wire fully recovers its prestrain. Moreover,

l2,min = L
√

2(1 + εc)

√

1 −
1

2(1 + εc)2
, (23)
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which means that the unactivated wire lengthens via detwinning, as it can be easily proved thatl ≤ l2 ≤
LγM .

• If ε∗c < εc ≤ γM − 1, thenθmin = arcsin
( √

2γM

2(1+εc)

)
. Correspondingly, we havel2,min = LγM , meaning

that the unactivated wire attains the maximum length achievable by detwinning. We also obtain

l1,min = L
√

2(1 + εc)
√

1 −
γM

2(1 + εc)2
. (24)

It can be easily proved thatl1,min > L; thus, the activated wire is prevented from fully recovering its
prestrain.

These results provide a lower bound for the energy (9). Using constructions presented in (Rizzoni, 2011, sects.
3, 5), it is possible to show that there is a sequence of deformations for the activated wire and a sequence for the
unactivated wire achieving the energy lower bound. Note also that, if the temperatureθ2 < θcr is kept fixed and
θ1 is slowly increased starting from a value less thanθcr, the minimizing solution applies as soon asθ1 > θcr,
indicating that the truss is predicted to deform suddenly at the temperatureθcr. This is consistent with the fact that
the model neglects hysteresis.

Simple geometric considerations provide the curvature radius of the truss beam. This is given by

R = L cot
(

arccos
( √

2
2(1 + εc)

)
−

π

4

)
+

√
2L(1 + εc)

2

( √
2

2(1 + εc)
+

√

1 −
1

2(1 + εc)2

)
, (25)

if 0 ≤ εc ≤ ε∗c , and by

R = L(1 + εc)
√

2

√

1 −
γ2

M

2(1 + εc)2
cot
(

arcsin
( √

2γM

2(1 + εc)

)
−

π

4

)

+

√
2L(1 + εc)

2

( √
2γM

2(1 + εc)
+

√

1 −
γ2

M

2(1 + εc)2

)
(26)

Figure 6: Truss curvature variation as a function of the prestrainεc. The following increasing values of the trans-
formation strain,γM , are considered:γM = 1.02, 1.04, 1.06, 1.08.
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Figure 7: Tip deflection of the truss beam as a function of the number of units,m. The same increasing values of
the transformation strain adopted in Figure 6 are considered.

if ε∗c < εc ≤ γM −1. Figure 6 illustrates the variation of the ratioL/R as a function of the prestrainεc for different
values ofγM . The plot shows that the curvature attains the maximum value

2
L

(
1 + γ2

M − 2 tan
(π

4
+ arcsin

( γM√
1 + γ2

M

)))−1

(27)

at the prestrainε∗c .

To complete the analysis of the truss unit, we note that the tip deflection,δ, of the beam truss after activation can
be expressed as

δ = R
(
1 − cos(m

π

2
− 2mθ)

)
. (28)

Figure 7 shows the variation of the tip deflection per unit length,δ/(ml) of the truss beam as a function of the
number of truss units in the case where the maximum curvature is attained (i.e. forεc = ε∗c ). Table 2 collects the
calculated values of the ratioδ/(ml) for several values of the number of unitsm in the caseγM = 1.06, which is
assumed to apply for the SMA wires studied in section 3. A tip deflection approximately equal to the40% of the
truss length was experimentally obtained on NiTi strips trained to memorize the shape of a circular arch (Merlin
and Rizzoni (2011)). The same deflection is expected to be obtained in a truss actuator having7 units.

Table 2: Theoretical values of the tip deflection per unit length,δ/(ml), for several values of the number of units
m. The table refers to the caseγM = 1.06.

m δ/(ml)

1 0.058
3 0.174
5 0.289
7 0.402
10 0.566
15 0.819
20 1.038
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5 Conclusion and Perspectives

The main objective of this paper was to validate the one-dimensional model proposed in (Rizzoni (2011)) by means
of experiments of restrained recovery on NiTi wires. The theoretical response obtained for restrained recovery was
found to present an error of50% when compared with the experimental data of the first heating cycle. We attributed
the error to different possible causes: the thermal expansion of the system used in the experiments of restrained
recovery, the effect of the elastic strains and the polycrystallinity of the material.

As a second objective, we applied the model to simulate the behavior of a variable geometry truss incorporating
SMA elements. For the simple geometry illustrated in figure 4, we calculated the curvature of the truss beam and
the tip deflection after thermal activation of the shape recovery. We showed that the maximum curvature can be
achieved for an optimal value of the prestrain of the SMA wires. We also obtained that, for the shape memory
material studied in this paper, large deflections can be achieved with a reasonable number of truss units. We note
that our results are valid under the assumptions of neglecting the plastic deformations and the fighting between
the grains occurring in polycrystalline SMA materials. These phenomena are known to reduce the shape memory
effect, especially for large values of the prestrain. An experimental validation would then be useful to quantify the
curvature reduction; in particular, to estimate the dependence of the curvature upon the prestrain several tests will
be performed by means of image analysis techniques. Nevertheless, the results presented in the paper are expected
to contribute to a rational design and an efficient implementation of a variable geometry truss actuator.

For adaptive structures or smart composites, performance parameters also include those associated with the matrix,
such as thickness and stiffness. The interplay between these quantities and the transforming characteristics of the
wires must be taken into account. For example, a minimum level of matrix stiffness is required not only to return
the actuators to their original position but also to prestrain the SMA wires for the next cycle. On the other hand,
excessive stiffness unavoidably reduces the deformation. To understand these issues, it would be useful to extend
the analysis performed in this paper to the case of a truss actuator in contact with an elastic beam.
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