
TECHNISCHE MECHANIK,32, 2-5, (2012), 546 – 553

submitted: October 17, 2011

Defects and Dissipation in a Four-Dimensional Material Manifold

J. Schnepp

The material manifold is well established as the underlyingspace of material forces. This three-dimensional mani-
fold can be augmented by a time-like dimension to a four-dimensional material space-time manifold. The motion of
a body is then represented by a mapping of the material space-time to the physical space-time of relativity theory.
Following Kijowski et al. (1990), the time-like coordinateof material space-time can be related to temperature.
This can be expressed in an invariant manner by a time-like vector field. The geometric structure of the material
space-time for an elastic solid is completed by three space-like vector fields which describe the stress-free length
between adjacent particles. Defects are represented by a non-vanishing spatial part of the Cartan torsion defined
by the four vector fields (tetrad field). Since temperature isalso involved in the tetrad field, it is coupled to the
defects in the differential geometric structure of the material space-time. In a Lagrangian formulation the deriva-
tive of the Lagrangian with respect to the tetrad yields a four-dimensional second-order tensor in which entropy
density, entropy current, and the Eshelby tensor are coupled like energy density, energy current, and stress in the
energy-momentum tensor of relativity.

1 Introduction

The description of defects by differential geometric quantities in a material manifold has a long tradition and goes
back to Kondo (see e. g. Kondo (1955)) and Bilby et al. (1955).Moving defects lead to geometric quantities
changing with time, so there are fields depending on four variables, the three material coordinates and time. This
has motivated the introduction of a four-dimensional material manifold with a fourth time-like dimension. Four-
dimensional formulations can be found in Günther (1967), Edelen and Lagoudas (1988), Kienzler and Herrmann
(2003) and Epstein et al. (2006). In all these papers the material time is in the end identified with physical time
by constraints which are put on the field quantities. Epsteinet al. (2006) call this constraint “time consistency
condition” and put into question if it is really needed. Noneof these works consider temperature, so they (tacitly)
assume isothermal conditions.

A relativistic formulation of continuum mechanics, including non-equilibrium thermodynamics, can be found in
Lianis (1974). A three-dimensional material manifold is used in this work. Kijowski et al. (1990) use a four-
dimensional material space-time in relativistic hydrodynamics. The derivative of the material time is proportional
to temperature if the material coordinates are suitably chosen. In this approach material time has a physical
interpretation not only depending on physical time. In later works (e. g. Kijowski and Magli (1997)) also elastic
materials are taken into account. But eigenstresses (and soimplicitly defects) are considered only as prescribed
quantities and not as dynamical variables.

In this paper the representation of temperature by a time-like material coordinate and the differential-geometric
description of defects is combined. In this way the geometric structure of the four-dimensional material manifold
is determined by defects and temperature. Most of the formulas in this article will be written in index notation.
This seems appropriate since two spaces are involved and accordingly many two-point tensors show up. Three
kinds of indices (physical, material, and numbering indices) are present. Indices with a tilde take values1, 2, 3
while ordinary indices run from0 . . .3. A comma before an index means partial differentiation withrespect to the
respective coordinate.

2 Physical Space-Time

Material bodies are observed in physical space. The deformation history of a body is the configuration of the body
in physical space evolving in time. Physical space coordinates and time are combined in a four-dimensional space
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in the theory of relativity. Since the formulation presented here will deal with a four-dimensional material manifold
it is natural to take the space-time of relativity on the physical side. The history of a body can then be represented
by a mapping between the two four-dimensional manifolds.

Coordinates in the physical space-time are denoted byxi, i = 0, 1, 2, 3. Latin indices in the rangei, j, k, l refer to
physical space-time coordinates. In this paper only special relativity will be considered. So the physical space-time
is flat. One can choose an inertial frame with Cartesian coordinates(x, y, z), one hasx0 = ct, x1 = x, x2 = y,
x3 = z wheret is the physical time andc is the velocity of light. In this case the metric of physical space-time has
the form:

ηij =









−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









(1)

The history of a particle is described by a curve (world line)in the four-dimensional physical space-time. The
tangent vectorui represents the particle’s velocity as shown in figure (1). Itis a time-like vector normalized to the
velocity of light: ηijuiuj = −c2 and called four-velocity. The scalar product of a time-likevector with itself is
negative. This property distinguishes them from space-like vectors. Four-velocities can only appear in the sector
of time-like vectors marked in Figure (1) because the speed of a particle cannot exceed the velocity of light. If a
particle is (at the moment) at rest in the given frame (then called momentary rest frame), the space-like components
of the four-velocity are zero, i. e. it points inx0-direction.

x1, x2, x3

x0 ui

time-like vectors

world

line

Figure 1: World line of a particle, two space dimensions are suppressed in the figure

3 Material Space-Time

The history of a body consists of the congruence of world lines of its particles. This congruence is often called
a world tube. If the individual particles are indicated by space-like material coordinatesaα̃, α̃ = 1, 2, 3 (Greek
indices refer to material coordinates) and temperature is denoted byϑ, the deformation and temperature history of
a body can be described by the four functions

aα̃(xi) ϑ(xi) (2)

An alternative description is given by Kijowski et al. (1990): An additional time-like material coordinatea0(xi) is
taken with

β
∂a0

∂xi
ui = ϑ(xi) (3)

whereβ is a constant. The temperature is proportional to the derivative of material time with respect to physical
time in a rest frame (ui = (c, 0, 0, 0)). There are now four material coordinatesaα = (a0; aα̃),α = 0, 1, 2, 3 which
can be taken as coordinates in a four-dimensional material manifold. The time-like coordinate serves as a potential
function for the temperature.

The deformation and temperature history of the body can now be described by four invertible functions

aα(xi) ⇔ xi(aα) . (4)
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These functions represent an invertible one-to-one mapping between the physical and the material space-time.

3.1 Time-like Material Vector

Equation (3) is not covariant since it is only valid in special coordinates, or more precisely, it defines these coordi-
nates. A covariant formulation can be achieved by the introduction of a time-like material vector. To this end one
takes the pull-back of four-velocity and temperature to thematerial manifold

uα =
∂aα

∂xi
ui ϑ(aα) = ϑ(xi(aα)) (5)

and sets

kα
0
:= β

uα

ϑ
. (6)

In this equation only tensorial quantities are used and so itis valid in arbitrary coordinate systems. The lower index
0 is a number for the vector field. Three additional vector fields numbered(1, 2, 3) will be introduced in the next
subsection. It is easy to check that in coordinates withkα

0
= (1, 0, 0, 0) equation (3) is valid. It is also possible to

transform to coordinates in whichx0 = a0 is valid. In this case

kα
0
= (

βc

ϑ
√

1− v2

c2

; 0; 0; 0) x0 = a0 , (7)

wherev is the absolute value of the particles three-velocity in thechosen frame. This vectorial representation of
temperature is standard in relativistic thermodynamics.

The time-like material vector field not only serves to describe temperature, but is also necessary to identify La-
grangian coordinates in the material space-time. In the three-dimensional material space every coordinate system
is Lagrangian by definition. In the four-dimensional material space-time transformations may also depend on the
time-like coordinate and can lead to changing space-like coordinates for an individual particle. Coordinates are
Lagrangian if and only if the spatial components of the time-like material vector field vanish. The presence of this
field also indicates that there is no Lorentz symmetry in the material space-time. The Lorentz symmetry of the
physical space-time means that there are no preferred time-like directions which in turn leads to the equivalence
of all inertial frames. The time-like material vector defines a preferred direction (the rest frame of the particle) and
so precludes Lorentz symmetry.

3.2 Space-like Material Vectors

To describe the structure (including defects) of the material a triad of three additional space-like material vectors is
introduced. This approach is now standard in the continuum theory of dislocations and goes back to Kondo (1955)
and Bilby et al. (1955). The spatial components (in Lagrangian coordinates) can be denoted by

kα̃r̃ (a
λ) r̃ = 1, 2, 3 (8)

wherer̃ is a numbering index. Indices in the rangep, q, r, s, t are numbering indices for the material vectors. The
components can be arranged in an invertible 3x3 matrix:

kα̃r̃ hr̃
α̃ kα̃r̃ h

r̃

β̃
= δα̃

β̃
hr̃

β̃
kβ̃s̃ = δr̃s̃ (9)

The mutual scalar products are considered as given by a positive definite and symmetric 3x3 matrix

kr̃ · ks̃ =
o

C r̃s̃ . (10)

These products define length and mutual angles in the stress-free state of the material at a fixed reference temper-
ature and so include a first constitutive assumption by the existence of this state. In a materially uniform body the

matrix
o

C r̃s̃ is constant. Defects (dislocations) are represented by theCartan torsion of the material triad

S r̃

α̃β̃
= hr̃

α̃,β̃
− hr̃

β̃,α̃
. (11)

The torsion vanishes if no dislocations are present.
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3.3 Material Tetrad

Together with the time-like material vector the space-liketriad constitutes a tetrad field in the material space-time.
The components of the tetrad can be arranged in a 4x4 matrix and its inverse

kαr hr
α kαr h

r
β = δαβ hr

βk
β
s = δrs . (12)

In Lagrangian coordinates withx0 = a0 the components can be represented as

hr
α =

(

V V Aα̃

0r̃ hr̃
α̃

)

kαr =

(

1/V −Aβ̃k
β̃
r̃

0α̃ kα̃r̃

)

. (13)

The zero components0r̃ and 0α̃ indicate the Lagrangian coordinates. The componenth0
0
= V is related to

temperature as shown in equation (7). The components involvingAα̃ are new and will be discussed later.

The mutual scalar products are now extended to

kr · ks = grs =

(

−1 0

0
o

C r̃s̃

)

. (14)

This definition implies that the time-like material vector is considered orthogonal to the space-like vectors. The
product of the time-like vector with itself is negative. This yields the distinction between time-like and space-like
vectors similar to relativity. But again it is stressed thatthe form of the metric coefficients in equation (14) does
not imply Lorentz symmetry since the geometry of the material manifold is governed by the tetrad field an not by
the metric properties.

4 Metric Tensors

Two metric tensors can now be established in the material space-time. The first one is the pull-back of the physical
metric to the material manifold

ηαβ = ηij
∂xi

∂aα
∂xj

∂aβ
(15)

and the second one is defined by the material scalar products

gαβ = grsh
r
αh

s
β . (16)

The spatial length of material space-time coordinate differentials is calculated by taking the spatial part of the
metric tensors. The unstressed length at reference temperature d

o
s is determined by the material metric

(d
o
s)2 =

o

Cαβdaαdaβ with
o

Cαβ = gαβ +
gαλk

λ
0
gβµk

µ
0

−gλµkλ0 k
µ
0

(17)

while the actual length is of course determined by the physical metric

(ds)2 = Cαβda
αdaβ with Cαβ = ηαβ +

ηαλk
λ
0
ηβµk

µ
0

−ηλµkλ0 k
µ
0

. (18)

Cαβ is the well known relativistic equivalent of the Cauchy-Green tensor in relativistic elasticity (see e. g. Kijowski
and Magli (1997)). The spatial parts of the metrics are determined by eliminating the contribution of the component
in direction of the four-velocity (or equivalently the time-like material vector) of the squared vector.

5 Lagrangian Formulation for a Hyper-Elastic Solid

In the variational formulation of relativistic elasticitythe Lagrangian function consists of the energy equivalent
of mass density and the free energy density in the rest frame.If the material coordinates are taken as indepen-
dent variables and the densities are referred to unstressedvolume at reference temperature the Lagrangian can be
expressed as

L0(x
i;xi

,α;h
r
α) = L0(ηijx

i
,αx

j
,β ;h

r
α) =

√
−g

√
−η0√
−g0

(
o
ρc2 +Ψ) (19)
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where the abbreviations
g = det(gαβ) g0 = gαβk

α
0
kβ
0
= −1 η0 = ηαβk

α
0
kβ
0

(20)

are used.
o
ρ is the mass andΨ the free energy per unit undeformed volume. The free energy depends on the strain

relative to the unstressed state, so it depends onhr̃
α̃ andCαβ . The dependence on temperature should involve the

time-like components of the material vectors. To find a reasonable ansatz the structure of the material tetrad has to
be further investigated. To simplify the following considerations components are written in Lagrangian coordinates
and in a momentary rest frame with

ηα̃0 = 0 η00 = −1
√
−g

√
−η0√
−g0

=

√

det(
o

Cα̃β̃) =

√

o

C (21)

The component representation of the tetrad is written down in equation (13). The componenth0
0
= V = ϑ/(βc)

represents the temperature (cf. equation (7), the square root term does not appear because of the rest frame).
The physical meaning of the components involvingAα̃ is still open. In older works on four-dimensional material
space-time (e. g. Epstein et al. (2006)) these components are constrained to zero.V is assumed constant which
agrees with isothermal conditions. The following scalar invariants can be derived from the time-like components

and the physical metric. Note that
−1

η αβηβγ = δαγ .

η0 = ηαβk
α
0
kβ
0
= − 1

V 2
= −β2c2

ϑ2
(22)

and
η0 =

−1

η αβh0

αh
0

β = −V 2(1 +
−1

η α̃β̃Aα̃Aβ̃) . (23)

The simplest choice would be to assume that the free energy depends onη0, i. e. on temperature. A dependence
onη0 would be nearly the same if the assumption

−1

η α̃β̃Aα̃Aβ̃ ≪ 1 (24)

is valid. It will turn out that the ansatz
Ψ = Ψ(hr̃

α̃;Cαβ ; η
0) (25)

leads to a reasonable description including heat flux. The assumption leads to

∂Ψ

∂η0
≈ −1

2

∂Ψ

∂ϑ

β2c2

ϑ
. (26)

A central quantity in relativity is the energy-momentum tensorTαβ . It unifies energy density, energy flux (propor-
tional to momentum density) and momentum flux (negative stress) in a four-dimensional second order tensor. In a
Lagrangian formulation it shows up as the derivative of the Lagrangian with respect to the physical metric

Tαβ = − 2
√

o

C

∂L0

∂ηαβ
(27)

The purely time-like componentT 00 is the energy equivalent of mass plus the internal energy density. The La-
grangian used here yields

T 00 ≈ (
o
ρc2 +Ψ− ∂Ψ

∂ϑ
ϑ) . (28)

Since the entropy density iss = −∂Ψ
∂ϑ

the internal energy can be easily recognized. The purely space-like compo-
nents yield the negative stress tensor:

T α̃β̃ = −2
∂Ψ

∂Cα̃β̃

(29)

The mixed space- and time-like components of the energy-momentum tensor represent the energy currentqα̃

divided byc. The only energy current occuring here is heat flux, since thecomponents refer to Lagrangian coordi-
nates and a rest frame.

T α̃0 =
qα̃

c
≈ ∂Ψ

∂ϑ
ϑηα̃β̃Aβ̃ (30)

From these equations one can conclude that the quantitiesAβ̃ are related to heat flux and are of order1/c. This in
turn yields that the left hand side of the assumption (24) is of order1/c2 and so the assumption is justified. The
physical interpretation of the quantitiesAβ̃ is now clear.
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The components of the material vectors also appear as variables in the Lagrangian function and so the derivatives
with respect to them should be investigated. First the derivatives with respect to the time-like material vectorh0

α

are considered: The purely time-like component yields

∂L0

∂h0
0

≈ βc
√
−g

√
−η0√
−g0

∂Ψ

∂ϑ
≈ βc

√
−g

√
−η0√
−g0

(−s) (31)

and the mixed components are

∂L0

∂h0

α̃

≈ −βc
√
−g

√
−η0√
−g0

∂Ψ

∂ϑ

−1

η α̃β̃Aβ̃ ≈ −β
√
−g

√
−η0√
−g0

qα̃

ϑ
. (32)

Together these form the components of a four-vector density. It is a density and not a regular vector because of the
factor

√
−g. Besides the constant factor−β the time-like component is the entropy density multiplied by c and the

space-like components are the entropy current. The partialdivergence of a vector density is a scalar density (see e.
g. Lovelock and Rund (1975)) and so a tensorial quantity. Here it reads (notice thata0 = x0 = ct)

∂α

(

∂L0

∂h0
α

)

=
1

c

∂

∂t

(

∂L0

∂h0
0

)

+ ∂α̃

(

∂L0

∂h0

α̃

)

. (33)

and represents the (negative) entropy production. The derivative of the Lagrangian with respect to the time-like
material vector has thus a clear physical meaning as the four-current of entropy.

Next the derivatives with respect to the space-like components are calculated. First it could be stated that

∂L0

∂hs̃
0

= kµs̃ ηλµ
∂L0

∂h0

λ

h0

0

−1

η 00 , (34)

so no essentially new information could be expected. The remaining derivatives yield

∂L0

∂hr̃
α̃

=
√
−g

√
−η0√
−g0

[

o
ρc2kα̃r̃ +Ψkα̃r̃ − 2

∂Ψ

∂Cα̃β̃

ηβ̃γ̃k
γ̃
r̃

]

. (35)

The last two terms in the square brackets can be recognized asthe Eshelby tensor. The first term is due to the
energy equivalent of mass in relativity. The factor

o
ρc2 is constant in a materially uniform body.

The derivatives contain one coordinate index and one numbering index, so they constitute four fields of vector
densities. A second order tensor density can be establishedby

∂L0

∂hr
α

hr
β . (36)

In this tensor entropy, entropy current, and the Eshelby tensor are coupled, similarly as energy, energy current and
stress are coupled in the energy-momentum tensor.

6 Invariance Identities

The Lagrangian functionL0 = L0(ηαβ ;h
r
α) is a scalar density depending on tensorial variables. As described

in Lovelock and Rund (1975), the transformation laws of the Lagrangian and its arguments lead to invariance
identities. Following the procedure given in Lovelock and Rund (1975), the identities

L0δ
α
β =

∂L0

∂hr
α

hr
β + 2

∂L0

∂ηαγ
ηγβ (37)

−
[

∂α

(

∂L0

∂xi
,α

)

− ∂L0

∂xi

]

xi
,γ = −2

η

∇α

(

∂L0

∂ηαβ
ηβγ

)

(38)

−2
η

∇α

(

∂L0

∂ηαβ
ηβγ

)

= ∂α

(

∂L0

∂hr
α

)

hr
γ +

∂L0

∂hr
α

(hr
γ,α − hr

α,γ) (39)

can be derived. The symbol
η

∇α denotes the covariant derivative with respect to the physical metric while∂α is the
partial derivative.
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7 Conservation and Balance Laws

The conservation of energy and momentum in relativity is expressed by the vanishing divergence of the energy-
momentum tensor:

η

∇α

(

∂L0

∂ηαβ
ηβγ

)

= 0 . (40)

The invariance identity (38) shows, that this is equivalentto the Euler equations for the variation ofxi(aα) for an
action integral based on the LagrangianL0:

∂α

(

∂L0

∂xi
,α

)

− ∂L0

∂xi
= 0 (41)

The invariance identity (39) yields as equivalent to the conservation of energy and momentum:

∂α

(

∂L0

∂hr
α

)

hr
γ +

∂L0

∂hr
α

(hr
γ,α − hr

α,γ) = 0 . (42)

After multiplying bykγs this can be split up in

−∂α

(

∂L0

∂h0
α

)

=
∂L0

∂hr
α

(hr
γ,α − hr

α,γ)k
γ
0

(43)

and

∂α

(

∂L0

∂hs̃
α

)

= −∂L0

∂hr
α

(hr
γ,α − hr

α,γ)k
γ
s̃ . (44)

Equation (43) gives an expression for the entropy production, so the second law of thermodynamics demands that
the it must be non-negative. Equation (44) states a source term for the (modified) Eshelby tensor (see equation
(34) and (35)). It is easily recognized that the divergence vanishes if no temperature gradient, no heat flux, and no
defects are present.

8 Lagrangian for Defects and Heat Conduction

So far only the Lagrangian functionL0 = L0(ηαβ ;h
r
α) has been considered. If the material tetrad is taken as

an additional dependent variable, the complete Lagrangianmust depend on (at least first) derivatives of these
quantities. One ansatz could be

L = L0 + L1 L1 = L1(h
r
α;h

r
α,β)

∂L1

∂ηαβ
= 0 (45)

In this case the conservation of energy and momentum will remain unchanged since the additional Lagrangian does
not depend onηαβ (and so not onxi andxi

,α). It can be derived from invariance identities that the Euler equations
for the variation ofxi are the integrability conditions for the Euler equations arrising from the variation ofhr

α. This
is similar to the situation in general relativity, where thedivergence of the Einstein tensor vanishes identically.

The ansatz (45) has a serious drawback, since it admits no solutions withhr
α =const. which would describe a

isothermal state with no defects and homogeneous stress/stain. A possible remedy could be the introduction of an
additional scalar potential and/or the use of Null Lagrangians as in Edelen and Lagoudas (1988). The development
of a reasonable Lagrangian is a matter of future work.

9 Conclusions

In this paper the well established space-like material vector triad in material space is augmented by a fourth time-
like vector in a four-dimensional material space-time. Together, the four vectors constitute a tetrad field which has
of course more components than the original triad. A part of the new components serves to identify Lagrangian
coordinates in the material space-time, the rest is relatedto temperature and heat flux. In this way a fundamental
coupling between defects and thermodynamic quantities is established because temperature and heat flux also
become part of the geometry of material space-time. Since the motion of defects in a material is a dissipative
process this coupling seems very plausible.
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The derivatives of the Lagrangian of an elastic solid with respect to the material tetrad can be arranged in a second
order tensor density in which entropy, entropy current, andthe Eshelby tensor are coupled, similarly as energy,
energy current and stress are coupled in the energy-momentum tensor. Invariance identities lead to expressions
for entropy production and for source terms for the Eshelby tensor. These expressions are valid if and only if the
conservation of energy and momentum is fulfilled.

For a complete theory an additional Lagrangian describing the defects is necessary. A fully satisfactory ansatz has
not been found yet, but looking for it seems to be a worthy task. It could lead to a theory in which the dissipative
character of defect motion is a priori incorporated.
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