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On the Linear Theory of Thermoelasticity with Microtemperatures

M. Svanadze

In the present paper the linear theory of thermoelasticity with microtemperatures is considered. A wide class of
external boundary value problems (BVPs) of steady vibrations is investigated. Sommerfeld-Kupradze type radia-
tion conditions and the basic properties of thermoelastopotentials are established. The uniqueness and existence
theorems of regular solutions of the external BVPs are proved using the potential method and the theory of singular
integral equations.

1 Introduction

In recent years several continuum theories with microstructure have been formulated (see, Eringen, 1999; lesan,
2005). A thermodynamic theory for elastic materials with inner structure the particles of which, in addition to
microdeformations, possess microtemperatures was proposed by Grot (1969). Thermodynamics of a continuum
with microstructure was extended in that it is assumed that the microelements have different temperatures. To
describe this phenomenon the concept of microtemperatures was introduced. The microtemperatures depend ho-
mogeneously on the microcoordinates of the microelements.

Riha (1975, 1976) developed a theory of micromorphic fluids with microtemperatures. The linear theory of ther-
moelasticity with microtemperatures for materials with inner structure the particles of which, in addition to the
classical displacement and temperature fields, possess microtemperatures was studied by lesan and Quintanilla
(2000). The fundamental solution of the equations of the theory of thermoelasticity with microtemperatures is
constructed by Svanadze (2004a). The representations of Galerkin type and general solutions of the equations of
dynamic and steady vibrations in this theory have been obtained by Scalia and Svanadze (2006). The BVPs of the
steady vibration are considered by Svanadze (2003) and Scalia and Svanadze (2009). The exponential stability of
solution of equations of the theory of thermoelasticity with microtemperatures has been established by Casas and
Quintanilla (2005). The basic theorems in the equilibrium theory of thermoelasticity with microtemperatures have
been proved by Scalia et al. (2010).

The theory of micromorphic elastic solids with microtemperatures is constructed by lesan (2001). The fundamen-
tal solutions of equations of this theory have been established by Svanadze (2004b). The existence and uniqueness
of solutions in the linear theory of heat conduction in micromorphic continua are established by lesan (2002).
Recently, the uniqueness theorems in the equilibrium theory of thermoelasticity with microtemperature for mi-
crostretch materials have been proved by Scalia and Svanadze (2012).

The investigation of BVPs of mathematical physics by the classical potential method has a hundred year history.
The application of this method to the 3D BVPs of the theory of elasticity reduces these problems to 2D singular
integral equations (see Kupradze et al., 1979). Owing to the works of Mikhlin (1965), Kupradze and his pupils (see
Kupradze, 1965; Kupradze et al., 1979; Burchuladze and Gegelia, 1985), the theory of multidimensional singular
integral equations has presently been worked out with sufficient completeness. This theory makes it possible to
investigate 3D problems not only of the classical theory of elasticity, but also problems of the theory of elasticity
with conjugated fields. An extensive review of works on the potential method can be found in Gegelia and Jentsch
(1994).

The radiation conditions played an essential role in the external problems of vibrations. As is known (see Kupradze
et al., 1979; Burchuladze and Gegelia, 1985) these conditions guarantee uniqueness of the solution of the consid-
ered problems for an infinite domain. The radiation conditions for the Helmholz equation were formulated by
Sommerfeld (1912) and proved mathematically by Kupradze (1934) and Vekua (1943). The modern situation con-
cerning the radiation conditions for various elastic media with conjugated fields is expounded in Kupradze et al.
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(1979) and Burchuladze and Gegelia (1985).

In the present paper the linear theory of thermoelasticity with microtemperatures is considered (see lesan and
Quintanilla, 2000). A wide class of external BVPs of steady vibrations are investigated. Sommerfeld-Kupradze
type radiation conditions and the basic properties of thermoelastopotentials are established. The uniqueness and
existence theorems of regular solutions of the external BVPs are proved using the potential method and the theory
of singular integral equations.

2 Basic Equations

We consider an isotropic elastic material with microstructures which occupies the fegidhe Euclidean three-
dimensional spac&®. Letx = (z1,z2, z3) be a point ofR? andD, = (-2, -2, -2-).

0301 ? 0:627 OCE';

The system of equations of steady vibrations in the linear theory of thermoelasticity with microtemperatures has
the following form (see lesan and Quintanilla, 2000)

pwAu+ (X + ) grad div u — 3 grad 0 + p w? u = —pN,
ke Aw + (kg + ks5) grad div w — k3 grad 0 4 (iw b — ko)w = p M, (1)
(kA+iwaTp) 0 +iw BTy diva+ky divw = —p s,

whereu = (ug,usq,us) is the displacement vectow = (wq, wq,ws) is the microtemperature vectdt,is the
temperature measured from the constant absolute tempef@tu(@, > 0), p is the reference mass density
(p > 0), N = (N7, Ny, N3) is the body forceM = (M, My, M3) is first heat source moment vecteris the
heat supplyA is the Laplacean), 1, 3,a,b, k, k1, ko, - - -, k¢ are constitutive coefficients; = v/—1, and w is
the oscillation frequenciw > 0).

We will suppose that the following assumptions on the constitutive coefficients hold (see Grot, 1969; lesan and
Quintanilla, 2000):
w>0, 3\ +2u >0, a >0, b>0, k>0,

2
3ky + ks + ke > 0, ke £ ks >0, (k’1 + kgTo)Q < 4Tokks. @

We introduce the notation
= A+ 2u, ag = wwalp, Bo = iwiBTy,
ky = ky + ks + ke, ks = iwb — ko. ®)

Obviously, from Egs. (2) and (3) we have

Ap=3[BA+2u)+p] >0,  po>0,

ke = 3[(ke + ks) + (ks — ks)] > 0,

kr = %[(3ks + ks + ke) + 2(ke + ks)] > 0, (4)

ka+ ky = 2(3ka + ks + ke) + 5 (ks + k¢) > 0,

2kgkr — ksky + kake = kr(ke — ks5) + ke(ka + k7) > 0

We introduce the matrix differential operator
2

8%[81‘]'7

A<DX> = (qu(DX)>7><7a Alj(DX) = (NA + Pw2>5lj + O‘ + M)

Al;j+3(DX) = Al+3;j (DX) =0, Al?(DX) = 7/837371

2
Al+3;j+3(Dx) = (kﬁA + ks)(slj + (k‘4 + k‘5)

ox lafL‘j’
Aprsr(Dy) = —ks—2—,  An(Dy) = 3
1+3;7 x) — 3 8x 7l 0> afﬂl
0
Az443(Dy) = kl@ A77(Dx) = kA + ao.
)
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The system (1) can be written as
A(Dy)U(x) = F(x), (5)

whereU = (u,w, §), F = (—pN, pM, —ps) andx € Q.

3 Boundary Value Problems

Let S be the closed surface surrounding the finite donfainin R, S € C*%, 0 < Ao < 1, Ot = QT U
S, Q- = R3\Q*; Q, andS, are denoted the sphere and boundary of the sphere of radiitis the center at the
origin, respectively. The scalar product of two vectgrs- (o1, @2, -, @) andyp = (1,9, - -, 4¢;) is denoted

l _ _
by -9 = > ¢;1,, wherey; is the complex conjugate af;.
J=1

We introduce the notation

1 ,qu + pr 0 — ﬂA
A(A) = ok det 0 k7 A + kg — ksA . (6)
Hok7 Bo k1 kA+ao /.,

Itis easily seen that
A(D) = (A + 2D (A +X3)(A +A3),

where)?, A3, \2 are the roots of the equatiog—¢) = 0 (with respect tc).
o pw? o _ ks
Let \; = — and\; = —. We assume that
Ho ke

Im\; >0  (j=1,2,3,5), As>0. @)

Definition. A vector functionU = (Uy, U, - - -, Uz) is called regular if2~ (or Q) if

1)
U €C*Q)ncH(Q) (or Uy € C*(QT)nCH(QM)),
2)
5 . . .
U= Z U(j)7 U(j) = (Ul(])aUQ(J)v"'7U’§]))7
Jj=1
U e cr-)ncl (@),
3) ‘
(A + 207 (x) =0 ®)
and 5
(m _ i/\j)Ul(j)(x) _ ei/\jlx\o(|x|—1) for x| > 1, )

whereU)) = U, =uW =Uu®) —0andm =1,2,3, j=1,2,---,5, 1 =1,2,---, 7.

m

Equalities in (9) are Sommerfeld-Kupradze type radiation conditions in the linear theory of thermoelasticity with
microtemperatures.

Remark 1. The Equations (8) and (9) imply (see Vekua, 1943)
UD(x)=eX¥o(x]™)  for  [x|>1  (j=1,2,---,5  1=1,2---,7). (10)
In the sequel we use the matrix differential operators

1)

AM(Dy) = (A (Dy))sxs, A (Dx) = Aj(Dx),  Af (D) = Arys,i+3(Dx),
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2)
PO (D, n) = (P (Dyx,1))33.
) _ e 0 9 9 _ s 0 9 ,
Pl_] (Dx7 1'1) - Mél] on + Mnj 8."1}1 + )\nl axj - M(Sl] on + (>\ + [J,)nl 8$J + MMZ]’

(2) 0 0 0 0 0
P (D = . — — - = N )Ny —— ,
1 (Dx,n) = kgdy; n + ksn; 2, + kany oz, ke0y; 0 + (kg + ks)ny oz, + ks Myj,

P(Dx,n) = (P;;(Dx,n))7x7,

Pj(Dx,n) = P’ (Dx,n),  Psjis(Dx,n) = B (Dy,n),

J

Pn(Dx, n) = —fny, P7:,l+3(DXa n) = king,
1o}

Pr7(Dy,n) = k%, Pijy3=P3;=Py37r=Py=0,
P(D}U n) = (f)lj (Dx7 n))7><77
Pj(Dx,n) = Pj(Dy,n), Piys;j+3(Dx,n) = Pis;ji3(Dx,n), 1)
Pr7(Dx,n) = — 0o ny, Pr3(Dy,m) = kzny,
Pr7(Dx,n) = Pr7(Dy,n), Puji3=Pi3j=Pysr =Py =0,

. . o0 . L 0 0
wheren = (n1, n2, n3) is the unit vector—— is the derivative along the vectay M;; = nj— —nj—, m =
on Ox; ox;

1,2andl,j =1,2,3.

The external BVPs of steady vibration in the linear theory of thermoelasticity with microtemperatures are formu-
lated as follows.

Find a regular (classical) solution to system (5)#o€ 2~ satisfying one of the following boundary conditions
lim U(x)={U(z)}” =f(z)
Q- >5x— zeS

in the Problem(/) ,

in the Problem(/1)g ¢,

{u@)}” =tY@), {w@)} =P, {a@) n@)} =fi(2
in the Problem(/11])g ,

{u@)} =tV@), (PP Dun@)w@)} =), {02} = f(2)
in the Problem(/V)g ¢,

{u@)}” =fV(z), {(PPD.n)w)} =), {a@) n@)} = f(2)
in the Problem(V)g ¢,

{PYD,n(@)u(z)} =tV(@), {w@)} =), {0@)} = fi(2)
in the Problem(V 1) ¢,

{PYD, n@)u@)}" =tP(=), {w@)} =f%@), {a) @)} =f(@
in the Problem(V I1)g ¢,

{PY(Dy,n(2)uz)}” =tV (), (PP (Dyn()w(z)} =@, {0z} = fi(2)

in the PrObIem(VIII)I:f’ Whereq n = kgj +kw- n, f(l) = (flaf?vf?))a f(Z) - (f47f57f6)7 f =
’ n

(f1, f2,- -+, f7); F andf are the seven-component known vector functions,sapg F is a finite domain irf2~.
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4 Uniqueness Theorem

In this section we prove uniqueness of regular solutions of external boundary value prob)gms(/!)g ¢, - -
(VII)g ;.

i

We introduce the notation

3 3 2
1 . ou; 8ul 1 ou;  Ou;
W) = -(3A+2u)|d 2 - =4 - — -
(u) 3( + 2p) |divul” + p ]21: o2, 8xj t3 Z du Oz, |
W3 (w) = (3k4+k5+k6) |div w/? + (kg — ks) |curl w|? (12)
P EO N AT o T U
AR DY |0z Oz 3 ory x| |
Lj=1;1#j l,j=1
In the sequel we use the following lemmas.
Lemma 1.If U is aregular solution to system
ADyx)Ux)=0 (13)

forx € QT, then

/ [TO W (w) + k|grad ] + (k1 + k3To) Re(w - grad 6) + ko T0|W|2] dx

> (14)

= Re/ [inO(P“)u — fn) -u+TyPPw.-w+q-nb|d,S.
S

Proof. The system (13) can be written as
AMD)u—Fgrad § +pw?u=0,
AP (D) w — k3 grad 0 + ksw = 0, (15)
(kA+a()) 0-’-5(] diVU-’-kl divw = 0.
On account of Egs. (15) from Green’s formulas (see Kupradze et al., 1979)
/ {A(l)(Dx) u-u+ W(l)(u)} dx = /P(l)u -ud,S,
o s
/ {A(z)(Dx) W W+ W(z)(w)} dx = /P(g)w -wd,S,
Qt s
_ ) 00
[A 66+ |grad 6] dx = [ ——0d,S,
on
o s
/ (grad @ - u + O divu) dx = /9n -udgS

Q+
it follows that

/ [W(l)(u) —pw?lu?-p Gdivﬁ} dx = / (P(l)u -0 Gn) -ud,S,

Qt S

/ [W(z) (W) — ks |w|® + ks grad 0 - w] dx = /P(z)w -wd,S, (16)
Qt S

/ [k |grad 6] — By divu 6 — ag|0]* + kyw - grad 6] dx = /q -n 0d,S.

Qt S
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Obviously, in view of (2) from Eq. (12) we have
W) >0,  WE(w) >0 17)

Keeping in mind (17) we obtain from Egs. (16) that

5Im/divu édx:lm/(P(l)u—ﬁen) cudy,S,
Q+ S

/ [W@(w) + ky [w|* + ksRe (grad 6 - w)} dx = RG/P(”W ‘WS, (18)
S

Qt

/[k|grad9|2+k1Re (w - grad 6)] derwﬂToIm/divu gdx:Re/q'nGsz.
o+

Q+ S

Finally, from Egs. (18) we obtain formula (14).

Lemma2.If U = (u,w,#) € C?(Q) is a solution of the system (13) farc ©, then

u(x) = 24: wix), wx)= Y wix), 0x) = i: 09 (x), (19)
j=1 j=1,2,3,5 =1
whereQ is a domain inkR?, andu), w) andg¥) satisfy the following equations
A+ (x)=0, (A+)w(x) =0, (20)
(A+A2)0M™(x) =0, m=123 j=123/4, [=123,5. (1)

Proof. Applying the operatodiv to the equations (15)and (153, from system (15) we get

(HoA + pw?) divu— B A6 =0,
(kA + kg) divw — kg A 6 =0, (22)
(kA+a0)9+ﬂ0 d1vu+k1 leW:()

From system (22) we have

A(A)diva =0, A (A)divw =0, A(A)§ =0, (23)
where the operatak is defined by (6).
Now, applying the operatak(A) to the equations (21)and (21), and using Eq. (29) we obtain

AA)(A+X)u=0, AA)(A+X)w=0. (24)

We introduce the notation:
4
u = J[ W =M A+A)u,  j=1,2,34,
=1
L#]
wm) = 11 A =XA)"HA+N)w, m=1,23,5,
1=1,2,3,5 (25)
l#£m
3
0P = T W -X)""A+A)0,  p=1,23,
| =
L#p
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Equation (19) can be easily obtained from Eqgs. (25). By Eqgs. (23) and (24), from (25) we obtain Egs. (20) and
(21).

Now let us establish the uniqueness of a regular solutions of BYRsS;, (I1)g ¢, (VIII)g ;.

Theorem 1.1f condition (2) is satisfied, then the external BVR)) . , admits at most one regular solution, where
K=1,II,---,VIII.

Proof. Suppose that there are two regular solutions of BXP}. ,. Then their differenc& corresponds to zero
data(F = f = 0), i.e. U is a regular solution of BVRK ) 4.

Let Q.. be a sphere of sufficiently large radiuso that)™ c Q,.. By virtue of homogeneous boundary condition
(f = 0), Eq. (20) for the domaif,. = 2~ N, can be rewritten as

/ [TO W@ (w) + k|grad ] + (k1 + k3Tp) Re (w - grad 0) + ks T0|W|2] dx

Q.

(26)
- Re/ [inO PO u—30n) utTHPPw -wiq- nﬂ} d,S.
Sy
From Eg. (26) we have
L= lim Re/ [ino POy —Fon)-ut+ToPPw wtq- nﬂ} 4,5, 27)
Sr
where
L= / [To W (w) + klgrad 0|2 + (k1 + ksTp) Re (w - grad 6) + ko T0|w|2] dx. (28)
G-
Obviously, by Egs. (2) and (17) it follows from Eq. (28) that
L>0. (29)
Keeping in mind relations (7) and (10) from (19) we obtain
u(x) = u®(x) + e X O(|x|71),
(%) (%) (%7 (30)

w(x) =e MO(x[7h),  0x)=eMO(x|7!)  for [x|> 1,

wherels = min {Im A;, A4 (j = 1,2,3,5)} > 0. On account of condition (30), from Eqg. (27) it follows that

L= lim Re/inoP(l)(Dz,n)u(4)(z) -u®(z)d,S. (31)

T—00

Sy

On the other hand, from Eq. (9) we have

;Zjul(‘*) (z) = idan;(z) ul (z) + o(|z] ) (32)

forz € S, r>1,nj(z) = %, l,7=1,2,3. Using Eq. (32) we get

P(l)(Dz7 n(z)) u® (z) = i\g P(l)(n(z)7 n(z))u(4) (z) + o(|z| ™). (33)

By Egs. (33) an®®)(n,n) = A(Y)(n) (see Kupradze et al., 1979) from Eq. (31) we obtain

T™—00

L+ wTp, lim Re / AN (n(z))u? (z) - u?(z)d,S = 0. (34)
S

On account of relation (see Kupradze et al., 1979)

AOm)u® . u® > 5lu®?
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from Eq. (34) it follows that
L + wéTy lim / lu® (z)[2d,S <0, (35)
Sy
whered > 0. By Egs. (2), (17), (28) and (29) from Eq. (35) follows
w(x) =0, 0(x)=0 for xeQ~ (36)

and
lim | [u®(z)|?d,S = 0. (37)

T™—00

S

Hence vecton(® satisfies Eq. (37) and

(A+XHu¥(x)=0 for xeQ™,

(38)
u®(x) = O()x|™)  for [x|>1,
It is well known (see, e.g., Kupradze et al., 1979) that Egs. (37) and (38) imply
u®(x) =0 for xe Q. (39)

Finally, from Egs. (36) and (39) we hal&(x) = 0forx € Q.

5 Basic Properties of Potentials

In this section we present the basic properties of thermoelastopotentials. We introduce the potential of a single-layer

ZM(x,g) = /F(x —y)g(y)dyS,
S
the potential of a double-layer

- T
2%(x.8) = [ [PDy )T (x-y)] (r)ay S,
S
and the potential of volume

73 (x, ¢, 0F) = /F(x—y)¢(y')dy,
O

whereT is the fundamental matrix of the operatarD,) (see Svanadze, 2004a), the operatas defined by
(11), g andg are seven-component vectors, and the superscriggnotes transposition.

Remark 2. In Svanadze (2004a), the fundamental maltix) is constructed in terms of elementary functions and
basic properties are established.

First we establish the basic properties of thermoelastopotentials.

Theorem 2.1f § € C™ 120 g c ™A (S), 0 < X < Ay < 1, andm is a non-negative whole number, then:
a)
2 (-,g) € CON(R®) N C™HA(QF) n 0= (0F),

b)
AD)ZW(x,g)=0 xe0*
C) . .
{P(D,n(2)2"(z.8)} =F58()+PD,n()2V g, zes. (40)

Theorem 3.1f § € C™ Ao g e C™mA(S), 0 < N < Ao < 1, then:
a)
Z?)(-,g) € "N (QF) N C>(0F),
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b)
AD)ZP(x,g) =0 xe0F

c)
{z® (z,g)}i —+ % g(z) + Z%(z,8) z€S. (41)
for the non-negative integen,
d)
{P(D, () 2% (0.8)} = (P(D, n() 2 (2, 8)} - 2)

for the natural numberm andz € S.

Theorem 4.1f S € C1Yo, ¢ € CON (1), 0 < X < A < 1, then:
a)
ZO) (-, 0,0) € CYN(R?) N C* Q) n ¢ (Qf),
b)
AD)Z(z,¢,0") = ¢(x),  xeQ,
where){ is a domain ink? and Qf C Q.
Theorem 5.1f S € C1% suppp = Q C Q~, ¢ CON(Q7), 0 <N < Ap < 1, then:

a)
Z3)(,¢,07) e CYN (R N C* Q™) nC?N (Qy),

b)
ADZY(x,0,97)=p(x) xeQ

where(} is a finite domain ink® and ; € Q.

9

Theorems 2-5 can be proved similarly to the corresponding theorems in the classical theory of thermoelasticity
(for details see Kupradze et al., 1979).

6 Existence Theorems

In this section we establish the existence of regular solutions of the BNRS, (11)g ¢, -, (VIII)g ¢ by means
of the potential method and the theory of 2D singular integral equations. We introduce the notation

KWg(s) = 8(z) + 20 (n.8),  KPg(z) = 5 g(s) + P(D,.n()2") (. 8)

1
K.g(z) = —5 g(z) + 729 (z,g), z€S,

| —

(43)
wherer is an arbitrary complex number. Obviousigt!), X2 andkC, are the singular integral operators (for the
definition a singular integral operator see, e.g. Kupradze et al., 1979).

In the sequel we need the following Lemmas.

Lemma 3. If £ is a continuous curve on the complex plane connecting the origin with the poard . is a
normal type operator for any € £, then the index of the operatd,, vanishes, i.e.

ind K, = 0.

Lemma 3 is proved in Kupradze et al. (1979).

Lemma 4. If condition (2) is satisfied, then the singular integral operatofS and (2 are of the normal type
with an index equal to zero.

Proof: Leto®) = (al(f))7x7 be the symbol of the operatéi?) (p = 1,2). From (43) we have
m_ 1
det o'/ = —5 0102, (44)
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where

o1 = W oy = 32;%(165 + k) (s + kr) (2koky — ksks + kake). (45)
Keeping in mind the relations (4) from Egs. (45) we haye> 0 ando, > 0. Obviously, from Eq. (44) we obtain
det o < 0. (46)
Hence the operatd€(!) is of the normal type.
By virtue of equationdet o(?) = —det o(!) the operatoiC(? is of the normal type.

Let o, andind K be the symbol and the index of the operator, respectively. It may be easily shown that
det o vanishes only at four points;, », 73 and r, of the complex plane. By virtue of inequality (46) and
det oy = det M) we getr; # 1forl = 1,2,3,4. By Lemma 3 we obtain

ind € = ind K, = 0.
Equationind K(?) = 0 is proved in a quite similar manner.

Remark 3. For the definitions of a normal type singular integral operator, the symbol and the index of operators
see, e.g. Kupradze et al. (1979). The basic theory of one and multidimensional singular integral equations is given
in Kupradze et al. (1979) and Mikhlin (1965).

Lemma 5. If the condition (2) is satisfied, then the homogeneous boundary value problem
ADy)Ux)=0 for x e, (47)
opdim  [P(Dyn(2))U(x) — iU(x)] = (P(Dy.n(2))U(z) - iU(z)}" =0 (48)
has only the trivial solution.
Proof. The boundary condition (48) can be written as
(POu—ggn}* =ifu}™,  {POw}* =i{w}*,  {q-n}" =i{6}". (49)
On account of Eq. (49) we have
Re/ [ino (PWu— gon)-u+TPPw-w+q- nﬂ} d,S
S

:Re/ [—wTolul® + iTolwl + (0] dyS = —wToRe/|u|2sz.
S S

Using Egs. (2), (17), (50) from Eq. (14) we get

(50)

Ux)=0 for x et

Remark 4. Obviously, by Theorem 5 the volume potent&F) (x, F, Q™) is a regular solution of Eq. (5), where
F e CO"(Q7), 0 < X < 1; supp F is a finite domain i) ~. Therefore, further we will consider BVEX), ¢
for K =1,II,---,VIII.

We are now in a position to prove the existence theorems of a regular solution of@)gRsand (/1) ;-
Problem (1), ¢. We seek a regular solution to BMP), ; in the form

Ux) =29 (x,g) —iZW(x,g) for xeQ, (51)
whereg is the required seven-component vector.
Obviously, by Theorems 2 and 3 the vector functldns solution of Eq. (13) fox € Q. Keeping in mind the

boundary condition
{U(z)}~ =1(2) for ze S
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and using Egs. (41), (43) and Theorem 2, from (51) we obtain the singular integral equation
K*g(z) = KWg(z) —iZV(z,g) = f(z) for ze€S. (52)
By Lemma 4 the singular integral operai6t is of the normal type and
ind C* = ind K = 0.

Now we prove that the equation
K*g(z)=0 (53)

has only a trivial solution.

Indeed, letg be a solution of the homogeneous Eq. (53) gnd C“'(S). The vectorU defined by Eq. (51) is a
regular solution of probleri/), . Using Theorem 1, the problefd), , has only the trivial solution, that is

Ux)=0 for xe . (54)

On other hand, by Egs. (41) and (42), from (51) we get
{U(2)}” —{U(2)}" = —g(2), (55)

{P(D2,n)U(2)}” — {P(D;,n)U(2)} " = —ig(a), (56)

wherez € S. Therefore from Eqgs. (54) - (56) we obtain Eq. (48). Hence, the vddta a solution of the BVP
(47), (48). Using Lemma 5 we have

Uix)=0 for xeQ. (57)
From Egs. (54) and (57) it follows that
{U(z)}" =0, {U(z)}" =0 for zcS. (58)

Finally, by Eq. (58), from (55) we havg(z) = 0 for z € S. Thus the homogeneous Eq. (53) has only a trivial
solution and therefore Eq. (52) is always solvable for an arbitrary véctor

We have thereby proved

Theorem 6.1f S € C2*, f € C1A(S), 0 < X < Ao < 1, then a regular solution of the BVH ), ¢ exists, is
unique and is represented by sum (51), wheiga solution of the singular integral equation (52) which is always
solvable for an arbitrary vectdt

Problem (1), ;. We seek a regular solution to BVRI), ; in the form
U(x) = ZW (x,g) + V(x) for xeQ, (59)

whereg is the required seven-component vecldi(x) is a regular solution of the equatigt(Dx )V (x) = 0 for
xeN.

Keeping in mind the boundary condition of the second external BVP and using Egs. (40), (43) from (59) we obtain
the singular integral equation ~
K® g(z) = f(2) for zeS, (60)

where }
f(z) = f(z) — {P(D,,n)V(z)}". (61)

By Lemma 4 the singular integral operaf6f? is of the normal type with an index equal zero.

Let us assume that the homogeneous equafidhg(z) = 0 hasm linearly independent solutiong®) (z)},
which are assumed to be the orthonormal

/g<l>(z) g9 (2)d,S = §y;, l,j=1,2,---,m. (62)
S
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The solvability condition of Eqg. (60) can be written as

/{P(Dz, n)V(z)}” ¢ (2)d,S = N, 1=1,2,---,m, (63)
S

where

N, = / £(2)9 " (2)d, S
s
andq/:(l)(z)};*;1 is a complete system of solutions of the homogeneous associated equation

5%@ + [ PO,y — 2) $(3)dyS =0
S

It is easy to see that condition (63) takes the form (see Kupradze et al., 1979)

/g<l>(z){V(z)}*dzs =—N, [=1,2--,m. (64)
S

It remains to choose the vect®i(x) which has hitherto been arbitrary, as a solution of the boundary value problem
ADy)V(x)=0 for x €N,
{V(2)}” =1*(2) for zc S,
where .
f(z) = - Nig"(a), (65)
=1

which is solvable by virtue of Theorem 6. Using Eq. (62), the condition (64) is fulfilled automatically and the
solvability of Eq. (60) is proved. The solvability of BV(HI)(If is proved, too.

The solution is unique despite the existence of nontrivial solutions of the homogeneous integral equation, since by
the unigueness theorem the potential of single-layer constructed by means of these solutions taken as densities is
identically zero. Thus, the following theorem has been proved.

Theorem 7.1f S € C2*, f € CO(S), 0 < M < Ay < 1, then a regular solution of the BVHI), ; exists, is
unique and is represented by sum (59), whgiga solution of the singular integral equation (60) which is always
solvable;V is solution of the BVRI), ;. which is always solvable; the vector functiofandf* are determined
by (61) and (65), respectively.

Remark 5. We can prove the existence of regular solutions of the BURS) ¢, (IV)p g, -, (VIII)g ¢ ina
quite similar manner as theorems 6 and 7.

Remark 6. By the method, developed in this paper, it is possible to investigate 3D BVPs in the linear theories of
isotropic elastic materials with microstructure.
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