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Potential Method in the Linear Theories of Viscoelasticity and
Thermoviscoelasticity for Kelvin-Voigt Materials

M. M. Svanadze

In this paper the basic boundary value problems (BVPs) of steady vibrations in the linear theories of viscoelasticity
and thermoviscoelasticity for Kelvin-Voigt materials are considered and some basic results of the classical theories
of elasticity and thermoelasticity are generalized. The fundamental solutions of systems of equations of steady vi-
brations are constructed. The radiation conditions and basic properties of fundamental solutions are established.
The properties of potentials of single-layer, double-layer and volume are given. The uniqueness theorems of the
internal and external basic BVPs are established. Finally, the existence theorems for the internal and external
basic BVPs are proved by means of the potential method and the theory of singular integral equations.

1 Introduction

Viscoelastic materials play an important role in many branches of engineering, technology and, in recent years,
biomechanics (see Lakes, 2009). Viscoelastic materials, such as amorphous polymers, semicrystalline polymers,
and biopolymers, can be modeled in order to determine their stress or strain interactions as well as their temporal
dependencies. The study of viscoelastic behavior in bone is of interest in several contexts. Bone is hierarchical
solid that contains structure at multiple length scales. Study of bone viscoelasticity is best placed in the context
of strain levels and frequency components associated with normal activities and with applications of diagnostic
tools (for details, see Lakes, 2009). The investigations of the solutions of viscoelastic wave equations, velocities
of seismic wave propagating and the attenuation of seismic wave in the viscoelastic media are very important for
geophysical prospecting technology.

The theories of viscoelasticity, which include the Maxwell model, the Kelvin-Voigt model, and the Standard Lin-
ear Solid model, are used to predict a material’s response under different loading conditions. One of the simplest
mathematical models constructed to describe the viscoelastic effects is the classical Kelvin-Voigt model (see Erin-
gen, 1980). The basic idea concerning this model is that the stress is dependent on the deformation tensor and
deformation-rate tensor. This model consists of a Newtonian damper and Hooke’s elastic spring connected in
parallel.

The modern theories of viscoelasticity and thermoviscoelasticity for materials with microstructure have become a
subject of intensive study in recent years. The classical Kelvin-Voight model by using a mixture consisting of a
porous elastic solid and viscous fluid is generalized by Iesan (2004). The linear theory of porous thermoviscoelastic
mixtures has been presented by Iesan and Quintanilla (2007). The linear theories of viscoelasticity and thermo-
viscoelasticity of binary mixtures where the individual components are modeled as Kelvin-Voight viscoelastic
materials are developed by Quintanilla (2005) and Iesan and Nappa (2008).

In this paper the basic BVPs of steady vibrations in the linear theories of viscoelasticity and thermoviscoelasticity
for Kelvin-Voigt materials are considered and some basic results of the classical theories of elasticity and thermoe-
lasticity (see Kupradze et al., 1979) are generalized. The fundamental solutions of systems of equations of steady
vibrations are constructed. The radiation conditions and basic properties of fundamental solutions are established.
The properties of potentials of single-layer, double-layer and volume are given. The uniqueness theorems of the
internal and external basic BVPs are established. Finally, the existence theorems for the internal and external basic
BVPs are proved by means of the potential method and the theory of singular integral equations.

The potential method makes it possible to investigate three-dimensional problems not only of classical theory of
elasticity, but also problems of the theory of elasticity with conjugated fields. The main results obtained in this
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area are presented in Kupradze et al. (1979). An extensive review of works on the potential method can be found
in Gegelia and Jentsch (1994).

2 Basic Equations

Let x = (x1, x2, x3) be a point of the Euclidean three-dimensional spaceR3 andDx = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

). We
consider an isotropic homogeneous viscoelastic Kelvin-Voigt material that occupies the regionΩ of R3. We assume
that the subscripts preceded by a comma denote partial differentiation with respect to the corresponding Cartesian
coordinate and repeated indices are summed over the range (1,2,3).

The fundamental system of field equations in the linear theory of thermoviscoelasticity for Kelvin-Voigt material
consists of the equations of steady vibrations (see Eringen, 1980)

tlj,j = −ρ(ω2ul + F ′
l ), (1)

the equation of balance of energy
−iωT0 ρ η = ql,l + ρF0, (2)

the constitutive equations
tlj = λ1 errδlj + 2μ1 elj − γ θ δlj ,

ρ η = γ err + a θ,

ql = k θ,l,

(3)

and the geometrical equations

elj =
1
2
(ul,j + uj,l), (4)

whereu = (u1, u2, u3) is the displacement vector,θ is the deviation from a constant reference temperatureT0 > 0,
tlj andelj are the components of stress and strain tensors, respectively(l, j = 1, 2, 3); F′ = (F ′

1, F
′
2, F

′
3) is the

body force,F0 is the heat supply,η is the entropy per unit mass,ql is the heat flux,ρ is the reference mass density
(ρ > 0), ω is the oscillation frequency(ω > 0),

λ1 = λ − iωλ∗, μ1 = μ − iωμ∗.

Hereλ, μ andλ∗, μ∗ are the Laḿe and viscosity constants, respectively;a, k andγ are the constitutive coeffi-
cients.

Substituting equations (3) and (4) into (1) and (2), we obtain the following system of steady vibrations equations of
the linear theory of thermoviscoelasticity for Kelvin-Voigt material expressed in terms of the displacement vector
u and the temperatureθ

μ1 Δu + (λ1 + μ1) grad div u − γ grad θ + ρω2 u = −ρF′,

(kΔ + a0) θ + γ0 div u = −ρF0,
(5)

whereΔ is the Laplacian,a0 = iωa, γ0 = iω γ T0. Obviously, (5) is a system of PDEs with complex coefficients
containing 10 real parameters.

We assume that
μ∗ > 0, 3λ∗ + 2μ∗ > 0, k > 0, a > 0. (6)

In the isothermal case from (5) we obtain the system of equations of steady vibrations in the linear theory of
viscoelasticity for Kelvin-Voigt material (see Eringen, 1980)

μ1 Δu + (λ1 + μ1) grad div u + ρω2 u = −ρF′. (7)

We introduce the matrix differential operators

A(Dx) = (Apq(Dx))4×4 , A(1)(Dx) =
(
A

(1)
lj (Dx)

)

3×3
,
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where

Alj(Dx) = A
(1)
lj (Dx) = (μ1Δ + ρω2)δlj + (λ1 + μ1)

∂2

∂xl∂xj
,

Al4(Dx) = −γ
∂

∂xl
, A4l(Dx) = γ0

∂

∂xl
, A44(Dx) = kΔ + a0, l, j = 1, 2, 3

andδlj is the Kronecker delta. The systems (5) and (7) can be written as

A(Dx)U(x) = F(x), (8)

and
A(1)(Dx)u(x) = −ρF′(x),

respectively, whereU = (u, θ), F = (−ρF′,−ρF0) andx ∈ Ω.

3 Fundamental Solutions

In Kupradze and Burchuladze (1969), the fundamental solution of equations of steady vibrations in the classical
theory of thermoelasticity has been presented. In this section the fundamental solution of the system of equations
of steady vibrations in the linear theory of thermoviscoelasticity is constructed using a simple method like in the
classical theory of thermoelasticity.

Definition 1. The fundamental solution of the system (5) (the fundamental matrix of operatorA) is the matrix
Γ (x) = (Γpq (x))4×4 satisfying (in the class of generalized functions) the following equation

A (Dx)Γ (x) = δ (x)J, (9)

whereδ is the Dirac delta,J = (δpq)4×4 is the unit matrix, andx ∈ R3.

In this section the matrixΓ (x) is constructed in terms of elementary functions and some basic properties are
established.

We consider the system of nonhomogeneous equations

μ1 Δu + (λ1 + μ1) grad div u + γ0 grad θ + ρω2 u = G′,

(kΔ + a0) θ − γ div u = G0,
(10)

whereG′ is three-component vector function andG0 is scalar function onR3. As one may easily verify, system
(10) may be written in the form

AT (Dx)U (x) = G (x) , (11)

whereAT is the transpose of matrixA, G = (G′, G0) is four-component vector function onR3 andx ∈ R3.
Applying the operator div to Eqs. (10)1 from system (10) we obtain

μ0 Δdiv u + γ0 Δ θ = div G′,

(kΔ + a0) θ − γ div u = G0,
(12)

whereμ0 = λ1 + 2μ1. The system (12) implies

Λ1(Δ) div u = Φ1, Λ1(Δ) θ = Φ2, (13)

whereΛ1(Δ) = (Δ + τ2
1 )(Δ + τ2

2 ); τ2
1 andτ2

2 are the roots of equation (with respect toτ )

(μ0τ − ρω2)(kτ − a0) − γγ0 τ = 0

and

Φ1 =
1

kμ0
[(kΔ + a0) div G′ − γ0Δ G0] ,

Φ2 =
1

kμ0

[
γ div G′ + (μ0Δ + ρω2) G0

]
.

(14)
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Applying the operatorΛ1(Δ) to (10)1 and taking into account (13), we obtain

Λ2(Δ)u = Φ, (15)

whereΛ2(Δ) = Λ1(Δ)(Δ + τ2
3 ), τ2

3 =
ρω2

μ1
and

Φ =
1
μ1

[Λ1(Δ)G′ − (λ1 + μ1) gradΦ1 − γ0 gradΦ2] . (16)

On the basis of (13) and (15) we get
Λ(Δ)U (x) = Φ̃ (x) , (17)

whereΦ̃ = (Φ, Φ2) is the four-component vector andΛ(Δ) is the following diagonal matrix

Λ(Δ) = (Λpq (Δ))4×4 , Λ11 (Δ) = Λ22 (Δ) = Λ33 (Δ) = Λ2 (Δ) ,

Λ44 (Δ) = Λ1 (Δ) , Λpq (Δ) = 0, p, q = 1, 2, 3, 4, p 6= q.

In view of (14) and (16) the vector̃Φ we can written in the form

Φ̃ (x) = LT (Dx)G (x) , (18)

where

L = (Lpq)4×4 , Llj (Dx) =
1

kμ0μ1

{

kμ0 Λ1(Δ)δlj − [(λ1 + μ1)(kΔ + a0) + γγ0]
∂2

∂xl∂xj

}

,

Ll4 (Dx) =
γ

kμ0

∂

∂xl
, L4l (Dx) = −

γ0

kμ0μ1
(μ1Δ + ρω2)

∂

∂xl
,

L44 (Dx) =
1

kμ0
(μ0Δ + ρω2), l, j = 1, 2, 3.

(19)

By virtue of (11) and (18) from (17) it follows thatΛU = LT AT U. It is obvious thatLT AT = Λ and, hence,

A (Dx)L (Dx) = Λ (Δ) . (20)

We assume thatτ2
1 6= τ2

2 6= τ2
3 6= τ2

1 . Let

Y (x) = (Ypq (x))4×4 , Y11 (x) = Y22 (x) = Y33 (x) =
3∑

j=1

ηjhj (x) ,

Y44 (x) =
1

τ2
2 − τ2

1

[h1 (x) − h2 (x)] , Ypq (x) = 0, p, q = 1, 2, 3, 4, p 6= q,

(21)

where

hj(x) = −
1

4π |x|
eiτj |x|, ηj =

3∏

l=1, l 6=j

(
τ2
l − τ2

j

)−1
, j = 1, 2, 3.

It is easily to see thatY is the fundamental matrix of operatorΛ (Δ) , that is

Λ(Δ)Y(x) = δ(x)J. (22)

We introduce the matrix
Γ(x) = L(Dx)Y(x). (23)

Using identity (20) from (22) and (23) we obtain

A(Dx)Γ(x) = A(Dx)L(Dx)Y(x) = Λ (Δ)Y (x) = δ(x)J.

Hence, the matrixΓ(x) is a solution to (9) and is constructed by elementary functionsh1, h2 andh3. We have
thereby proved the following theorem.
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Theorem 1. The matrixΓ(x) defined by (23) is the fundamental solution of system (5), whereL(Dx) andY(x)
are given by (19) and (21), respectively.

In the follows we assume thatIm τj > 0, j = 1, 2, 3, 4. The theorem 1 leads to the following results.

Theorem 2.Each column of the matrixΓ (x) is a solution of system (5) at every pointx ∈ R3 except the origin.

Theorem 3.The relations

Γlj (x) = O
(
|x|−1

)
,

∂m

∂xm1
1 ∂xm2

2 ∂xm3
3

Γlj (x) = O
(
|x|−1−m

)

hold in a neighborhood of the origin, wherel, j = 1, 2, 3, 4, m = m1 + m2 + m3, m ≥ 1.

Theorem 4.The relations
Γlj (x) = e−τ0|x| O

(
|x|−1

)

hold in a neighborhood of the infinity (|x| � 1) , whereτ0 = min {Im τj , j = 1, 2, 3, 4} > 0, l, j = 1, 2, 3, 4.

Quite similarly we can construct the fundamental solution of system (7) (fundamental matrix of operatorA(1))
and establish basic properties. We have the following results.

Theorem 5.The matrixΓ(1)(x) defined by

Γ(1)(x) =
(
Γ(1)

lj (x)
)

3×3
,

Γ(1)
lj (x) =

1
μ1(τ2

4 − τ2
3 )

[

(Δ + τ2
4 )δlj −

λ1 + μ1

μ0

∂2

∂xl∂xj

]

[h3 (x) − h4 (x)]

is the fundamental solution of system (7), where

h4(x) = −
1

4π|x|
eiτ4|x|, τ2

4 =
ρω2

μ0
.

Theorem 6. Each column of the matrixΓ(1) (x) is a solution of system (7) at every pointx ∈ R3 except the
origin.

Theorem 7.The relations

Γ(1)
lj (x) = O

(
|x|−1

)
,

∂m

∂xm1
1 ∂xm2

2 ∂xm3
3

Γ(1)
lj (x) = O

(
|x|−1−m

)

hold in a neighborhood of the origin, wherel, j = 1, 2, 3, m = m1 + m2 + m3, m ≥ 1.

Theorem 8.The relations
Γ(1)

lj (x) = e−τ
(1)
0 |x| O

(
|x|−1

)

hold in a neighborhood of the infinity (|x| � 1) , whereIm τ4 > 0, τ
(1)
0 = min {Im τ3, Im τ4} > 0, l, j =

1, 2, 3, 4.

4 Boundary Value Problems. Uniqueness Theorems

Let S be the closed surface surrounding the finite domainΩ+ in R3, S ∈ C2,ν , 0 < ν ≤ 1, Ω̄+ = Ω+∪S, Ω− =
R3\Ω̄+.

Definition 2. A vector functionU = (U1, U2, U3, U4) is called regular inΩ− (or Ω+) if
1)

Ul ∈ C2(Ω−) ∩ C1(Ω̄−) (or Ul ∈ C2(Ω+) ∩ C1(Ω̄+)),

2)

U =
3∑

j=1

U(j), U(j) = (U (j)
1 , U

(j)
2 , U

(j)
2 , U

(j)
4 ),

U
(j)
l ∈ C2(Ω−) ∩ C1(Ω̄−),
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3)
(Δ + τ2

j )U (j)
l (x) = 0

and

(
∂

∂|x|
− iτj)U

(j)
l (x) = eiτj |x|o(|x|−1) for |x| � 1, (24)

whereU
(3)
4 = 0 andj = 1, 2, 3, l = 1, 2, 3, 4.

Equalities in (24) are Sommerfeld-Kupradze type radiation conditions in the linear theory of thermoviscoelasticity
for Kelvin-Voigt materials.

In the sequel we use the matrix differential operators

1)

P(1)(Dx,n) = (P (1)
lj (Dx,n))3×3, P

(1)
lj (Dx,n) = μ1δlj

∂

∂n
+ μ1nj

∂

∂xl
+ λ1nl

∂

∂xj
,

2)
P(Dx,n) = (Plj(Dx,n))4×4, Plj(Dx,n) = P

(1)
lj (Dx,n),

Pl4(Dx,n) = −γnl, P4l(Dx,n) = 0, P44(Dx,n) = k
∂

∂n
,

3)
P̃(Dx,n) = (P̃lj(Dx,n))4×4, P̃lj(Dx,n) = Plj(Dx, n), P̃l4(Dx,n) = −γ0 nl,

P̃4l(Dx,n) = 0, P̃44(Dx,n) = P44(Dx,n),
(25)

wheren = (n1, n2, n3) is the unit vector,
∂

∂n
is the derivative along the vectorn andl, j = 1, 2, 3.

Remark 1. The matrix differential operatorP(1)(Dx,n) is the stress operator in the linear theory of viscoelasticity
for Kelvin-Voigt materials (see Eringen, 1980).

The basic internal and external BVPs of steady vibration in the linear theory of thermoviscoelasticity for Kelvin-
Voigt materials are formulated as follows.

Find a regular (classical) solution to system (8) forx ∈ Ω+ satisfying one of the following boundary conditions

lim
Ω+3x→ z∈S

U(x) ≡ {U(z)}+ = f(z)

in the Problem(I)+F,f , and

{P(Dz,n(z))U(z)}+ = f(z)

in the Problem(II)+F,f .

Find a regular (classical) solution to system (8) forx ∈ Ω− satisfying one of the following boundary conditions

lim
Ω−3x→ z∈S

U(x) ≡ {U(z)}− = f(z)

in the Problem(I)−F,f , and

{P(Dz,n(z))U(z)}− = f(z)

in the Problem(II)−F,f , where F and f are the four-component known vector functions, andsuppF is a finite
domain inΩ−.

We have the following results (uniqueness theorems).

Theorem 9. If condition (6) is satisfied, then the internal BVP(K)+F,f admits at most one regular solution, where
K = I, II.

Theorem 10.If condition (6) is satisfied, then the external BVP(K)−F,f admits at most one regular solution, where
K = I, II.
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5 Basic Properties of Potentials

In this section we present the basic properties of thermoviscoelastopotentials. We introduce the potential of single-
layer

Z(1)(x,g) =
∫

S

Γ(x − y)g(y)dyS,

the potential of double-layer

Z(2)(x,g) =
∫

S

[P̃(Dy,n(y))ΓT(x − y)]Tg(y)dyS,

and the potential of volume

Z(3)(x, φ, Ω±) =
∫

Ω±

Γ(x − y)φ(y)dy,

whereΓ is the fundamental matrix of the operatorA(Dx), the operator̃P is defined by (25),g andφ are four-
component vector functions.

The basic properties of thermoviscoelastopotentials are given in the following theorems.

Theorem 11.If S ∈ C2,ν , g ∈ C1,ν0(S), 0 < ν0 < ν ≤ 1, then:
a)

Z(1)(∙,g) ∈ C0,ν0(R3) ∩ C2,ν0(Ω̄±) ∩ C∞(Ω±),

b)
A(Dx)Z(1)(x,g) = 0, x ∈ Ω±,

c)

{P(Dz,n(z))Z(1)(z,g)}± = ∓
1
2

g(z) + P(Dz,n(z))Z(1)(z,g) (26)

andP(Dz,n(z))Z(1)(z,g) is a singular integral and understood as the principal value, wherez ∈ S.

Theorem 12.If S ∈ C2,ν , g ∈ C1,ν0(S), 0 < λ′ < λ0 ≤ 1, then:
a)

Z(2)(∙,g) ∈ C1,ν0(Ω̄±) ∩ C∞(Ω±),

b)
A(Dx)Z(2)(x,g) = 0, x ∈ Ω±,

c)

{Z(2)(z,g)}± = ±
1
2

g(z) + Z(2)(z,g) (27)

andZ(2)(z,g) is a singular integral and understood as the principal value, wherez ∈ S.
d)

{P(Dz,n(z))Z(2)(z,g)}+ = {P(Dz,n(z))Z(2)(z,g)}−.

Theorem 13.If S ∈ C1,ν , φ ∈ C0,ν0(Ω+), 0 < ν0 < ν ≤ 1, then:
a)

Z(3)(∙, φ, Ω+) ∈ C1,ν0(R3) ∩ C2(Ω+) ∩ C2,ν0(Ω̄+
0 ),

b)
A(Dx)Z(3)(x, φ, Ω+) = φ(x), x ∈ Ω+,

whereΩ+
0 is a domain inR3 and Ω+

0 ⊂ Ω+.

Theorem 14.If S ∈ C1,ν , suppφ = Ω ⊂ Ω−, φ ∈ C0,ν0(Ω−), 0 < ν0 < ν ≤ 1, then:
a)

Z(3)(∙, φ, Ω−) ∈ C1,ν0(R3) ∩ C2(Ω−) ∩ C2,ν0(Ω̄−
0 )
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b)
A(Dx)Z(3)(x, φ, Ω−) = φ(x) x ∈ Ω−

whereΩ is a finite domain inR3 and Ω̄−
0 ⊂ Ω−.

Theorems 11 to 14 can be proved similarly to the corresponding theorems in the classical theory of thermoelasticity
(for details see Kupradze et al., 1979).

6 Existence Theorems

In this section we establish the existence of regular solutions of the BVPs(I)+F,f , (I)−F,f , (II)+F,f , (II)−F,f by means
of the potential method and the theory of 2D singular integral equations.

By Theorems 13 and 14 the volume potentialsZ(3)(x,F, Ω+) andZ(3)(x,F, Ω−) are regular solutions of Eq. (8)
in Ω+ andΩ−, respectively, whereF ∈ C0,ν0(Ω±), 0 < ν0 ≤ 1 and suppF is a finite domain inΩ−. Therefore,
further we will consider BVPs(K)+0,f and (K)−0,f for K = I, II.

Problem (I)+0,f . We seek a regular solution to BVP(I)+0,f in the form of potential of double-layer

U(x) = Z(2)(x,g) (28)

for x ∈ Ω+, whereg is the required four-component vector.

Obviously, by Theorems 12 the vectorU is a solution of homogeneous equation

A(Dx)U(x) = 0 (29)

for x ∈ Ω+. Keeping in mind the boundary condition

{U(z)}+ = f(z) for z ∈ S

and using Eqs. (27) and (28) we obtain the singular integral equation

K(1)g(z) ≡
1
2

g(z) + Z(2)(z,g) = f(z) for z ∈ S, (30)

whereK(1) is a singular integral operator of the normal type andindK(1) = 0. Therefore, the Fredholm’s theorems
are valid for Eq. (30).

Now we prove that the adjoint homogeneous equation of (30)

K(2)h0(z) ≡
1
2

h0(z) + P(Dz,n(z))Z(1)(z,h0) = 0 for z ∈ S (31)

has only a trivial solution. Indeed, leth0 be a solution of the homogeneous Eq. (31) andh0 ∈ C1,ν0(S). Then the
vectorV defined by formula

V(x) = Z(1)(z,h0) for x ∈ Ω− (32)

is a regular solution of problem(I)−0,0. Using theorem 10, the problem(I)−0,0 has only the trivial solution, that is

V(x) = 0 for x ∈ Ω−. (33)

Therefore, vectorV is a regular solution of problem(I)+0,0. Using Theorem 9, the problem(I)+0,0 has only the
trivial solution, that is

V(x) = 0 for x ∈ Ω+. (34)

On other hand, by Eq. (32) from (26) we get

{P(Dz,n)V(z)}− − {P(Dz,n)V(z)}+ = h0(z) for z ∈ S. (35)

On the basis of Eqs. (33) and (34) from (35) we haveh0(z) = 0 for z ∈ S. Thus the homogeneous Eq. (31)
has only a trivial solution and therefore, by virtue of the Fredholm’s theorems Eq. (30) is always solvable for an
arbitrary vectorf .
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We have thereby proved

Theorem 15. If S ∈ C2,ν , f ∈ C1,ν0(S), 0 < ν0 < ν ≤ 1, then a regular solution of the BVP(I)+0,f exists,
is unique and is represented by the potential of double-layer (28), whereg is a solution of the singular integral
equation (30) which is always solvable for an arbitrary vectorf .

Problem (II)−0,f . We seek a regular solution to BVP(II)−0,f in the form of potential of single-layer

U(x) = Z(1)(x,h) (36)

for x ∈ Ω−, whereh is the required four-component vector.

Obviously, by Theorem 11 the vector functionU is solution of Eq. (29) forx ∈ Ω−. Keeping in mind the boundary
condition

{P(Dz,n(z))U(z)}− = f(z) for z ∈ S

and using Eq. (26) we obtain the singular integral equation

K(2)h(z) = f(z) for z ∈ S. (37)

The homogeneous equation (31) has only a trivial solution and therefore Eq. (37) is always solvable for an arbitrary
vectorf .

We have thereby proved

Theorem 16. If S ∈ C2,ν , f ∈ C0,ν0(S), 0 < ν0 < ν ≤ 1, then a regular solution of the BVP(II)−0,f exists,
is unique and is represented by the potential of single-layer (36), whereh is a solution of the singular integral
equation (37) which is always solvable for an arbitrary vectorf .

Quite similarly we can prove the following theorems.

Theorem 17. If S ∈ C2,ν , f ∈ C1,ν0(S), 0 < ν0 < ν ≤ 1, then a regular solution of the BVP(I)−0,f exists, is
unique and is represented by the potential of double-layer (28) forx ∈ Ω−, whereg is a solution of the singular
integral equation

−
1
2

g(z) + Z(2)(z,g) = f(z) for z ∈ S

which is always solvable for an arbitrary vectorf .

Theorem 18. If S ∈ C2,ν , f ∈ C0,ν0(S), 0 < ν0 < ν ≤ 1, then a regular solution of the BVP(II)+0,f exists, is
unique and is represented by the potential of single-layer (36) forx ∈ Ω+, whereh is a solution of the singular
integral equation

−
1
2

h(z) + P(Dz,n(z))Z(1)(z,h) = f(x) for z ∈ S

which is always solvable for an arbitrary vectorf .

Remark 2. On the basis of theorems 5 to 8 we can construct the viscoelastopotentials and prove the uniqueness
and existence of regular solutions of the basic 3D BVPs of steady vibrations in the linear theory of viscoelasticity
fot Kelvin-Voigt materials by using the potential method and the theory of singular integral equations.

Remark 3. By the potential method it is possible to investigate 3D BVPs in the modern theories of viscoelasticity
and thermoviscoelasticity for Kelvin-Voigt materials with microstructure.
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