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Defects and Dissipation in a Four-Dimensional Material Manifold

J. Schnepp

The material manifold is well established as the underlygpgce of material forces. This three-dimensional mani-
fold can be augmented by a time-like dimension to a four-dgiomal material space-time manifold. The motion of
a body is then represented by a mapping of the material spaeeto the physical space-time of relativity theory.
Following Kijowski et al. (1990), the time-like coordinaté material space-time can be related to temperature.
This can be expressed in an invariant manner by a time-liktovdield. The geometric structure of the material
space-time for an elastic solid is completed by three spiieerector fields which describe the stress-free length
between adjacent particles. Defects are represented byravanishing spatial part of the Cartan torsion defined
by the four vector fields (tetrad field). Since temperatural$® involved in the tetrad field, it is coupled to the
defects in the differential geometric structure of the matspace-time. In a Lagrangian formulation the deriva-
tive of the Lagrangian with respect to the tetrad yields arfounensional second-order tensor in which entropy
density, entropy current, and the Eshelby tensor are calife energy density, energy current, and stress in the
energy-momentum tensor of relativity.

1 Introduction

The description of defects by differential geometric qiteed in a material manifold has a long tradition and goes
back to Kondo (see e.g. Kondo (1955)) and Bilby et al. (1998pving defects lead to geometric quantities
changing with time, so there are fields depending on fouatées, the three material coordinates and time. This
has motivated the introduction of a four-dimensional matenanifold with a fourth time-like dimension. Four-
dimensional formulations can be found iri@her (1967), Edelen and Lagoudas (1988), Kienzler andntéam
(2003) and Epstein et al. (2006). In all these papers theriabtene is in the end identified with physical time
by constraints which are put on the field quantities. Epséeial. (2006) call this constraint “time consistency
condition” and put into question if it is really needed. Nafehese works consider temperature, so they (tacitly)
assume isothermal conditions.

A relativistic formulation of continuum mechanics, inclng non-equilibrium thermodynamics, can be found in
Lianis (1974). A three-dimensional material manifold i®dsn this work. Kijowski et al. (1990) use a four-
dimensional material space-time in relativistic hydroaiyics. The derivative of the material time is proportional
to temperature if the material coordinates are suitablyseho In this approach material time has a physical
interpretation not only depending on physical time. Indaterks (e. g. Kijowski and Magli (1997)) also elastic
materials are taken into account. But eigenstresses (amdmizitly defects) are considered only as prescribed
guantities and not as dynamical variables.

In this paper the representation of temperature by a tikeerhaterial coordinate and the differential-geometric
description of defects is combined. In this way the georoetriucture of the four-dimensional material manifold
is determined by defects and temperature. Most of the fasiul this article will be written in index notation.
This seems appropriate since two spaces are involved amddirogly many two-point tensors show up. Three
kinds of indices (physical, material, and numbering indjcare present. Indices with a tilde take value8, 3
while ordinary indices run from ...3. A comma before an index means partial differentiation wétspect to the
respective coordinate.

2 Physical Space-Time

Material bodies are observed in physical space. The det@mhistory of a body is the configuration of the body
in physical space evolving in time. Physical space cootdmand time are combined in a four-dimensional space
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in the theory of relativity. Since the formulation presehitere will deal with a four-dimensional material manifold
it is natural to take the space-time of relativity on the pbatside. The history of a body can then be represented
by a mapping between the two four-dimensional manifolds.

Coordinates in the physical space-time are denotetf piy= 0, 1,2, 3. Latin indices in the rangg j, k, [ refer to
physical space-time coordinates. In this paper only spesdggivity will be considered. So the physical space-time
is flat. One can choose an inertial frame with Cartesian éoatels(z, y, z), one hast® = ct, 2! = z, 22 = y,

x2 = z wheret is the physical time andis the velocity of light. In this case the metric of physicphse-time has
the form:
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The history of a particle is described by a curve (world limejhe four-dimensional physical space-time. The
tangent vectot’ represents the particle’s velocity as shown in figure (1is & time-like vector normalized to the
velocity of light: 7;;u’u? = —c* and called four-velocity. The scalar product of a time-liketor with itself is
negative. This property distinguishes them from spaceikctors. Four-velocities can only appear in the sector
of time-like vectors marked in Figure (1) because the spéedparticle cannot exceed the velocity of light. If a
particle is (at the moment) at rest in the given frame (théledanomentary rest frame), the space-like components
of the four-velocity are zero, i. e. it points i?-direction.

time-like vectors

N s
N , 7
N
N 20 A u® ,
s
N
N ’
N z
N s
N ’
N ’
N z
\ , 4

N P
NV & b x? a3

N4 -

!

4B
4 \
4 N
4 N
7 N
4 \
4 N
4 \
4 N
4 N
4 N
. world N
s .
line

Figure 1: World line of a particle, two space dimensions aggpsessed in the figure

3 Material Space-Time

The history of a body consists of the congruence of worldsliokits particles. This congruence is often called
a world tube. If the individual particles are indicated byasg-like material coordinates*, & = 1,2, 3 (Greek
indices refer to material coordinates) and temperaturenetéd by, the deformation and temperature history of
a body can be described by the four functions

a®(z") (z) )

An alternative description is given by Kijowski et al. (1998n additional time-like material coordinaté (z*) is
taken with 540

pou' = d(a’) 3)
whereg is a constant. The temperature is proportional to the dérézaf material time with respect to physical
time in a rest framew’ = (c,0,0,0)). There are now four material coordinates= (a’; a%),a = 0, 1, 2, 3 which
can be taken as coordinates in a four-dimensional matedalfoid. The time-like coordinate serves as a potential
function for the temperature.

The deformation and temperature history of the body can reddscribed by four invertible functions
a®(z') & zia®) . 4)
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These functions represent an invertible one-to-one mggmétween the physical and the material space-time.

3.1 TimelikeMaterial Vector

Equation (3) is not covariant since it is only valid in spécigordinates, or more precisely, it defines these coordi-
nates. A covariant formulation can be achieved by the intctidn of a time-like material vector. To this end one
takes the pull-back of four-velocity and temperature torttagerial manifold

o 8ao¢ 1 @\ 1/
=St () = d(a (@) 5)
and sets N
o, ’U’i
kg =B (6)

In this equation only tensorial quantities are used andiswilid in arbitrary coordinate systems. The lower index
0 is a number for the vector field. Three additional vector eldmbered1, 2, 3) will be introduced in the next
subsection. It is easy to check that in coordinates wth= (1,0, 0,0) equation (3) is valid. It is also possible to
transform to coordinates in whick? = a° is valid. In this case

_ Be
9y/1— %

wherev is the absolute value of the particles three-velocity indhesen frame. This vectorial representation of
temperature is standard in relativistic thermodynamics.

ke = ( ;0;0;0) 2% =a" | @)

The time-like material vector field not only serves to ddseriemperature, but is also necessary to identify La-
grangian coordinates in the material space-time. In treetidimensional material space every coordinate system
is Lagrangian by definition. In the four-dimensional maikspace-time transformations may also depend on the
time-like coordinate and can lead to changing space-likedinates for an individual particle. Coordinates are
Lagrangian if and only if the spatial components of the tiike-material vector field vanish. The presence of this
field also indicates that there is no Lorentz symmetry in ttatemal space-time. The Lorentz symmetry of the
physical space-time means that there are no preferredlitmelirections which in turn leads to the equivalence
of all inertial frames. The time-like material vector deBreepreferred direction (the rest frame of the particle) and
so precludes Lorentz symmetry.

3.2 Spacelike Material Vectors

To describe the structure (including defects) of the matartriad of three additional space-like material vecters i
introduced. This approach is now standard in the continlneary of dislocations and goes back to Kondo (1955)
and Bilby et al. (1955). The spatial components (in Lagrangioordinates) can be denoted by
kf(a)) 7=1,2,3 8
wherer is a numbering index. Indices in the rangey, r, s, t are numbering indices for the material vectors. The
components can be arranged in an invertible 3x3 matrix:
kf hh kZh 5= 1)

T [0

S nkl =0 (©)

The mutual scalar products are considered as given by aveodéfinite and symmetric 3x3 matrix

Kr ks =Crs . (10)

These products define length and mutual angles in the dtessstate of the material at a fixed reference temper-
ature and so include a first constitutive assumption by tietence of this state. In a materially uniform body the

o
matrix C'r; is constant. Defects (dislocations) are represented bg#ngan torsion of the material triad
. (11)

The torsion vanishes if no dislocations are present.
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3.3 Material Tetrad

Together with the time-like material vector the space-tika@d constitutes a tetrad field in the material space-time.
The components of the tetrad can be arranged in a 4x4 mattikamverse

kSRl kShl =05 hkl =067 . (12)

r

In Lagrangian coordinates witl = a° the components can be represented as

. [V VA; o [ 1V —AskD
h(x - ( 07”" hg > kr - ( O& k(g ) . (13)

The zero component§™ and 0¢ indicate the Lagrangian coordinates. The comporignt= V is related to
temperature as shown in equation (7). The components iimgol; are new and will be discussed later.

The mutual scalar products are now extended to

-1 0
kr ' ks = 0rs = 0 CO’W . (14)

This definition implies that the time-like material vectgrdonsidered orthogonal to the space-like vectors. The
product of the time-like vector with itself is negative. $hiields the distinction between time-like and space-like
vectors similar to relativity. But again it is stressed ttie form of the metric coefficients in equation (14) does
not imply Lorentz symmetry since the geometry of the mateni@nifold is governed by the tetrad field an not by
the metric properties.

4 Metric Tensors

Two metric tensors can now be established in the materiakspie. The first one is the pull-back of the physical
metric to the material manifold i D
z* Ox?
Ha =3 50 9ol (19)

and the second one is defined by the material scalar products
Gap = grshgh; . (16)

The spatial length of material space-time coordinate ffdials is calculated by taking the spatial part of the
metric tensors. The unstressed length at reference tetaperf is determined by the material metric

o o . o k,\g ]ﬂ“
d9)? = Copda®da® With Cup = gog + L2095 17
( 8) pda~Qa 8= Ggap + _g/\uké\kg 17)

while the actual length is of course determined by the playsietric

: ko ng,kl
(ds)? = Copda®da® With Clp = nag + 122010170 (18)
—Mukigky
Cp is the well known relativistic equivalent of the Cauchy-@&mneensor in relativistic elasticity (see e. g. Kijowski
and Magli (1997)). The spatial parts of the metrics are deitezd by eliminating the contribution of the component
in direction of the four-velocity (or equivalently the tirtike material vector) of the squared vector.

5 Lagrangian Formulation for a Hyper-Elastic Solid

In the variational formulation of relativistic elasticithe Lagrangian function consists of the energy equivalent
of mass density and the free energy density in the rest frafrtae material coordinates are taken as indepen-
dent variables and the densities are referred to unstresdatie at reference temperature the Lagrangian can be
expressed as
AT, P g V=10 0 o
Lo(2%; 2 he) = Lo(nijalaw)s; he) = V=9~ == (pc" + ¥ (19)
(@270 hey) (13053 hey) 790( )
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where the abbreviations
g=detgas) go = gaskSkt = —1 10 =Tasklkl (20)

are usedy is the mass an@ the free energy per unit undeformed volume. The free eneggerids on the strain
relative to the unstressed state, so it dependsioandC,s. The dependence on temperature should involve the
time-like components of the material vectors. To find a reabte ansatz the structure of the material tetrad has to
be further investigated. To simplify the following considons components are written in Lagrangian coordinates
and in a momentary rest frame with

nao =0 moo=-1 +/—g ;ZE =/ dEt(Co'ag) = \/g (21)

The component representation of the tetrad is written doweguation (13). The componehf = V' = 9J/(5c¢)
represents the temperature (cf. equation (7), the squatetgom does not appear because of the rest frame).
The physical meaning of the components involvifig is still open. In older works on four-dimensional material
space-time (e. g. Epstein et al. (2006)) these componeatsaastrained to zerd/ is assumed constant which
agrees with isothermal conditions. The following scalaaimants can be derived from the time-like components

and the physical metric. Note thﬁ;%aﬁng7 =09,

o 1 BZCZ
0 = aphi ke = — 773 = 53 (22)
and ) .
n’ = n*Phohg = V(1 + P AsAp) . (23)

The simplest choice would be to assume that the free enemgnds ony, i. e. on temperature. A dependence
onn® would be nearly the same if the assumption
NP As45 <1 (24)
is valid. It will turn out that the ansatz i
U = U(h; Capin’) (25)
leads to a reasonable description including heat flux. Theraption leads to

ov 10V B2c?

0" 200 0

(26)

A central quantity in relativity is the energy-momentumderi’®?. It unifies energy density, energy flux (propor-
tional to momentum density) and momentum flux (negativessjrim a four-dimensional second order tensor. In a
Lagrangian formulation it shows up as the derivative of tagiangian with respect to the physical metric

pos _ 2 OLo
T [0 OMap
\/E; Nos

The purely time-like componer®® is the energy equivalent of mass plus the internal energgigerThe La-
grangian used here yields

(27)

ov
TO ~ (p? + ¥ — —10) . 28
(pc® + 59 ) (28)
Since the entropy density is= —‘g—‘g the internal energy can be easily recognized. The purelgesfike compo-
nents yield the negative stress tensor:
ov

9C,;

T4 = _9 (29)
The mixed space- and time-like components of the energy-entum tensor represent the energy curight
divided byc. The only energy current occuring here is heat flux, sincetmeponents refer to Lagrangian coordi-
nates and a rest frame. S
5 qa U -
T = L~ —9n* A5 30
From these equations one can conclude that the quanznigese related to heat flux and are of ordér. This in

turn yields that the left hand side of the assumption (24¥ isrder 1/c? and so the assumption is justified. The
physical interpretation of the quantitiels; is now clear.
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The components of the material vectors also appear as lesiabthe Lagrangian function and so the derivatives
with respect to them should be investigated. First the dévies with respect to the time-like material vectdr
are considered: The purely time-like component yields

9Lo V0¥ o —V "o,
50~ BV g = ~ Bev/=g =2 (=) (31)
and the mixed components are
8L() — \/ 7o ovw _ 1(15 _ \/ —T"No f
ons "~ fev= I =g 00 " fv= Y=o (32)

Together these form the components of a four-vector derisit/a density and not a regular vector because of the
factor,/—g. Besides the constant factefs the time-like component is the entropy density multipligc-iand the
space-like components are the entropy current. The pdii@tgence of a vector density is a scalar density (see e.
g. Lovelock and Rund (1975)) and so a tensorial quantityehtereads (notice that’ = 2% = ct)

OLg 10 (0Lo OLg
(o) = e (o) +os () 3
and represents the (negative) entropy production. Theatae of the Lagrangian with respect to the time-like
material vector has thus a clear physical meaning as thecfouent of entropy.

Next the derivatives with respect to the space-like comptmare calculated. First it could be stated that

aL[) o P" 3L0 ho 100

8hé =Kz "\uZ770 aho 3 (34)
so no essentially new information could be expected. Ther@ing derivatives yield
0Ly V=0 |0 2,4 . 0w
= /- “kS 4+ kS — 2 k7 . 35
8}13 g \/_790 10C 7 + T 80 T][ny ( )

The last two terms in the square brackets can be recogniztfite d&sshelby tensor. The first term is due to the
energy equivalent of mass in relativity. The facfe? is constant in a materially uniform bodly.

The derivatives contain one coordinate index and one nuntérdex, so they constitute four fields of vector
densities. A second order tensor density can be established

dLg
ohr P

(36)

In this tensor entropy, entropy current, and the Eshelbydeare coupled, similarly as energy, energy current and
stress are coupled in the energy-momentum tensor.

6 Invariance ldentities

The Lagrangian functioly, = Lo(nas; hY,) iS a scalar density depending on tensorial variables. Asrilbes!
in Lovelock and Rund (1975), the transformation laws of tlagiangian and its arguments lead to invariance
identities. Following the procedure given in Lovelock anghig (1975), the identities

. 9L Lo
Lod = Gty + 25, 37)
aLo 6LQ i Ui 6L0
- (G- aA o =2k (aw %) &
1 dLg 9Lo\ ,, aLo r r

n
can be derived. The symb¥l,, denotes the covariant derivative with respect to the playsietric whiled,, is the
partial derivative.
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7 Conservation and Balance L aws

The conservation of energy and momentum in relativity isregped by the vanishing divergence of the energy-
momentum tensor:

Ui 0Ly )
voc =0 . 40
(anaﬁ NB~ (40)

The invariance identity (38) shows, that this is equivaterthe Euler equations for the variation:of(a®) for an
action integral based on the Lagrangian

oLy\ 0Ly
o (22) % o a

The invariance identity (39) yields as equivalent to thesszmation of energy and momentum:

OLo\ ,, OLo,, , .oy
Oa (WL) hZ, + Thg(h%“ hi ) =0 . (42)
After multiplying by k7 this can be split up in
0Lg OLo ., -
_aa <ahg) = ('9hg (hw,a - ha,’y)k‘g (43)
and oL oL
o\ _ Omr _ pr 2
Oa, <8hf;> = onn (hl o —he ks (44)

Equation (43) gives an expression for the entropy prodocso the second law of thermodynamics demands that
the it must be non-negative. Equation (44) states a sourcefte the (modified) Eshelby tensor (see equation
(34) and (35)). It is easily recognized that the divergerar@shes if no temperature gradient, no heat flux, and no
defects are present.

8 Lagrangian for Defects and Heat Conduction

So far only the Lagrangian functiohy = Lo (nas; hl,) has been considered. If the material tetrad is taken as
an additional dependent variable, the complete Lagrangiast depend on (at least first) derivatives of these
guantities. One ansatz could be

0L

In this case the conservation of energy and momentum wildienmnchanged since the additional Lagrangian does
not depend om, s (and so not onr? andxfa). It can be derived from invariance identities that the Eelguations
for the variation ofr® are the integrability conditions for the Euler equationssarg from the variation oh?,. This
is similar to the situation in general relativity, where thiegergence of the Einstein tensor vanishes identically.

The ansatz (45) has a serious drawback, since it admits ntics® with k], =const. which would describe a
isothermal state with no defects and homogeneous strass/8tpossible remedy could be the introduction of an
additional scalar potential and/or the use of Null Lagrangias in Edelen and Lagoudas (1988). The development
of a reasonable Lagrangian is a matter of future work.

9 Conclusions

In this paper the well established space-like materialorgciad in material space is augmented by a fourth time-
like vector in a four-dimensional material space-time. dibgr, the four vectors constitute a tetrad field which has
of course more components than the original triad. A parhefrtew components serves to identify Lagrangian
coordinates in the material space-time, the rest is rekatéeimperature and heat flux. In this way a fundamental
coupling between defects and thermodynamic quantitiestabished because temperature and heat flux also
become part of the geometry of material space-time. Sineerthtion of defects in a material is a dissipative
process this coupling seems very plausible.
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The derivatives of the Lagrangian of an elastic solid wipext to the material tetrad can be arranged in a second
order tensor density in which entropy, entropy current, tredEshelby tensor are coupled, similarly as energy,
energy current and stress are coupled in the energy-momeensor. Invariance identities lead to expressions
for entropy production and for source terms for the Eshedimgor. These expressions are valid if and only if the
conservation of energy and momentum is fulfilled.

For a complete theory an additional Lagrangian descrilhiegiefects is necessary. A fully satisfactory ansatz has
not been found yet, but looking for it seems to be a worthy.téts&ould lead to a theory in which the dissipative
character of defect motion is a priori incorporated.
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