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On the Linear Theory of Thermoelasticity with Microtemperatures

M. Svanadze

In the present paper the linear theory of thermoelasticity with microtemperatures is considered. A wide class of
external boundary value problems (BVPs) of steady vibrations is investigated. Sommerfeld-Kupradze type radia-
tion conditions and the basic properties of thermoelastopotentials are established. The uniqueness and existence
theorems of regular solutions of the external BVPs are proved using the potential method and the theory of singular
integral equations.

1 Introduction

In recent years several continuum theories with microstructure have been formulated (see, Eringen, 1999; Iesan,
2005). A thermodynamic theory for elastic materials with inner structure the particles of which, in addition to
microdeformations, possess microtemperatures was proposed by Grot (1969). Thermodynamics of a continuum
with microstructure was extended in that it is assumed that the microelements have different temperatures. To
describe this phenomenon the concept of microtemperatures was introduced. The microtemperatures depend ho-
mogeneously on the microcoordinates of the microelements.

Riha (1975, 1976) developed a theory of micromorphic fluids with microtemperatures. The linear theory of ther-
moelasticity with microtemperatures for materials with inner structure the particles of which, in addition to the
classical displacement and temperature fields, possess microtemperatures was studied by Iesan and Quintanilla
(2000). The fundamental solution of the equations of the theory of thermoelasticity with microtemperatures is
constructed by Svanadze (2004a). The representations of Galerkin type and general solutions of the equations of
dynamic and steady vibrations in this theory have been obtained by Scalia and Svanadze (2006). The BVPs of the
steady vibration are considered by Svanadze (2003) and Scalia and Svanadze (2009). The exponential stability of
solution of equations of the theory of thermoelasticity with microtemperatures has been established by Casas and
Quintanilla (2005). The basic theorems in the equilibrium theory of thermoelasticity with microtemperatures have
been proved by Scalia et al. (2010).

The theory of micromorphic elastic solids with microtemperatures is constructed by Iesan (2001). The fundamen-
tal solutions of equations of this theory have been established by Svanadze (2004b). The existence and uniqueness
of solutions in the linear theory of heat conduction in micromorphic continua are established by Iesan (2002).
Recently, the uniqueness theorems in the equilibrium theory of thermoelasticity with microtemperature for mi-
crostretch materials have been proved by Scalia and Svanadze (2012).

The investigation of BVPs of mathematical physics by the classical potential method has a hundred year history.
The application of this method to the 3D BVPs of the theory of elasticity reduces these problems to 2D singular
integral equations (see Kupradze et al., 1979). Owing to the works of Mikhlin (1965), Kupradze and his pupils (see
Kupradze, 1965; Kupradze et al., 1979; Burchuladze and Gegelia, 1985), the theory of multidimensional singular
integral equations has presently been worked out with sufficient completeness. This theory makes it possible to
investigate 3D problems not only of the classical theory of elasticity, but also problems of the theory of elasticity
with conjugated fields. An extensive review of works on the potential method can be found in Gegelia and Jentsch
(1994).

The radiation conditions played an essential role in the external problems of vibrations. As is known (see Kupradze
et al., 1979; Burchuladze and Gegelia, 1985) these conditions guarantee uniqueness of the solution of the consid-
ered problems for an infinite domain. The radiation conditions for the Helmholz equation were formulated by
Sommerfeld (1912) and proved mathematically by Kupradze (1934) and Vekua (1943). The modern situation con-
cerning the radiation conditions for various elastic media with conjugated fields is expounded in Kupradze et al.
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(1979) and Burchuladze and Gegelia (1985).

In the present paper the linear theory of thermoelasticity with microtemperatures is considered (see Iesan and
Quintanilla, 2000). A wide class of external BVPs of steady vibrations are investigated. Sommerfeld-Kupradze
type radiation conditions and the basic properties of thermoelastopotentials are established. The uniqueness and
existence theorems of regular solutions of the external BVPs are proved using the potential method and the theory
of singular integral equations.

2 Basic Equations

We consider an isotropic elastic material with microstructures which occupies the regionΩ of the Euclidean three-
dimensional spaceR3. Let x = (x1, x2, x3) be a point ofR3 andDx = ( ∂

∂x1
, ∂

∂x2
, ∂

∂x3
).

The system of equations of steady vibrations in the linear theory of thermoelasticity with microtemperatures has
the following form (see Iesan and Quintanilla, 2000)

μ Δu + (λ + μ) grad div u − β grad θ + ρ ω2 u = −ρN,

k6 Δw + (k4 + k5) grad div w − k3 grad θ + (iω b − k2)w = ρ M,

(k Δ + iω aT0) θ + iω β T0 div u + k1 div w = −ρ s,

(1)

whereu = (u1, u2, u3) is the displacement vector,w = (w1, w2, w3) is the microtemperature vector,θ is the
temperature measured from the constant absolute temperatureT0 (T0 > 0), ρ is the reference mass density
(ρ > 0), N = (N1, N2, N3) is the body force,M = (M1,M2,M3) is first heat source moment vector,s is the
heat supply,Δ is the Laplacean;λ, μ, β, a, b, k, k1, k2, ∙ ∙ ∙ , k6 are constitutive coefficients,i =

√
−1, and ω is

the oscillation frequency(ω > 0).

We will suppose that the following assumptions on the constitutive coefficients hold (see Grot, 1969; Iesan and
Quintanilla, 2000):

μ > 0, 3λ + 2μ > 0, a > 0, b > 0, k > 0,

3k4 + k5 + k6 > 0, k6 ± k5 > 0, (k1 + k3T0)2 < 4T0kk2.
(2)

We introduce the notation

μ0 = λ + 2μ, a0 = iωaT0, β0 = iωβT0,

k7 = k4 + k5 + k6, k8 = iωb − k2.
(3)

Obviously, from Eqs. (2) and (3) we have

λ + μ = 1
3 [(3λ + 2μ) + μ] > 0, μ0 > 0,

k6 = 1
2 [(k6 + k5) + (k6 − k5)] > 0,

k7 = 1
3 [(3k4 + k5 + k6) + 2(k6 + k5)] > 0,

k4 + k7 = 2
3 (3k4 + k5 + k6) + 1

3 (k5 + k6) > 0,

2k6k7 − k5k7 + k4k6 = k7(k6 − k5) + k6(k4 + k7) > 0.

(4)

We introduce the matrix differential operator

A(Dx) = (Apq(Dx))7×7 , Alj(Dx) = (μΔ + ρω2)δlj + (λ + μ)
∂2

∂xl∂xj
,

Al;j+3(Dx) = Al+3;j(Dx) = 0, Al7(Dx) = −β
∂

∂xl
,

Al+3;j+3(Dx) = (k6Δ + k8)δlj + (k4 + k5)
∂2

∂xl∂xj
,

Al+3;7(Dx) = −k3
∂

∂xl
, A7l(Dx) = β0

∂

∂xl
,

A7;l+3(Dx) = k1
∂

∂xl
, A77(Dx) = kΔ + a0.
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The system (1) can be written as
A(Dx)U(x) = F(x), (5)

whereU = (u,w, θ), F = (−ρN, ρM,−ρs) andx ∈ Ω.

3 Boundary Value Problems

Let S be the closed surface surrounding the finite domainΩ+ in R3, S ∈ C2,λ0 , 0 < λ0 ≤ 1, Ω̄+ = Ω+ ∪
S, Ω− = R3\Ω̄+; Ωr andSr are denoted the sphere and boundary of the sphere of radiusr with the center at the
origin, respectively. The scalar product of two vectorsϕ = (ϕ1, ϕ2, ∙ ∙ ∙ , ϕl) andψ = (ψ1, ψ2, ∙ ∙ ∙ , ψl) is denoted

by ϕ ∙ ψ =
l∑

j=1

ϕjψ̄j , whereψ̄j is the complex conjugate ofψj .

We introduce the notation

Λ(Δ) =
1

μ0k7k
det




μ0Δ + ρω2 0 − βΔ

0 k7Δ + k8 − k3Δ
β0 k1 kΔ + a0





3×3

. (6)

It is easily seen that
Λ(Δ) = (Δ + λ2

1)(Δ + λ2
2)(Δ + λ2

3),

whereλ2
1, λ

2
2, λ

2
3 are the roots of the equationsΛ(−ξ) = 0 (with respect toξ).

Let λ2
4 =

ρω2

μ0
andλ2

5 =
k8

k6
. We assume that

Imλj > 0 (j = 1, 2, 3, 5), λ4 > 0. (7)

Definition. A vector functionU = (U1, U2, ∙ ∙ ∙ , U7) is called regular inΩ− (or Ω+) if
1)

Ul ∈ C2(Ω−) ∩ C1(Ω̄−) (or Ul ∈ C2(Ω+) ∩ C1(Ω̄+)),

2)

U =
5∑

j=1

U(j), U(j) = (U (j)
1 , U

(j)
2 , ∙ ∙ ∙ , U (j)

7 ),

U
(j)
l ∈ C2(Ω−) ∩ C1(Ω̄−),

3)
(Δ + λ2

j )U
(j)
l (x) = 0 (8)

and

(
∂

∂|x|
− iλj)U

(j)
l (x) = eiλj |x|o(|x|−1) for |x| � 1, (9)

whereU
(5)
m = U

(4)
m+3 = U

(4)
7 = U

(5)
7 = 0 andm = 1, 2, 3, j = 1, 2, ∙ ∙ ∙ , 5, l = 1, 2, ∙ ∙ ∙ , 7.

Equalities in (9) are Sommerfeld-Kupradze type radiation conditions in the linear theory of thermoelasticity with
microtemperatures.

Remark 1. The Equations (8) and (9) imply (see Vekua, 1943)

U
(j)
l (x) = eiλj |x|O(|x|−1) for |x| � 1 (j = 1, 2, ∙ ∙ ∙ , 5, l = 1, 2, ∙ ∙ ∙ , 7). (10)

In the sequel we use the matrix differential operators

1)

A(m)(Dx) = (A(m)
lj (Dx))3×3, A

(1)
lj (Dx) = Alj(Dx), A

(2)
lj (Dx) = Al+3;j+3(Dx),
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2)
P(m)(Dx,n) = (P (m)

lj (Dx,n))3×3,

P
(1)
lj (Dx,n) = μδlj

∂

∂n
+ μnj

∂

∂xl
+ λnl

∂

∂xj
= μδlj

∂

∂n
+ (λ + μ)nl

∂

∂xj
+ μMlj ,

P
(2)
lj (Dx,n) = k6δlj

∂

∂n
+ k5nj

∂

∂xl
+ k4nl

∂

∂xj
= k6δlj

∂

∂n
+ (k4 + k5)nl

∂

∂xj
+ k5Mlj ,

P(Dx,n) = (Plj(Dx,n))7×7,

Plj(Dx,n) = P
(1)
lj (Dx,n), Pl+3;j+3(Dx,n) = P

(2)
lj (Dx,n),

Pl7(Dx,n) = −βnl, P7;l+3(Dx,n) = k1 nl,

P77(Dx,n) = k
∂

∂n
, Pl;j+3 = Pl+3;j = Pl+3;7 = P7l = 0,

P̃(Dx,n) = (P̃lj(Dx,n))7×7,

P̃lj(Dx,n) = Plj(Dx, n), P̃l+3;j+3(Dx,n) = Pl+3;j+3(Dx,n),

P̃l7(Dx,n) = −β0 nl, P̃7;l+3(Dx,n) = k3 nl,

P̃77(Dx,n) = P77(Dx,n), P̃l;j+3 = P̃l+3;j = P̃l+3;7 = P̃7l = 0,

(11)

wheren = (n1, n2, n3) is the unit vector,
∂

∂n
is the derivative along the vectorn, Mlj = nj

∂

∂xl
− nl

∂

∂xj
, m =

1, 2 andl, j = 1, 2, 3.

The external BVPs of steady vibration in the linear theory of thermoelasticity with microtemperatures are formu-
lated as follows.

Find a regular (classical) solution to system (5) forx ∈ Ω− satisfying one of the following boundary conditions

lim
Ω−3x→ z∈S

U(x) ≡ {U(z)}− = f(z)

in the Problem(I)−F,f ,

{P(Dz,n(z))U(z)}− = f(z)

in the Problem(II)−F,f ,

{u(z)}− = f (1)(z), {w(z)}− = f (2)(z), {q(z) ∙ n(z)}− = f7(z)

in the Problem(III)−F,f ,

{u(z)}− = f (1)(z), {P(2)(Dz,n(z))w(z)}− = f (2)(z), {θ(z)}− = f7(z)

in the Problem(IV )−F,f ,

{u(z)}− = f (1)(z), {P(2)(Dz,n(z))w(z)}− = f (2)(z), {q(z) ∙ n(z)}− = f7(z)

in the Problem(V )−F,f ,

{P(1)(Dz,n(z))u(z)}− = f (1)(z), {w(z)}− = f (2)(z), {θ(z)}− = f7(z)

in the Problem(V I)−F,f ,

{P(1)(Dz,n(z))u(z)}− = f (1)(z), {w(z)}− = f (2)(z), {q(z) ∙ n(z)}− = f7(z)

in the Problem(V II)−F,f ,

{P(1)(Dz,n(z))u(z)}− = f (1)(z), {P(2)(Dz,n(z))w(z)}− = f (2)(z), {θ(z)}− = f7(z)

in the Problem(V III)−F,f , whereq ∙ n = k
∂θ

∂n
+ k1 w ∙ n, f (1) = (f1, f2, f3), f (2) = (f4, f5, f6), f =

(f1, f2, ∙ ∙ ∙ , f7); F andf are the seven-component known vector functions, andsuppF is a finite domain inΩ−.
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4 Uniqueness Theorem

In this section we prove uniqueness of regular solutions of external boundary value problems(I)−F,f , (II)−F,f , ∙ ∙ ∙ ,
(V III)−F,f .

We introduce the notation

W (1)(u) =
1
3
(3λ + 2μ) |div u|2 + μ



1
2

3∑

l,j=1; l 6=j

∣
∣
∣
∣
∂uj

∂xl
+

∂ul

∂xj

∣
∣
∣
∣

2

+
1
3

3∑

l,j=1

∣
∣
∣
∣
∂ul

∂xl
−

∂uj

∂xj

∣
∣
∣
∣

2


 ,

W (2)(w) =
1
3
(3k4 + k5 + k6) |div w|2 +

1
2
(k6 − k5) |curlw|2

+
1
2
(k6 + k5)



1
2

3∑

l,j=1; l 6=j

∣
∣
∣
∣
∂wj

∂xl
+

∂wl

∂xj

∣
∣
∣
∣

2

+
1
3

3∑

l,j=1

∣
∣
∣
∣
∂wl

∂xl
−

∂wj

∂xj

∣
∣
∣
∣

2


 .

(12)

In the sequel we use the following lemmas.

Lemma 1. If U is a regular solution to system

A(Dx)U(x) = 0 (13)

for x ∈ Ω+, then
∫

Ω+

[
T0 W (2)(w) + k|grad θ|2 + (k1 + k3T0)Re(w ∙ grad θ) + k2 T0|w|2

]
dx

= Re
∫

S

[
iωT0(P

(1)u − βθn) ∙ u + T0P
(2)w ∙ w + q ∙ n θ

]
dzS.

(14)

Proof. The system (13) can be written as

A(1)(Dx)u − β grad θ + ρ ω2 u = 0,

A(2)(Dx)w − k3 grad θ + k8w = 0,

(k Δ + a0) θ + β0 div u + k1 div w = 0.

(15)

On account of Eqs. (15) from Green’s formulas (see Kupradze et al., 1979)
∫

Ω+

[
A(1)(Dx)u ∙ u + W (1)(u)

]
dx =

∫

S

P(1)u ∙ u dzS,

∫

Ω+

[
A(2)(Dx)w ∙ w + W (2)(w)

]
dx =

∫

S

P(2)w ∙ w dzS,

∫

Ω+

[
Δ θθ̄ + |grad θ|2

]
dx =

∫

S

∂θ

∂n
θ̄ dzS,

∫

Ω+

(grad θ ∙ u + θ divū) dx =
∫

S

θn ∙ u dzS

it follows that
∫

Ω+

[
W (1)(u) − ρ ω2 |u|2 − β θ div ū

]
dx =

∫

S

(
P(1)u − β θ n

)
∙ u dzS,

∫

Ω+

[
W (2)(w) − k8 |w|2 + k3 grad θ ∙ w

]
dx =

∫

S

P(2)w ∙ w dzS,

∫

Ω+

[
k |grad θ|2 − β0 div u θ̄ − a0|θ|

2 + k1w ∙ grad θ
]
dx =

∫

S

q ∙ n θ dzS.

(16)
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Obviously, in view of (2) from Eq. (12) we have

W (1)(u) ≥ 0, W (2)(w) ≥ 0. (17)

Keeping in mind (17) we obtain from Eqs. (16) that

β Im
∫

Ω+

divu θ̄ dx = Im
∫

S

(
P(1)u − β θ n

)
∙ u dzS,

∫

Ω+

[
W (2)(w) + k2 |w|2 + k3Re (grad θ ∙ w)

]
dx = Re

∫

S

P(2)w ∙ w dzS,

∫

Ω+

[
k|grad θ|2 + k1Re (w ∙ grad θ)

]
dx + ωβT0 Im

∫

Ω+

divu θ̄ dx = Re
∫

S

q ∙ n θ dzS.

(18)

Finally, from Eqs. (18) we obtain formula (14).

Lemma 2. If U = (u,w, θ) ∈ C2(Ω) is a solution of the system (13) forx ∈ Ω, then

u(x) =
4∑

j=1

u(j)(x), w(x) =
∑

j=1,2,3,5

w(j)(x), θ(x) =
3∑

j=1

θ(j)(x), (19)

whereΩ is a domain inR3, andu(j),w(j) andθ(j) satisfy the following equations

(Δ + λ2
j )u

(j)(x) = 0, (Δ + λ2
l )w

(l)(x) = 0, (20)

(Δ + λ2
m)θ(m)(x) = 0, m = 1, 2, 3, j = 1, 2, 3, 4, l = 1, 2, 3, 5. (21)

Proof. Applying the operatordiv to the equations (15)1 and (15)2, from system (15) we get
(
μ0Δ + ρ ω2

)
div u − β Δ θ = 0,

(k7Δ + k8) div w − k3 Δ θ = 0,

(k Δ + a0) θ + β0 div u + k1 div w = 0.

(22)

From system (22) we have

Λ(Δ) div u = 0, Λ (Δ)div w = 0, Λ (Δ)θ = 0, (23)

where the operatorΛ is defined by (6).

Now, applying the operatorΛ(Δ) to the equations (21)1 and (21)2, and using Eq. (29) we obtain

Λ(Δ)
(
Δ + λ2

4

)
u = 0, Λ(Δ)

(
Δ + λ2

5

)
w = 0. (24)

We introduce the notation:

u(j) =
4∏

l = 1
l 6= j

(λ2
l − λ2

j )
−1(Δ + λ2

l )u, j = 1, 2, 3, 4,

w(m) =
∏

l = 1, 2, 3, 5
l 6= m

(λ2
l − λ2

j )
−1(Δ + λ2

l )w, m = 1, 2, 3, 5,

θ(p) =
3∏

l = 1
l 6= p

(λ2
l − λ2

p)
−1(Δ + λ2

l ) θ, p = 1, 2, 3,

(25)
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Equation (19) can be easily obtained from Eqs. (25). By Eqs. (23) and (24), from (25) we obtain Eqs. (20) and
(21).

Now let us establish the uniqueness of a regular solutions of BVPs(I)−F,f , (II)−F,f , ∙ ∙ ∙ , (V III)−F,f .

Theorem 1. If condition (2) is satisfied, then the external BVP(K)−F,f admits at most one regular solution, where
K = I, II, ∙ ∙ ∙ , V III.

Proof. Suppose that there are two regular solutions of BVP(K)−F,f . Then their differenceU corresponds to zero

data(F = f = 0), i.e. U is a regular solution of BVP(K)−0,0.

Let Ωr be a sphere of sufficiently large radiusr so thatΩ̄+ ⊂ Ωr . By virtue of homogeneous boundary condition
(f = 0), Eq. (20) for the domainΩ−

r = Ω− ∩ Ωr can be rewritten as
∫

Ω−
r

[
T0 W (2)(w) + k|grad θ|2 + (k1 + k3T0)Re (w ∙ grad θ) + k2 T0|w|2

]
dx

= Re
∫

Sr

[
iωT0 (P(1) u − β θ n) ∙ u + T0P

(2)w ∙ w + q ∙ n θ
]
dzS.

(26)

From Eq. (26) we have

L = lim
r→∞

Re
∫

Sr

[
iωT0 (P(1) u − β θ n) ∙ u + T0P

(2)w ∙ w + q ∙ n θ
]
dzS, (27)

where

L =
∫

Ω−

[
T0 W (2)(w) + k|grad θ|2 + (k1 + k3T0)Re (w ∙ grad θ) + k2 T0|w|2

]
dx. (28)

Obviously, by Eqs. (2) and (17) it follows from Eq. (28) that

L ≥ 0. (29)

Keeping in mind relations (7) and (10) from (19) we obtain

u(x) = u(4)(x) + e−λ6|x| O(|x|−1),

w(x) = e−λ6|x| O(|x|−1), θ(x) = e−λ6|x| O(|x|−1) for |x| � 1,
(30)

whereλ6 = min {Im λj , λ4 (j = 1, 2, 3, 5)} > 0. On account of condition (30), from Eq. (27) it follows that

L = lim
r→∞

Re
∫

Sr

iωT0P
(1)(Dz,n)u(4)(z) ∙ u(4)(z)dzS. (31)

On the other hand, from Eq. (9) we have

∂

∂zj
u

(4)
l (z) = iλ4nj(z) u

(4)
l (z) + o(|z|−1) (32)

for z ∈ Sr, r � 1, nj(z) =
zj

|z|
, l, j = 1, 2, 3. Using Eq. (32) we get

P(1)(Dz,n(z))u(4)(z) = iλ4 P(1)(n(z),n(z))u(4)(z) + o(|z|−1). (33)

By Eqs. (33) andP(1)(n,n) = A(1)(n) (see Kupradze et al., 1979) from Eq. (31) we obtain

L + ωT0 lim
r→∞

Re
∫

Sr

A(1)(n(z))u(4)(z) ∙ u(4)(z)dzS = 0. (34)

On account of relation (see Kupradze et al., 1979)

A(1)(n)u(4) ∙ u(4) ≥ δ|u(4)|2
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from Eq. (34) it follows that

L + ωδT0 lim
r→∞

∫

Sr

|u(4)(z)|2dzS ≤ 0, (35)

whereδ > 0. By Eqs. (2), (17), (28) and (29) from Eq. (35) follows

w(x) = 0, θ(x) = 0 for x ∈ Ω− (36)

and

lim
r→∞

∫

Sr

|u(4)(z)|2dzS = 0. (37)

Hence vectoru(4) satisfies Eq. (37) and

(Δ + λ2
4)u

(4)(x) = 0 for x ∈ Ω−,

u(4)(x) = O(|x|−1) for |x| � 1,
(38)

It is well known (see, e.g., Kupradze et al., 1979) that Eqs. (37) and (38) imply

u(4)(x) = 0 for x ∈ Ω−. (39)

Finally, from Eqs. (36) and (39) we haveU(x) = 0 for x ∈ Ω−.

5 Basic Properties of Potentials

In this section we present the basic properties of thermoelastopotentials. We introduce the potential of a single-layer

Z(1)(x,g) =
∫

S

Γ(x − y)g(y)dyS,

the potential of a double-layer

Z(2)(x,g) =
∫

S

[
P̃(Dy,n(y))Γ>(x − y)

]>
g(y)dyS,

and the potential of volume

Z(3)(x, φ, Ω±) =
∫

Ω±

Γ(x − y)φ(y)dy,

whereΓ is the fundamental matrix of the operatorA(Dx) (see Svanadze, 2004a), the operatorP̃ is defined by
(11),g andφ are seven-component vectors, and the superscript> denotes transposition.

Remark 2. In Svanadze (2004a), the fundamental matrixΓ(x) is constructed in terms of elementary functions and
basic properties are established.

First we establish the basic properties of thermoelastopotentials.

Theorem 2. If S ∈ Cm+1,λ0 , g ∈ Cm,λ′
(S), 0 < λ′ < λ0 ≤ 1, andm is a non-negative whole number, then:

a)
Z(1)(∙,g) ∈ C0,λ′

(R3) ∩ Cm+1,λ′

(Ω̄±) ∩ C∞(Ω±),

b)
A(Dx)Z(1)(x,g) = 0 x ∈ Ω±,

c) {
P(Dz,n(z))Z(1)(z,g)

}±
= ∓

1
2

g(z) + P(Dz,n(z))Z(1)(z,g), z ∈ S. (40)

Theorem 3. If S ∈ Cm+1,λ0 , g ∈ Cm,λ′
(S), 0 < λ′ < λ0 ≤ 1, then:

a)
Z(2)(∙,g) ∈ Cm,λ′

(Ω̄±) ∩ C∞(Ω±),
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b)
A(Dx)Z(2)(x,g) = 0 x ∈ Ω±,

c) {
Z(2)(z,g)

}±
= ±

1
2

g(z) + Z(2)(z,g, ) z ∈ S. (41)

for the non-negative integerm,
d) {

P(Dz,n(z))Z(2)(z,g)
}+

= {P(Dz,n(z))Z(2)(z,g)}− (42)

for the natural numberm and z ∈ S.

Theorem 4. If S ∈ C1,λ0 , φ ∈ C0,λ′
(Ω+), 0 < λ′ < λ0 ≤ 1, then:

a)
Z(3)(∙, φ, Ω+) ∈ C1,λ′

(R3) ∩ C2(Ω+) ∩ C2,λ′

(Ω̄+
0 ),

b)
A(Dx)Z(3)(x, φ, Ω+) = φ(x), x ∈ Ω+,

whereΩ+
0 is a domain inR3 and Ω+

0 ⊂ Ω+.

Theorem 5. If S ∈ C1,λ0 , suppφ = Ω ⊂ Ω−, φ ∈ C0,λ′
(Ω−), 0 < λ′ < λ0 ≤ 1, then:

a)
Z(3)(∙, φ, Ω−) ∈ C1,λ′

(R3) ∩ C2(Ω−) ∩ C2,λ′

(Ω̄−
0 ),

b)
A(Dx)Z(3)(x, φ, Ω−) = φ(x) x ∈ Ω−,

whereΩ is a finite domain inR3 and Ω̄−
0 ⊂ Ω−.

Theorems 2-5 can be proved similarly to the corresponding theorems in the classical theory of thermoelasticity
(for details see Kupradze et al., 1979).

6 Existence Theorems

In this section we establish the existence of regular solutions of the BVPs(I)−F,f , (II)−F,f , ∙ ∙ ∙ , (V III)−F,f by means
of the potential method and the theory of 2D singular integral equations. We introduce the notation

K(1)g(z) ≡ −
1
2

g(z) + Z(2)(z,g), K(2)g(z) ≡
1
2

g(z) + P(Dz,n(z))Z(1)(z,g),

Kτg(z) ≡ −
1
2

g(z) + τ Z(2)(z,g), z ∈ S,
(43)

whereτ is an arbitrary complex number. Obviously,K(1), K(2) andKτ are the singular integral operators (for the
definition a singular integral operator see, e.g. Kupradze et al., 1979).

In the sequel we need the following Lemmas.

Lemma 3. If L is a continuous curve on the complex plane connecting the origin with the pointτ0 andKτ is a
normal type operator for anyτ ∈ L, then the index of the operatorKτ0 vanishes, i.e.

ind Kτ0 = 0.

Lemma 3 is proved in Kupradze et al. (1979).

Lemma 4. If condition (2) is satisfied, then the singular integral operatorsK(1) andK(2) are of the normal type
with an index equal to zero.

Proof: Let σ(p) = (σ(p)
lj )7×7 be the symbol of the operatorK(p) (p = 1, 2). From (43) we have

det σ(1) = −
1
2

σ1 σ2, (44)
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where

σ1 =
(λ + μ)(λ + 3μ)

8(λ + 2μ)2
, σ2 =

1
32 k2

6 k2
7

(k5 + k6)(k6 + k7)(2k6k7 − k5k7 + k4k6). (45)

Keeping in mind the relations (4) from Eqs. (45) we haveσ1 > 0 andσ2 > 0. Obviously, from Eq. (44) we obtain

det σ(1) < 0. (46)

Hence the operatorK(1) is of the normal type.

By virtue of equationdet σ(2) = −det σ(1) the operatorK(2) is of the normal type.

Let στ and indKτ be the symbol and the index of the operatorKτ , respectively. It may be easily shown that
det στ vanishes only at four pointsτ1, τ2, τ3 and τ4 of the complex plane. By virtue of inequality (46) and
det σ1 = det σ(1) we getτl 6= 1 for l = 1, 2, 3, 4. By Lemma 3 we obtain

indK(1) = indK1 = 0.

EquationindK(2) = 0 is proved in a quite similar manner.

Remark 3. For the definitions of a normal type singular integral operator, the symbol and the index of operators
see, e.g. Kupradze et al. (1979). The basic theory of one and multidimensional singular integral equations is given
in Kupradze et al. (1979) and Mikhlin (1965).

Lemma 5. If the condition (2) is satisfied, then the homogeneous boundary value problem

A(Dx)U(x) = 0 for x ∈ Ω+, (47)

lim
Ω+3x→ z∈S

[P(Dx,n(z))U(x) − iU(x)] ≡ {P(Dz,n(z))U(z) − iU(z)}+ = 0 (48)

has only the trivial solution.

Proof. The boundary condition (48) can be written as

{P(1)u − βθn}+ = i{u}+, {P(2)w}+ = i{w}+, {q ∙ n}+ = i{θ}+. (49)

On account of Eq. (49) we have

Re
∫

S

[
iωT0 (P(1)u − βθn) ∙ u + T0P

(2)w ∙ w + q ∙ n θ
]
dzS

= Re
∫

S

[
−ωT0|u|

2 + iT0|w|2 + i|θ|2
]
dzS = −ωT0 Re

∫

S

|u|2dzS.

(50)

Using Eqs. (2), (17), (50) from Eq. (14) we get

U(x) = 0 for x ∈ Ω+.

Remark 4. Obviously, by Theorem 5 the volume potentialZ(3)(x,F, Ω−) is a regular solution of Eq. (5), where
F ∈ C0,λ′

(Ω−), 0 < λ′ ≤ 1; suppF is a finite domain inΩ−. Therefore, further we will consider BVP(K)−0,f

for K = I, II, ∙ ∙ ∙ , V III.

We are now in a position to prove the existence theorems of a regular solution of BVPs(I)−0,f and(II)−0,f .

Problem (I)−0,f . We seek a regular solution to BVP(I)−0,f in the form

U(x) = Z(2)(x,g) − iZ(1)(x,g) for x ∈ Ω−, (51)

whereg is the required seven-component vector.

Obviously, by Theorems 2 and 3 the vector functionU is solution of Eq. (13) forx ∈ Ω−. Keeping in mind the
boundary condition

{U(z)}− = f(z) for z ∈ S
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and using Eqs. (41), (43) and Theorem 2, from (51) we obtain the singular integral equation

K∗g(z) ≡ K(1)g(z) − iZ(1)(z,g) = f(z) for z ∈ S. (52)

By Lemma 4 the singular integral operatorK∗ is of the normal type and

indK∗ = indK(1) = 0.

Now we prove that the equation
K∗g(z) = 0 (53)

has only a trivial solution.

Indeed, letg be a solution of the homogeneous Eq. (53) andg ∈ C1,λ′
(S). The vectorU defined by Eq. (51) is a

regular solution of problem(I)−0,0. Using Theorem 1, the problem(I)−0,0 has only the trivial solution, that is

U(x) = 0 for x ∈ Ω−. (54)

On other hand, by Eqs. (41) and (42), from (51) we get

{U(z)}− − {U(z)}+ = −g(z), (55)

{P(Dz,n)U(z)}− − {P(Dz,n)U(z)}+ = −ig(z), (56)

wherez ∈ S. Therefore from Eqs. (54) - (56) we obtain Eq. (48). Hence, the vectorU is a solution of the BVP
(47), (48). Using Lemma 5 we have

U(x) = 0 for x ∈ Ω+. (57)

From Eqs. (54) and (57) it follows that

{U(z)}+ = 0, {U(z)}− = 0 for z ∈ S. (58)

Finally, by Eq. (58), from (55) we haveg(z) = 0 for z ∈ S. Thus the homogeneous Eq. (53) has only a trivial
solution and therefore Eq. (52) is always solvable for an arbitrary vectorf .

We have thereby proved

Theorem 6. If S ∈ C2,λ0 , f ∈ C1,λ′
(S), 0 < λ′ < λ0 ≤ 1, then a regular solution of the BVP(I)−0,f exists, is

unique and is represented by sum (51), whereg is a solution of the singular integral equation (52) which is always
solvable for an arbitrary vectorf .

Problem (II)−0,f . We seek a regular solution to BVP(II)−0,f in the form

U(x) = Z(1)(x,g) + V(x) for x ∈ Ω−, (59)

whereg is the required seven-component vector;V(x) is a regular solution of the equationA(Dx)V(x) = 0 for
x ∈ Ω−.

Keeping in mind the boundary condition of the second external BVP and using Eqs. (40), (43) from (59) we obtain
the singular integral equation

K(2) g(z) = f̃(z) for z ∈ S, (60)

where
f̃(z) = f(z) − {P(Dz,n)V(z)}−. (61)

By Lemma 4 the singular integral operatorK(2) is of the normal type with an index equal zero.

Let us assume that the homogeneous equationK(2) g(z) = 0 hasm linearly independent solutions{g(l)(z)}m
l=1

which are assumed to be the orthonormal
∫

S

g(l)(z) ∙ g(j)(z)dzS = δlj , l, j = 1, 2, ∙ ∙ ∙ ,m. (62)

574



The solvability condition of Eq. (60) can be written as
∫

S

{P(Dz,n)V(z)}− ψ(l)(z)dzS = Nl, l = 1, 2, ∙ ∙ ∙ ,m, (63)

where

Nl =
∫

S

f(z)ψ(l)(z)dzS

andψ(l)(z)}m
l=1 is a complete system of solutions of the homogeneous associated equation

1
2

ψ(z) +
∫

S

[P(Dy,n)Γ(y − z)]> ψ(y)dyS = 0.

It is easy to see that condition (63) takes the form (see Kupradze et al., 1979)
∫

S

g(l)(z){V(z)}−dzS = −Nl, l = 1, 2, ∙ ∙ ∙ ,m. (64)

It remains to choose the vectorV(x) which has hitherto been arbitrary, as a solution of the boundary value problem

A(Dx)V(x) = 0 for x ∈ Ω−,

{V(z)}− = f∗(z) for z ∈ S,

where

f∗(z) = −
m∑

l=1

Nlḡ
(l)(z), (65)

which is solvable by virtue of Theorem 6. Using Eq. (62), the condition (64) is fulfilled automatically and the
solvability of Eq. (60) is proved. The solvability of BVP(II)−0,f is proved, too.

The solution is unique despite the existence of nontrivial solutions of the homogeneous integral equation, since by
the uniqueness theorem the potential of single-layer constructed by means of these solutions taken as densities is
identically zero. Thus, the following theorem has been proved.

Theorem 7. If S ∈ C2,λ0 , f ∈ C0,λ′
(S), 0 < λ′ < λ0 ≤ 1, then a regular solution of the BVP(II)−0,f exists, is

unique and is represented by sum (59), whereg is a solution of the singular integral equation (60) which is always
solvable;V is solution of the BVP(I)−0,f∗ which is always solvable; the vector functionsf̃ andf∗ are determined
by (61) and (65), respectively.

Remark 5. We can prove the existence of regular solutions of the BVPs(III)−F,f , (IV )−F,f , ∙ ∙ ∙ , (V III)−F,f in a
quite similar manner as theorems 6 and 7.

Remark 6. By the method, developed in this paper, it is possible to investigate 3D BVPs in the linear theories of
isotropic elastic materials with microstructure.
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