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Potential Method in the Linear Theories of Viscoelasticity and
Thermoviscoelasticity for Kelvin-Voigt Materials

M. M. Svanadze

In this paper the basic boundary value problems (BVPs) of steady vibrations in the linear theories of viscoelasticity
and thermoviscoelasticity for Kelvin-Voigt materials are considered and some basic results of the classical theories
of elasticity and thermoelasticity are generalized. The fundamental solutions of systems of equations of steady vi-
brations are constructed. The radiation conditions and basic properties of fundamental solutions are established.
The properties of potentials of single-layer, double-layer and volume are given. The unigueness theorems of the
internal and external basic BVPs are established. Finally, the existence theorems for the internal and external
basic BVPs are proved by means of the potential method and the theory of singular integral equations.

1 Introduction

Viscoelastic materials play an important role in many branches of engineering, technology and, in recent years,
biomechanics (see Lakes, 2009). Viscoelastic materials, such as amorphous polymers, semicrystalline polymers,
and biopolymers, can be modeled in order to determine their stress or strain interactions as well as their temporal
dependencies. The study of viscoelastic behavior in bone is of interest in several contexts. Bone is hierarchical
solid that contains structure at multiple length scales. Study of bone viscoelasticity is best placed in the context
of strain levels and frequency components associated with normal activities and with applications of diagnostic
tools (for details, see Lakes, 2009). The investigations of the solutions of viscoelastic wave equations, velocities
of seismic wave propagating and the attenuation of seismic wave in the viscoelastic media are very important for
geophysical prospecting technology.

The theories of viscoelasticity, which include the Maxwell model, the Kelvin-Voigt model, and the Standard Lin-
ear Solid model, are used to predict a material’'s response under different loading conditions. One of the simplest
mathematical models constructed to describe the viscoelastic effects is the classical Kelvin-Voigt model (see Erin-
gen, 1980). The basic idea concerning this model is that the stress is dependent on the deformation tensor and
deformation-rate tensor. This model consists of a Newtonian damper and Hooke’s elastic spring connected in
parallel.

The modern theories of viscoelasticity and thermoviscoelasticity for materials with microstructure have become a
subject of intensive study in recent years. The classical Kelvin-Voight model by using a mixture consisting of a
porous elastic solid and viscous fluid is generalized by lesan (2004). The linear theory of porous thermoviscoelastic
mixtures has been presented by lesan and Quintanilla (2007). The linear theories of viscoelasticity and thermo-
viscoelasticity of binary mixtures where the individual components are modeled as Kelvin-Voight viscoelastic
materials are developed by Quintanilla (2005) and lesan and Nappa (2008).

In this paper the basic BVPs of steady vibrations in the linear theories of viscoelasticity and thermoviscoelasticity
for Kelvin-Voigt materials are considered and some basic results of the classical theories of elasticity and thermoe-
lasticity (see Kupradze et al., 1979) are generalized. The fundamental solutions of systems of equations of steady
vibrations are constructed. The radiation conditions and basic properties of fundamental solutions are established.
The properties of potentials of single-layer, double-layer and volume are given. The uniqueness theorems of the
internal and external basic BVPs are established. Finally, the existence theorems for the internal and external basic
BVPs are proved by means of the potential method and the theory of singular integral equations.

The potential method makes it possible to investigate three-dimensional problems not only of classical theory of
elasticity, but also problems of the theory of elasticity with conjugated fields. The main results obtained in this
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area are presented in Kupradze et al. (1979). An extensive review of works on the potential method can be found
in Gegelia and Jentsch (1994).

2 Basic Equations

Letx = (z1,22,23) be a point of the Euclidean three-dimensional spRéeand D, = (8%1, 3%27 8%3). We
consider an isotropic homogeneous viscoelastic Kelvin-Voigt material that occupies theQexgi®i. We assume
that the subscripts preceded by a comma denote partial differentiation with respect to the corresponding Cartesian

coordinate and repeated indices are summed over the range (1,2,3).

The fundamental system of field equations in the linear theory of thermoviscoelasticity for Kelvin-Voigt material
consists of the equations of steady vibrations (see Eringen, 1980)

tij; = —pwu + FY), (1)

the equation of balance of energy
—wlppn=q+pFo, (2)

the constitutive equations
ti; = M eppOyj + 2u1 €5 — 706y,

pn="7yer+ab, 3)
q=Fko,,
and the geometrical equations
%:%Wm+%m 4)

whereu = (uq, ug, us3) is the displacement vectdtjs the deviation from a constant reference temperaljire 0,

t;; ande;; are the components of stress and strain tensors, respediively 1,2,3); F' = (FY, Fy, Fy) is the
body force,F} is the heat supply is the entropy per unit masg, is the heat fluxp is the reference mass density
(p > 0), w is the oscillation frequencfw > 0),

A= A —iwA*, 1 = p— dwp”.

Here\, p and\*, p* are the Lam and viscosity constants, respectively% and-~y are the constitutive coeffi-
cients.

Substituting equations (3) and (4) into (1) and (2), we obtain the following system of steady vibrations equations of
the linear theory of thermoviscoelasticity for Kelvin-Voigt material expressed in terms of the displacement vector
u and the temperatuie

w1 Au+ (A + pp) graddivu — ygrad 0 + pw?u = —pF',
®)
(kA 4 ag) 0 + yodiva = —p Fy,

whereA is the Laplaciangg = iwa, 79 = iwy Ty. Obviously, (5) is a system of PDEs with complex coefficients
containing 10 real parameters.

We assume that

*

gt >0, 3\ 4+2u°>0, k>0, a>0. (6)

In the isothermal case from (5) we obtain the system of equations of steady vibrations in the linear theory of
viscoelasticity for Kelvin-Voigt material (see Eringen, 1980)

p1 Au+ (A + pp) graddiva + pw’u= —pF'. @)

We introduce the matrix differential operators

A(Dx) = (Ap(Dx)) gy AVD) = (47 (D),
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where

2

dx,0x;’

Aij(Dx) = Al(;)(Dx) = (A + PW2)5Ij + (M 4+ 1)

0 0
—7%7 A41(Dx) = 70(97551’

andJ;; is the Kronecker delta. The systems (5) and (7) can be written as

Al4(Dx) = A44(Dx) = kA + ap, l,] = 1,2,3

A(Dx)U(x) = F(x), ®)
and
AV (Dy)u(x) = —pF'(x),
respectively, wher&®J = (u,0), F = (—pF’, —pF;) andx € Q.

3 Fundamental Solutions

In Kupradze and Burchuladze (1969), the fundamental solution of equations of steady vibrations in the classical
theory of thermoelasticity has been presented. In this section the fundamental solution of the system of equations
of steady vibrations in the linear theory of thermoviscoelasticity is constructed using a simple method like in the
classical theory of thermoelasticity.

Definition 1. The fundamental solution of the system (5) (the fundamental matrix of opeAgte the matrix
T (x) = ([yq (x)),,, satisfying (in the class of generalized functions) the following equation

A (Dx)T (%) =6 (x)J, 9)

whered is the Dirac deltaJ = (J,,),. , is the unit matrix, anc € R?.

4x4

In this section the matriX" (x) is constructed in terms of elementary functions and some basic properties are
established.

We consider the system of nonhomogeneous equations

p1 Au+ (A + py) graddivu + o grad 6 + pw?u = G/,
(10)
(kA4 ag) 8 —ydivu = Gy,

whereG’ is three-component vector function a6 is scalar function om??. As one may easily verify, system
(10) may be written in the form
AT (D,) U (x) = G (x), (11)

whereAT” is the transpose of matriA, G = (G’,Gy) is four-component vector function ai® andx € R3.
Applying the operator div to Egs. (10jrom system (10) we obtain

o Adivu + 9 Af =divG/,

(12)
(kA + ag) 0 — ydivu = Gy,
wherepy = A1 + 2. The system (12) implies
Al(A) divu = ‘1)1, A1 (A) 0= (I)Q, (13)
whereA; (A) = (A + 72)(A + 73); 72 andr$ are the roots of equation (with respectip
(poT — pw?) (kT — ag) =y 7 =0
and L
b, =— [(]{A + (10) divG’ — ’)/QA Go] R
Ko
(14)
(I)Q = — [’7 div G/ + (MoA + pw2) Go} .
ko
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Applying the operaton; (A) to (10); and taking into account (13), we obtain

As(A)u =, (15)
2 2 PWQ
whereA;(A) = A1 (A) (A +75), 75 = o and
1
1
o= o [A1(A) G — (A1 + p1) grad 1 — o grad ®s] . (16)

On the basis of (13) and (15) we get 5
AAU (x) = @ (x), a7

where® = (&, ®,) is the four-component vector add A) is the following diagonal matrix

A(A) = (Apg (D)) A1 (A) = A2 (A) = A33 (A) = A2 (A),

4x4

A (A) =AM (D),  Ap(A)=0, p¢g=1,234  p#q.

In view of (14) and (16) the vectab we can written in the form

P (x) = LT (D,) G (x), 18)
where
1 0
L = (Lpg) s Lij (Dy) = o Epo A1 (A)d; — [(A1 + pa) (BA + ag) + v70] oz,0x; |
v 0 g0 2, 0
Liu(Dy) = -,  Ly(Dy)=-— A . 19
1 ( ) T oz, 4l ( ) Ko (,Ul + pw )8901 (19)

1 .
Lis (Dx) = kTm(’““JA +p0?),  1,j=1,23.

By virtue of (11) and (18) from (17) it follows thatU = L7 AT U. It is obvious thatL” AT = A and, hence,
A (Dx)L(Dx) =A(A). (20)

We assume that? # 77 # 72 # 2. Let

3
Y (%) = (Vg () gnes>  Yi1 (%) =Yoo (x) = Yag (x) = >_mih; (%),
j=1

(21)
1
Y44 (X) = m [hl (X) - h’2 (X)] ) 5/}111 (X) = 07 b,q = 17 27374a p 7& q,
2 1
where
1 it x| - 2 2\ —1
h;(x)=— e'mixl n; = T —T; , j=1,2,3.
J ) A7 ‘X| J lzg;éj ( l J )
Itis easily to see tha is the fundamental matrix of operatdr(A) , that is
AA)Y (x) = 0(x)d. (22)
We introduce the matrix
I'x) =L(D,)Y(x). (23)

Using identity (20) from (22) and (23) we obtain
A(D)T(x) = A(Dx)L(Dx) Y (%) = A (A) Y (x) = 6(x)J.

Hence, the matriX'(x) is a solution to (9) and is constructed by elementary functiong, andhs. We have
thereby proved the following theorem.
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Theorem 1. The matrixI'(x) defined by (23) is the fundamental solution of system (5), wii€i8_ ) andY (x)
are given by (19) and (21), respectively.

In the follows we assume that 7; > 0, j = 1,2, 3,4. The theorem 1 leads to the following results.
Theorem 2. Each column of the matrif (x) is a solution of system (5) at every poiate R* except the origin.

Theorem 3.The relations

P60 =0 (1<), Grmgamga T (0 =0 (™)

hold in a neighborhood of the origin, whetgj = 1,2,3,4, m = my + mo + m3, m > 1.

Theorem 4.The relations
Ty (x) =e ™™o (x|
hold in a neighborhood of the infinityx| > 1) , wherery = min {Im7;, j =1,2,3,4} >0, [,j =1,2,3,4.

Quite similarly we can construct the fundamental solution of system (7) (fundamental matrix of opef&for
and establish basic properties. We have the following results.

Theorem 5. The matrixI'(") (x) defined by

r0x) = (1} ()

b
3x3

(1) 1 2 M+ 9
Iy =—— (A 8 — h —h
l]@>lmﬁ_ﬁﬂ<+u>m v g | e (0) = ha ()
is the fundamental solution of system (7), where
1 . pw?
ha(x) = ———e'mxl 2=
1) dm|x| * Ho

Theorem 6. Each column of the matriX (") (x) is a solution of system (7) at every poirte R except the
origin.

Theorem 7. The relations
M) oy _ -1 om 1) jon “1-m
) =0 (X)), g 69 =0 (K7 7)
hold in a neighborhood of the origin, whetej = 1,2,3, m = my + ms +m3, m > 1.

Theorem 8. The relations o

I (x) = e Mo (jx|7h)
hold in a neighborhood of the infinityx| > 1) , wherelmr, > 0, r(gl) = min{Im7s, Im7y} > 0, I,j =
1,2,3,4.

4 Boundary Value Problems. Unigueness Theorems

Let S be the closed surface surrounding the finite donairin R3, S € C?¥, 0 <v <1, QT = QTUS, Q-
R3\QT.

Definition 2. A vector functionU = (Uy, U, Us, Uy) is called regular if2~ (or QF) if
1
U eC*(Q)ynct(Q) (or U, € C?(QT)nCH(OQT)),

2)
3 . . . .
U=>10 =@ u v v,
j=1

U e cxQ-)nclQ),
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3) _
(A+ TJ«Q)UZ(J)(X) =0

and
0

(Ol
whereU!¥ = 0andj =1,2,3, 1 =1,2,3,4.

— i) U (x) = e o(x|7Y) for x| > 1, (24)

Equalities in (24) are Sommerfeld-Kupradze type radiation conditions in the linear theory of thermoviscoelasticity
for Kelvin-Voigt materials.

In the sequel we use the matrix differential operators

1)
PODen) = (P (Deions, P (Do) = pudiy - + oy + Alma(zj7
2)
P(Dy,n) = (P;(Dx,n))axs,  Py(Dx,m) = B (D),
0
Pi4(Dy,n) = —yny, Pyi(Dy,n) =0, Py4(Dy,n) = kain’
3)

P(Dy,n) = (P;(Dx,n))axs,  Pj(Dx,n) = P;(Dy,n),  Pu(Dx,n) = —yomn,
3 . (25)
Py;(Dy,n) =0, Pys(Dy,n) = Py(Dy,n),

. . 0 . o
wheren = (n1,n9,n3) is the unit vector,(9 is the derivative along the vectarandi,j = 1,2, 3.
n

Remark 1. The matrix differential operatd (") (D, n) is the stress operator in the linear theory of viscoelasticity
for Kelvin-Voigt materials (see Eringen, 1980).

The basic internal and external BVPs of steady vibration in the linear theory of thermoviscoelasticity for Kelvin-
Voigt materials are formulated as follows.

Find a regular (classical) solution to system (8)foe Q" satisfying one of the following boundary conditions
li Uix)={U(z)} " =f
Goim U = (U@} = ()

in the Problen() ., and

{P(D;,n(2))U(2)} " = f(2)
in the Probler(/1)f ;.
Find a regular (classical) solution to system (8)%o€ (2~ satisfying one of the following boundary conditions
lim U(x)={U(z)}” =1(z)
Q—>x— zE€S

in the Problem(/)z ¢, and

{P(Dz,n(z2))U(z)}~ =f(z)
in the ProbIem(II)l;’f, where F andf are the four-component known vector functions, andp F is a finite
domain inQ2~.

We have the following results (uniqueness theorems).

Theorem 9. If condition (6) is satisfied, then the internal BYR'){: ; admits at most one regular solution, where
K=11I

Theorem 10.1f condition (6) is satisfied, then the external BVR ), ; admits at most one regular solution, where
K=11I
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5 Basic Properties of Potentials

In this section we present the basic properties of thermoviscoelastopotentials. We introduce the potential of single-
layer

Z0(x.8) = [ T(x—y)g(y)dyS,
S
the potential of double-layer

Z®)(x,) = [ [P(Dy.n(y)T™ (x )8 (5)dy S,
S
and the potential of volume

73 (x, ¢, 0F) = /F(x—y)¢(y')dy,
O

whereT is the fundamental matrix of the operata(Dy ), the operatolP is defined by (25)g and¢ are four-
component vector functions.

The basic properties of thermoviscoelastopotentials are given in the following theorems.

Theorem 11.If S € C?¥, g € C1(S), 0 < vy < v < 1, then:

a)
ZW (., g) € CO(R?) N C?7(QF) nC=(Qh),
b)
AD,)ZM(x,g) =0, xe€QF
c)

1
{P(D.n(2) 2" (2.8)}* = F 5 8(2) + P(D.n(2)) 2V (z.g) (26)
andP(D,, n(z)) Z(U(z, g) is a singular integral and understood as the principal value, wher§.

Theorem 12.If S € C?V, g € C10(S), 0 < N < Ao < 1, then:

a)
Z(.,g) € CH(QF) NC™(QF),
b)
AD)Z?(x,8) =0, xeF
0)

(Z0(2,8))* = % L g(z) + Z7(s.8) (27)
andZ®(z, g) is a singular integral and understood as the principal value, wher§.

d)
{P(D,,n(2) 2% (2,g)}" = {P(D,,n(2)) 2" (z,g)} .

Theorem 13.If S € CtV, ¢ € CO(QF), 0 < vy < v < 1, then:
a)
23 (-, $,Q%) € CV(RP) N C2(QT) N CP (),
b)
AD,)Z¥(2,4,0) = p(x), x€Q,

where() is a domain ink? and Qf c Q.
Theorem 14.1f S € C17, suppp =Q C Q~, ¢ € CO(Q7), 0 < vy < v < 1, then:

a)
ZG3) (., Q7) € CY(R¥) N C2(Q7) N C270(Qy)
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b)
ADOZY(x,0,97) = p(x) xeQ”

where( is a finite domain in?3 and Q; C Q.

Theorems 11 to 14 can be proved similarly to the corresponding theorems in the classical theory of thermoelasticity
(for details see Kupradze et al., 1979).

6 Existence Theorems

In this section we establish the existence of regular solutions of the BNRS, (I)g ¢, (I1)f ¢, (I1)5 ¢ by means
of the potential method and the theory of 2D singular integral equations.

By Theorems 13 and 14 the volume potent@l® (x, F, Q1) andZ®) (x, F, Q™) are regular solutions of Eq. (8)

in Q* andQ~, respectively, wher& € C%(Q%), 0 < vy < 1 and supp F is a finite domain irf2~. Therefore,
further we will consider BVPs(K)af and (K)q¢ for K =1,11.

Problem (I)ajf. We seek a regular solution to B\,(H’)af in the form of potential of double-layer

U(x) = 2%(x,g) (28)
for x € QT, whereg is the required four-component vector.
Obviously, by Theorems 12 the vecfOris a solution of homogeneous equation

AD,)UX) =0 (29)
for x € Q7. Keeping in mind the boundary condition

{U(z)} =f(z) for ze S

and using Egs. (27) and (28) we obtain the singular integral equation

KWg(z) = = g(z) + Z?(z,g) = f(z) for ze S, (30)

N | =

wherek (") is a singular integral operator of the normal type antiC(!) = 0. Therefore, the Fredholm’s theorems
are valid for Eq. (30).

Now we prove that the adjoint homogeneous equation of (30)

K®hg(z) = = ho(z) + P(D,,n(z) ZV(z,hy) =0  for z€ S (31)

N | =

has only a trivial solution. Indeed, I&f, be a solution of the homogeneous Eq. (31) Agds C**0(S). Then the
vectorV defined by formula
V(x) = ZW(z,hy) for x €N (32)

is a regular solution of problerfY), ,. Using theorem 10, the proble(#), , has only the trivial solution, that is
Vx)=0 for xe . (33)
Therefore, vectoV is a regular solution of problerfy) . Using Theorem 9, the proble(‘ﬂ){;0 has only the
trivial solution, that is
V(x)=0 for xe Q. (34)
On other hand, by Eq. (32) from (26) we get
{P(D,,n)V(z)}” — {P(D,,n)V(z)}" = hy(2) for zcS. (35)

On the basis of Egs. (33) and (34) from (35) we hayé¢z) = 0 for z € S. Thus the homogeneous Eqg. (31)
has only a trivial solution and therefore, by virtue of the Fredholm’s theorems Eq. (30) is always solvable for an
arbitrary vectof.
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We have thereby proved

Theorem 15.1f S € C*¥, £ € C*(S), 0 < vy < v < 1, then a regular solution of the BVA ) ; exists,
is unique and is represented by the potential of double-layer (28), vghiye solution of the singular integral
equation (30) which is always solvable for an arbitrary ve€tor

Problem (1), ;. We seek a regular solution to BVRI), ; in the form of potential of single-layer
U(x) = ZW(x,h) (36)
for x € Q~, whereh is the required four-component vector.

Obviously, by Theorem 11 the vector functibhis solution of Eq. (29) fox € 2~. Keeping in mind the boundary
condition
{P(D,,n(z))U(z)}~ =f(z) for ze S

and using Eq. (26) we obtain the singular integral equation
K®h(z) = f(2) for zeS. (37)

The homogeneous equation (31) has only a trivial solution and therefore Eq. (37) is always solvable for an arbitrary
vectorf.

We have thereby proved

Theorem 16.1f S € C?¥, f € C%"(S), 0 < vy < v < 1, then a regular solution of the BVHI), ¢ exists,
is unique and is represented by the potential of single-layer (36), whée solution of the singular integral
equation (37) which is always solvable for an arbitrary vedtor

Quite similarly we can prove the following theorems.

Theorem 17.1f S € C*¥, f € C'°(S), 0 < 1y < v < 1, then a regular solution of the BVH),, ; exists, is

unigue and is represented by the potential of double-layer (28 for2~, whereg is a solution of the singular

integral equation

1
2 g(z) + Z? (z,g) = f(2) for ze€ S

which is always solvable for an arbitrary vecfor

Theorem 18.1f S € C?¥, f € C°*(S), 0 < vy < v < 1, then a regular solution of the BVAI) ; exists, is

unique and is represented by the potential of single-layer (36} fer2™, whereh is a solution of the singular
integral equation

1

5 h(2) + P(Dy.n(2)) ZW(z,h) =f(x) for z€S
which is always solvable for an arbitrary vectér
Remark 2. On the basis of theorems 5 to 8 we can construct the viscoelastopotentials and prove the uniqueness
and existence of regular solutions of the basic 3D BVPs of steady vibrations in the linear theory of viscoelasticity
fot Kelvin-Voigt materials by using the potential method and the theory of singular integral equations.
Remark 3. By the potential method it is possible to investigate 3D BVPs in the modern theories of viscoelasticity
and thermoviscoelasticity for Kelvin-Voigt materials with microstructure.
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