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Two-Mechanism Approach in Thermo-Viscoelasticity with Internal
Variables

M. Wolff, M. B öhm, S. B̈okenheide, N. Kr̈oger

Two-mechanism (more general: multi-mechanism) models have become an important tool for modeling of com-
plex material behavior. In particular, two-mechanism models have been applied for modeling of ratcheting in metal
plasticity as well as of steel behavior in case of phase transformations. The characteristic trait of two-mechanism
models is the additive decomposition of the inelastic (i.e., plastic or visco-elastic, e.g.) strain into two parts (some-
times called “mechanisms”) in the case of small deformations. In comparison with rheological models, there is
an interaction between these mechanisms allowing to describe important observable effects. We develop a general
visco-elastic two-mechanism model in the framework of the internal-variables approach. As a numerical example,
we simulate the movement of a rod having a special visco-elastic behavior. An applied periodic stress with non-
zero mean value may lead to a ratcheting effect stemming from the coupling of mechanisms.

1 Introduction

Two-mechanism (more general: multi-mechanism) models have become an important tool for modeling of com-
plex material behavior. The characteristic trait of two-mechanism models (abbreviated as 2M models) is the ad-
ditive decomposition of the inelastic (i.e., plastic or visco-elastic, e.g.) strain into two parts (sometimes called
“mechanisms”) in the case of small deformations (see Figure 1). We refer to Saı̈ (2011), Wolff et al. (2011) for
current overviews. In comparison with rheological models (cf. Palmov (1998), e.g.), generally there is an inter-
action between the mechanisms allowing to describe important observable effects. On the other hand, rheological
models consisting of elements connected in series are (simple) multi-mechanism models.
If the inelastic strain is seen as one mechanism (as it was historically first), one refers to a “unified model” (or
”Chaboche” model) (cf. the survey by Chaboche (2008) and the references cited therein). In this case plastic
and viscous components are considered together in the same variable. As explained in Contesti and Cailletaud
(1989) and Cailletaud and Saı̈ (1995), there are experimentally observable effects (inverse strain-rate sensibility,
e.g.) which can be qualitatively correctly described by the two-mechanism approach. To our knowledge, a first
systematic formulation and investigation of two mechanism models was given by Contesti and Cailletaud (1989).
An important application of two-mechanism models is cyclic plasticity including ratcheting. Investigations of
ratcheting with the aid of two-mechanism models can be found in Saı̈ and Cailletaud (2007), Hassan et al. (2008),
Taleb and Hauet (2009), Taleb and Cailletaud (2010), Saı̈ (2011), e.g. In Hassan et al. (2008), a direct comparison
between a modified Chaboche model and a 2M model has been performed (in Wolff et al. (2011), this comparison
has been repeated in short).

Figure 1: Scheme of a two-mechanism model. The two inelastic mechanisms1 and2 have their own evolution
equations. Generally, they are not independent from each other. The thermoelastic strainεte is usually not regarded
as a mechanism.
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Another important application of two-mechanism models lies in modeling of complex material behavior of steel
under phase transformations. For a direct two-mechanism approach we refer to Videau et al. (1994), Wolff et al.
(2008), Aeby-Gautier and Cailletaud (2004) , e.g.
The complex material behavior of important materials (such as visco-plastic materials, shape-memory alloys, soils,
granular materials, composites, biological tissues) leads to multi-mechanism models, when taking the additive
decomposition of the strain tensor into account. However, in most cases, the concrete application isnot set in the
framework of multi-mechanism models. For some references see Wolff et al. (2011).
Some polymers show a material behavior similar to ratcheting in metal plasticity. This effect has been reported
for an epoxy resin in Tao and Xia (2007), and in Shen et al. (2004) for epoxy polymers, e.g. In Xia et al. (2006),
nonlinear viscoelastic models have been applied for description of cyclic deformation behavior of polymers. As
we will show in this study, a two-mechanism model with linear viscoelastic mechanisms can describe a ratcheting
effect. In Kr̈oger et al. (2012), the mathematical model for a rod with a viscoelastic two-mechanism behavior has
been analyzed and simulations have been performed.
The main aims of this paper are:

• Application of the two-mechanism approach to visco-elastic material behavior within the internal-variables
framework, resulting in the development of a general thermo-visco-elastic 2M model.

• Simulations of the longitudinal movement of a rod having a special visco-elastic behavior in order to study
some effects stemming from the coupling of mechanisms like ratcheting.

2 Application of the Two-Mechanism Approach in Thermo-Viscoelasticity

2.1 Preparations

Some Basics

We restrict ourselves to small deformations. Thus, the equation of momentum, the energy equation and the
Clausius-Duhem inequality are given by

% ü − div σ = f (2.1)

% ė + div q = σ : ε̇ + r (2.2)

−% ψ̇ − % η θ̇ + σ : ε̇ −
1
θ

q ∙ ∇θ ≥ 0. (2.3)

The relations (2.1) - (2.3) have to be fulfilled in the space-time domainΩ×]0, T [. Ω is the body’s reference
configuration,T > 0 is the process time. The notation is standard:% - density in the reference configuration,
that means fort = 0, u - displacement vector,ε - linearized Green strain tensor,θ - absolute temperature,σ -
Cauchy stress tensor,f - volume density of external forces,e - mass density of the internal energy,q - heat-flux
density vector,r - volume density of heat supply,ψ - mass density of free (or Helmholtz) energy,η - mass density
of entropy. The time derivative is denoted by a dot.α : β is the scalar product of the tensors,q ∙ p is the scalar
product of the vectors. Tensors and vectors are in bold face. We note the well-known relations

ε = ε(u) :=
1
2
(∇u + ∇uT ), e = ψ + θ η. (2.4)

In the general case of inelastic material behavior (in case of small deformations), the full strainε is split up into

ε = εte + εin (2.5)

(εte - thermoelastic strain,εin - inelastic strain). In many applications, in particular in metal plasticity, the inelastic
strain is assumed to be traceless, i.e. tr(εin) = 0. To be more general, we do not assume this property. The
accumulated inelastic strain is defined by

sin(t) :=
∫ t

0

(
2
3
ε̇in(τ) : ε̇in(τ))

1
2 dτ. (2.6)
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In many cases, the dependence on the space variablex will not be written. We propose for the free energyψ the
split

ψ(εte, θ, ξ) = ψte(εte, θ) + ψin(θ, ξ) (2.7)

into a thermoelastic partψte and an inelastic oneψin. The quantitiesξ = (ξ1, . . . , ξm) (ξj - scalars or tensors)
represent the internal variables. These variables will be chosen in accordance with concrete models under consid-
eration. Moreover, they have to fulfil evolution equations which are usually ordinary differential equations (ODE)
with respect to the time t

ξ̇j = Ξj(ξ, θ, σ). (2.8)

Additionally, one poses initial conditions, i.e.

ξj(0) = ξj0 for j = 1, . . . ,m. (2.9)

In many cases, the thermoelastic partψte of the free energy is given by

ψte =
1
2%

(
Eεte : εte − 2(θ − θ0)G : εte

)
+ C(θ). (2.10)

E is the fourth-order elasticity tensor,G is the second-order stress-temperature tensor.θ0 is a fixed initial temper-
ature, i.e. for timet = 0. C is the temperature-dependent calorimetric function (see Helm and Haupt (2003), e.g.).
The (second-order) tensorG is symmetric, i.e.,

Gij = Gji for all i, j ∈ {1, 2}, (2.11)

andE is positive definite, i.e., it holds

Eε : ε =
3∑

k,l=1

Eijklεklεij > 0 for all second order tensorsε 6= 0. (2.12)

Note thatEε is the application of the fourth-order tensorE to the second-order tensorε and yields the second-
order tensorEε. Moreover,E fulfils the following symmetry relations

Eijkl = Ejikl = Eijlk for all i, j, k, l ∈ {1, 2, 3, 4}. (2.13)

Therefore, in the case of totally anisotropic material behavior, only 21 components ofE are independent. If there
are some additional symmetries, this number is reduced up to two for isotropic behavior (cf. remark 2.1 (ii)). We
note that generallyE andG depend on the space variablex ∈ Ω (spatial inhomogeneity) and on the temperature
θ. In these cases, the conditions (2.11) – (2.13) must be fulfilled for all body pointsx and for all admissible
temperatures, respectively. For convenience, unless stated otherwise, we only consider spatially homogeneous
materials. Clearly, this is not a great restriction. The temperature dependence will be accented, if it seems to be
appropriate.
Using standard arguments of thermodynamics (cf. Coleman and Gurtin (1967), Lemaitre and Chaboche (1990),
Maugin (1992), Besson et al. (2001), Haupt (2002), e.g.), one obtains the remaining inequality

σ : ε̇in − %
m∑

j=1

∂ψ

∂ξj
: ξ̇j −

1
θ

q ∙ ∇θ ≥ 0. (2.14)

as well as the potential relations

σ = %
∂ψte

∂εte
, η = −

∂ψ

∂θ
. (2.15)

Moreover, one defines the thermodynamic forcesXj via

Xj = %
∂ψ

∂ξj
(2.16)

From (2.10) and (2.15) the relation between stress and thermoelastic strain tensor follows

σ = Eεte − (θ − θ0)G (2.17)

Usually, one assumes Fourier’s law for the heat conduction

q = −κ ∇θ (2.18)
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with a positive heat conductivityκ (or, more generally with a positively definite heat-conductivity tensor). In case
of (2.18), the heat-conduction inequality is fulfilled, i.e.

−
1
θ

q ∙ ∇θ ≥ 0. (2.19)

Hence, the model under consideration is thermodynamically consistent, if the Clausius-Planck inequality is ful-
filled

σ : ε̇in −
m∑

j=1

Xj : ξ̇j ≥ 0. (2.20)

By standard arguments (cf. Lemaitre and Chaboche (1990), Besson et al. (2001), Haupt (2002), e.g.), the energy
equation (2.2) implies the heat-conduction equation

% cd θ̇ − div(κ∇θ) = σ : ε̇in −
m∑

j=1

Xj : ξ̇j + θ
∂σ

∂θ
: ε̇te + θ

m∑

j=1

∂Xj

∂θ
: ξ̇j + r. (2.21)

The parametercd is the specific heat. In the scheme outlined above, there is only one inelastic strainεin. Therefore,
one can speak about a one-mechanism (1M) model.

Two-Mechanism Approach

Up to this point, there is no difference between 1M models and 2M models. From now on, we deal with 2M models.
The general assertions can be extended to multi-mechanism models (in short mM models) without difficulties. In
the theory of 2M models the following decomposition of the inelastic strain is crucial

εin = A1 ε1 + A2 ε2, (2.22)

with positive parametersA1, A2. Defining the partial stresses

σj := Aj σ j = {1, 2}, (2.23)

the Clausius-Planck inequality (2.20) takes the form

σ1 : ε̇1 + σ2 : ε̇2 −
m∑

j=1

Xj : ξ̇j ≥ 0. (2.24)

The heat-conduction equation (2.21) can be re-written in an analogous manner. In the general situation, the inelastic
strainsεj arenot assumed to be traceless. For bothεj we introduceseparateaccumulations

sj(t) :=
∫ t

0

(
2
3

ε̇j(τ) : ε̇j(τ))
1
2 dτ j = 1, 2. (2.25)

Note, thatsin (as defined in (2.6)) is not the sum ofs1 ands2. In order to develop concrete 2M models, one has
to propose the free energy (density)ψ, evolution equations for the internal variablesξ (like in (2.8)) as well as for
the inelastic strainṡεj .

Remarks 2.1.

(i) Sometimes, the thermoelastic partψte of the free energy (cf. (2.7)) can depend on internal variables in order
to take possible damage effects into account. We drop this here.

(ii) In case of isotropy, the thermoelastic partψte in (2.10) is frequently given by

ψte :=
1
%
{μ ε∗

te : ε∗
te +

K

2
(tr(εte))

2 − 3 K α(θ − θ0) tr(εte)} + C(θ). (2.26)

Here are:μ > 0 - shear modulus,K > 0 - compression modulus,α - linear heat-dilatation coefficient,ε∗
te -

deviator ofεte, defined (in3d case) by

ε∗
te = εte −

1
3

tr(εte)I (I - unity tensor). (2.27)
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Clearly, in the case of (2.26) the first potential relation in (2.15) leads to the (isotropic) Duhamel-Neumann
(i.e. generalized Hooke) relation of linear thermoelasticity

σ = 2μ ε∗
te + K tr(εte)I − 3Kα (θ − θ0)I, (2.28)

which specializes the general relation (2.17).

(iii) The approach for evolution equations in (2.8) can be generalized, using functionals instead of functions. We
refer to Haupt (2002) for discussion and references. Sometimes, one assumes that for givenθ andσ the
system (2.8), (2.9) is uniquely solvable. Due to objectivity arguments, a possible dependence on the stress
tensorσ is realized via tensorial invariants. We drop this here.

(iv) The positive parametersA1 andA2 in the split of the inelastic strain (2.22) open opportunities for further
extensions and special applications. We refer to Saı̈ and Cailletaud (2007).A1 andA2 can depend on further
quantities as, for instance, they can constitute phase fraction in complex materials (steel, shape memory
alloys, e.g.). In this sense, here is a bridge from the macro to the meso (or micro) level of modeling.
However, in many current applications, these parameters are equal to one (cf. Hassan et al. (2008), Taleb
and Cailletaud (2010), Wolff and Taleb (2008), e.g.)

2.2 Two Kelvin-Voigt Bodies in Series as a Two-Mechanism Model

This subsection is apreparationfor introducing a more general visco-elastic 2M model in the next subsection 2.3.
Thus, for simplicity, in this subsection 2.2, we only consider the isothermal case. We consider two Kelvin-Voigt
bodies (abbreviated as KV bodies) in series (see Figure 2). As known, a KV body consist of a Hooke element
(illustrated by a spring) and a Newton element (illustrated by a damper) connected in parallel (cf. e.g. Haupt
(2002), Altenbach and Altenbach (1994)).

Figure 2: Two Kelvin-Voigt bodies in series - without coupling as a rheological model (left) as well as with
coupling leading to a 2M model (right).

Denoting by “1” and “2” the quantities of the first and second Kelvin-Voigt body, respectively, one has the obvious
relations

ε = ε1 + ε2, σ = σ1 = σ2. (2.29)

Here, we understandε andσ as3d strain and stress tensor, respectively, generalizing the corresponding1d con-
siderations. In Section 3, we deal with the space-dependent1d case, presenting simulations for a rod. In remark
3.1, the simple case of springs and dampers is addressed which leads to ordinary differential equations.

Case of no Coupling – Rheological Model

At first, we deal with the case of no coupling between the two KV bodies. (This is for motivation of the introduction
of the coupling in the next paragraph.) The stress-strain relations for the (generally non-isotropic) KV bodies are

σ = Ei εi + V i ε̇i i = 1, 2. (2.30)

Ei andV i are fourth-order tensors. Here, in our case, theV i are assumed to be positive definite (cf. (2.12)), while
theEi fulfil the weaker condition of positive semi-definiteness:

Eiε : ε ≥ 0 for all symmetric second-order tensorsε. (2.31)
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Moreover,Ei andV i have the symmetry properties (2.13). In comparison with the general approach in subsection
2.1 there is no separate (thermo-)elastic part in the the split of strain (2.29). Nevertheless, the two KV bodies in
series represent a special 2M model, and the above arguments leading to the Clausius-Planck inequality hold true
with the exception of the first potential relation in (2.15). Re-writing (2.30) as

ε̇i = V −1
i (σ − Ei εi), (2.32)

the quantitiesEi εi can be regarded as back stresses. This can be derived, assuming the free energy as

ψ =
1
2%

(E1 ε1 : ε1 + E2 ε2 : ε2), (2.33)

and defining the back-stresses (compatible with (2.32))

Xi := %
∂ψin

∂εi
= Ei εi, i = 1, 2 (2.34)

the Clausius-Planck inequality becomes

σ : ε̇1 + σ : ε̇2 −
2∑

i=1

Xi : ε̇i =
2∑

i=1

V −1
i (σ − Xi) : (σ − Xi) ≥ 0. (2.35)

Clearly, due to the positive definiteness ofVi (and thus ofV −1
i ), the inequality (2.35) is always fulfilled. In this

example, the two Kelvin-Voigt bodies are not coupled, they form a rheological model (and a simple 2M model).
If the forming elements of a rheological model (here the two KV bodies) are thermodynamically consistent, the
whole model is so (Palmov (1998)).

Case of Coupling – Two-Mechanism Model

Now, we allow a possible coupling between the KV bodies leading to an “authentic” 2M model (see Figure 2
(right)). As a consequence, the stress-strain relations (2.30) become more general. Therefore, we start with the
assumption of the free energy. Instead of (2.33), we assume

ψ =
1
2%

(
E11 ε1 : ε1 + 2E12 ε1 : ε2 + E22 ε2 : ε2

)
. (2.36)

From now on, for convenience we writeEii instead ofEi. The fourth-order tensorsE11, E12 andE22 fulfil the
symmetry conditions (2.13). Additionally, without loss of generality, we may assume thatE12 is self-adjoint in the
following sense (see remark 2.2 (i), (ii) for reasoning)

(E12)ijkl(θ) = (E12)klij(θ) for all i, j, k, l ∈ {1, 2, 3, 4}. (2.37)

It is reasonable to require that the stored energy is bounded below as a function of the (inelastic) strains (see remark
2.2 (iii)). Setting formallyE21 := E12 for convenience, we ensure this by assuming

2∑

i,j=1

Eij εi : εj ≥ 0 for all symmetric second-order tenorsε1, ε2. (2.38)

Note that it follows from (2.38) thatE11 andE22 are positive semi-definite in the sense of (2.31). Now the
back-stress relations are given by

X1 := %
∂ψ

∂ε1
= E11 ε1 + E12 ε2, X2 := %

∂ψ

∂ε2
= E12 ε1 + E22 ε2. (2.39)

Moreover, we assume the material laws to be similar as in (2.32), but written with more general back stresses

ε̇i = Hi(σ − Xi), i = 1, 2. (2.40)

As now we start with (2.40), we writeH i instead ofV −1
i as in (2.32). The Clausius-Planck inequality is the

same as in case without coupling (i.e., (2.35) withHi instead ofV −1
i ). Now, the positive semi-definiteness ofHi

ensures thermodynamical consistency.
As we will see in Section 3, the coupling in the free energy in (2.36) (and thus in (2.39)) may lead to qualitatively
new effects in comparison with the rheological model without such coupling.

613



Remarks 2.2.

(i) Regarding a fourth-order tensorE as a linear operator acting on the linear spaceR9 (i.e. the space of all
3 × 3 matrices), the adjointET of E is defined by

Eε : α = Eijklεklαij = ET
ijklαklεij = ε : ET α for all second-order tensorsε, α. (2.41)

(Summation convention is used, “:” is the scalar product inR9). Therefore, one has

ET
ijkl = Eklij for all i, j, k, l ∈ {1, 2, 3, 4}, (2.42)

and the relation (2.37) means thatE is self-adjoint.

(ii) Due to the obvious relation

E12 ε1 : ε2 + E21 ε2 : ε1 =
(
E12 + ET

21

)
ε1 : ε2 = 2 Ẽ12ε1 : ε2 (2.43)

with Ẽ12 := 1
2 (E12 + ET

21), the fourth-order tensorE12 can be assumed to be self-adjoint (in the sense of
(2.37)) without any loss of generality.

(iii) Due to the bi-linearity, the property (2.38) is equivalent to the convexity of theψ given in (2.36) as well as
to boundedness from below.

(iv) The general approach in (2.36) covers the scalar case. LettingEij = cijI (i, j = 1, 2, I unity fourth-order
tensor) with real numberscij , we obtain from (2.36):

ψ =
1
2%

(
c11 ε1 : ε1 + 2c12 ε1 : ε2 + c22 ε2 : ε2

)
. (2.44)

Moreover, the condition (2.38) means that the matrixc is positive semi-definite. A sufficient and necessary
criterion for a symmetric matrixc to be positive semi-definite is (see Wolff and Taleb (2008), e.g.)

c2
12 ≤ c11c22. (2.45)

Obviously, the condition (2.45) is sufficient and necessary for the matrixc to be bounded from below as well
as convex. A violation of condition (2.45) may lead to physically unreasonable results (we refer to Wolff
and Taleb (2008) for corresponding simulations in case of plasticity.).

2.3 General Two-Mechanism Models in Thermo-Viscoelasticity

Now we want to generalize the example of two coupled KV bodies in subsection 2.2 to a complex 2M model with
visco-elastic mechanisms. Based on (2.5) and (2.22), we start with the additive split of the bulk strain

ε = εte + εin = εte + A1 ε1 + A2 ε2, A1, A2 > 0. (2.46)

The thermo-elastic partψte is given by (2.10). Thus, the thermo-elastic strainεte is related to the stressσ by (2.17)
due to the first potential relation in (2.15). In the case of isotropy, this leads to equation (2.28).
We define the inelastic part of the free energy by

ψin(α1, α2, θ) =
1
2%

(
E11(θ) α1 : α1 + 2E12(θ) α1 : α2 + E22(θ) α2 : α2+ (2.47)

− 2(θ − θ0)G1(θ) : α1 − 2(θ − θ0)G2(θ) : α2

)
.

The quantitiesαi (i = 1, 2) are symmetric tensorial internal variables of strain type having an own evolution (see
(2.52)). The quantitiesEij are assumed to be fourth-order tensor functions fulfilling (2.38) for each temperatureθ
(see also remark 2.4 (i)). Besides,E12 is self-adjoint (for each temperature) in the sense of (2.37). The symmetric
second-order tensor functionsGi take possible thermo-stress effects into account. From (2.47) we get the back
stress relations

X1 := %
∂ψin

∂α1
= E11(θ) α1 + E12(θ) α2 − (θ − θ0)G1(θ), (2.48)

X2 := %
∂ψin

∂α2
= E12(θ) α1 + E22(θ) α2 − (θ − θ0)G2(θ). (2.49)
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We assume the following evolution laws for the inelastic (visco-elastic) strainsεi, generalizing (2.40)

ε̇i =
{(‖σi − Xi‖

Di

)mi−1 1
Di

ski
i

}
Hi(θ)(σi − Xi), i = 1, 2. (2.50)

‖A‖ :=
√

A : A is the Euclidian norm of a second-order tensorA, σi are the partial stresses defined by (2.23).
Hi are fourth-order tensor functions.mi > 0 andki are material functions possibly depending on temperatureθ,
si are the inelastic accumulations defined by (2.25).Di are scalar drag stresses (cf. Chaboche (2008)). In simple
cases,Di are positive constants. Generally, they have their evolution equations. For instance, one can assume

Ḋi = d
(1)
i −

2∑

j=1

d
(2)
ij Dj , i = 1, 2. (2.51)

d
(1)
i , d

(2)
ij are material parameters. We assume the following evolution equations for the internal variablesαi

α̇i = ε̇i −
2∑

j=1

Bij(θ) Xj , i = 1, 2 (2.52)

with given fourth-order tensor functionsBij . Note that generallyB12 6= B21. We put the usual initial conditions
for εi, Di andαi:

εi(0) = 0, Di(0) = 1, αi = 0, i = 1, 2. (2.53)

Obviously, the drag stressesDi must be positive for all times. Sufficient conditions for this are:

d
(1)
i ≥ 0, i = 1, 2,

2∑

i,j=1

d
(2)
ij aiaj ≥ 0 for all a1, a2 ∈ R. (2.54)

The Clausius-Planck inequality (2.24) can be brought into the form

(σ1 − X1) : ε̇1 + (σ2 − X2) : ε̇2 + X1 : (ε̇1 − α̇1) + X2 : (ε̇2 − α̇2) ≥ 0. (2.55)

Taking (2.50) and (2.52) into account, this inequality can be re-written as

2∑

i=1

{(‖σi − Xi‖
Di

)mi−1 1
Di

ski
i

}
Hi(θ)(σi − Xi) : (σi − Xi) +

2∑

j=1

Bij(θ) Xj : Xi ≥ 0. (2.56)

Clearly, for thermodynamical consistency of the model developed above it is sufficient to ensure the inequality
(2.56). The following theorem is easy to prove.

Theorem 2.3. The visco-elastic 2M model defined by (2.47), (2.50), (2.51), (2.52) and (2.53) is thermodynami-
cally consistent, if

(i) the fourth-order tensor functionsHi are positive semi-definite in the sense of (2.31) for each fixed admissible
temperature,

(ii) the fourth-order tensor functionsBij fulfil (2.38) for each fixed admissible temperature,

(iii) the conditions (2.54) are fulfilled.

The heat-conduction equation (2.21) can be specialized, substituting the inelastic mechanical dissipation by the
left-hand side of (2.56) and using the expressions for the back stresses (2.48), (2.49). We conclude this subsection
with commentating and extending remarks.

Remarks 2.4.

(i) The material parameters (functions)Hi, mi, ki, d
(1)
i , d

(2)
ij , Bij (i, j = 1, 2) occurring in the evolution

equations (2.50) – (2.52) may depend on temperature and further quantities likesi or invariants of the stress
tensorsσi. This dependence does not change the structure of the inequality (2.56). Thus, Theorem 2.3
remains valid, if the stated conditions are fulfilled for all admissible arguments.
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(ii) The tensor functionsEij are assumed to fulfil the condition (2.38) ensuring that the inelastic free energy is
a convex (and bounded from below too, see Remark 2.2 (iii), (iv)) function ofα1 andα2 for θ = θ0. To
ensure the boundedness below for all admissible temperatures, one has to demand

E11(θ) α1 : α1 + 2E12(θ) α1 : α2 + E22(θ) α2 : α2 − 2(θ − θ0)G1(θ) : α1+ (2.57)

− 2(θ − θ0)G2(θ) : α2 ≥ c > −∞ ∀α1, α2

and for all admissible temperaturesθ > 0. Formally, the condition (2.57) does not influence the thermody-
namic consistency. Thus, it is not an assumption in theorem 2.3.

(iii) Evolution of inelastic strainsεi: For Hi = hiI (hi > 0, I - unity tensor) (i.e., “Hi being real”), the
evolution equations (2.50) are similar to creep behavior. The parameterski define the “creep” stages:ki < 0
corresponds to primary creep,ki = 0 andki > 0 correspond to secondary and tertiary one, respectively (cf.
Naumenko and Altenbach (2007), e.g.).

(iv) Evolution of internal variablesαi:

• The equations (2.52) generalize an approach due to Robinson in visco-plasticity (for only one index)

α̇ = ε̇in − b X (2.58)

with a scalarb > 0 (cf. Arya and Kaufman (1989) for further references).

• To the authors knowledge, the idea of coupling through back stresses via a matrix(Bij) within the
evolution equations (2.52) for the internal variables of strain type has been firstly introduced in Wolff
et al. (2011).

• The approach in (2.52) is similar to non-linear kinematic hardening models in plasticity (Armstrong-
Frederick approach and extensions by many authors, see Chaboche (2008), Abdel-Karim (2010), e.g.).
The difference is that in models concerning plasticity the rate of plastic accumulation occurs in the
recovery terms

α̇ = ε̇in − b X ṡin. (2.59)

Of course, the proposal in (2.52) could be changed by

α̇i = ε̇i −
2∑

j=1

Bij Xj

√
ṡiṡj , i = 1, 2 (2.60)

without any influence on thermodynamic consistency. A reason for this changing may be a better
approximation of reality. Similar considerations can be made with respect to the evolution equations
(2.51) of the drag stressesDi.

• A further extension in (2.52) is possible, using an approach stemming from Burlet and Cailletaud
(1987):

α̇i = ε̇i −
2∑

j=1

Bij

{
ηjXj + (1 − ηj)(Xj : nj)nj

}
i = 1, 2 (2.61)

with nj := σj−Xj

‖σj−Xj‖
and0 ≤ ηj ≤ 1. This approach has been introduced for a better modelling of

plastic behavior in case of non-proportional loading. We refer to Taleb et al. (2006), Wolff and Taleb
(2008) for discussion and further extensions.

• Another extension of (2.52) consists in

α̇i = Aiε̇i −
2∑

j=1

BijXj i = 1, 2 (2.62)

with Aj being scalars or fourth-order tensors. In this case, one needs smallness conditions on the pa-
rameters involved in the model in order to ensure thermodynamic consistency (see Wolff et al. (2011)).

(v) Generalized Armstrong-Frederick relations: If the tensorsEij in (2.48) and (2.49)do not dependon the
temperatureθ, the internal variablesαi can be eliminated, using (2.52). This leads to a coupled system of
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ordinary differential equations for the back stressesXi:

Ẋ1 = E11ε̇1 − E11

{ 2∑

j=1

B1j(θ)Xj

}
+ E12ε̇2 − E12

{ 2∑

j=1

B2j(θ)Xj

}
+ (2.63)

− θ̇
(
G1(θ) − (θ − θ0)

dG1

dθ
(θ)
)
,

Ẋ2 = E12ε̇1 − E12

{ 2∑

j=1

B1j(θ)Xj

}
+ E22ε̇2 − E22

{ 2∑

j=1

B2j(θ)Xj

}
+ (2.64)

− θ̇
(
G2(θ) − (θ − θ0)

dG2

dθ
(θ)
)
.

In the case of plastic (or visco-plastic) behavior, similar relations are called Armstrong-Frederick relations.
The case of temperature-dependingEij is more complicated. It has been dealt with in Wolff et al. (2011)
for plastic mechanisms.

2.4 Special Cases and Extensions

Material Symmetries

The model developed in subsection 2.3 covers the full anisotropic case. In many cases, the materials under con-
sideration have some symmetry properties like isotropy or orthotropic symmetry (see Bertram and Olschewski
(1993), Haupt (2002), Naumenko and Altenbach (2007) for explanations, e.g.). It is well-known that in case of
isotropy the application of a fourth-order tensorE can be described by two scalars in the form

Eα = e1α + e2tr(α)I for all symmetric second-order tensorsα (2.65)

with e1, e2 ∈ R. Based on (2.65), under full isotropy, one gets the isotropic special case of the model developed in
subsection 2.3, substituting the fourth-order tensors in (2.47), (2.48), (2.49), (2.50) and (2.52) in accordance with
(2.65). Moreover, the second-order tensorsGi in (2.47), (2.48) and (2.49) should be spherical, and the thermo-
elastic behavior should be isotropic as in remark 2.1 (ii). Finally, the two mechanisms may have different symmetry
properties.

Isochoric Mechanisms

The model developed in subsection 2.3 can be modified to isochoric mechanisms, i.e. to the case

tr(εi) = 0 for i ∈ {1, 2}. (2.66)

To maintain consistency, the evolution equation (2.50) of an isochoric mechanismεi needs a correction:

ε̇i =
{(‖σi − Xi‖

Di

)mi−1 1
Di

ski
i

} (
Hi(θ)(σ

∗
i − X∗

i )
)∗

. (2.67)

In many cases, the effective partial stressσi − Xi in the first part of (2.67) is also substituted by its deviator.
Taking the relation
(
Hi(θ)(σ

∗
i −X∗

i )
)∗

: (σi−Xi) =
(
Hi(θ)(σ

∗
i −X∗

i )
)∗

: (σ∗
i −X∗

i ) = Hi(θ)(σ
∗
i −X∗

i ) : (σ∗
i −X∗

i ) (2.68)

into account, the theorem 2.3 about thermodynamic consistency remains valid. Ifbothmechanisms are isochoric,
it may be reasonable to let the internal variablesαi, back stressesXi and thermo-stress tensorsGi be traceless
too (see Wolff et al. (2010) for discussion).

Consideration of further Models in Visco-Elasticity

In a similar way as above, some other rheological models in visco-elasticity can be regarded as two- or multi-
mechanism models, possibly after bringing them into a mechanically equivalent form which is suitable for the
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multi-mechanism approach. For instance, a Burgers body is defined as two Maxwell bodies in parallel and is
equivalent to a Maxwell and a KV body in series (see Figure 3). The connection in series of a Burgers body and a
Kelvin-Voigt body is mechanically equivalent to a Hooke element, a Newton element and two Kelvin-Voigt bodies
all connected in series (see figure 4). Therefore, the whole model can be regarded as a three-mechanism model
involving one viscous and two visco-elastic mechanisms. The single Hooke element represents the thermo-elastic
strainεte and is usually not regarded as an own mechanism. Furthermore, a coupling between the two KV elements
as above is possible. Additionally, the viscosity of the Newton element may depend on the inelastic accumulation
associated with one KV body, e.g.

Figure 3: Burgers body in two mechanically equivalent forms.

Difficulties arise when trying to regard rheological models with complex models in parallel as multi-mechanism
models. The combination of the multi-mechanism approach and the theory of visco-elasticity based on rate-
dependent functionals (cf. Haupt (2002) for explanation and further references, e.g.) is a challenge for future
work.

Figure 4: Burgers body and Kelvin-Voigt body in series (left). This model is mechanically equivalent to a serial
connection of Hooke element, Newton element and two Kelvin-Voigt bodies (right).

Coupling with Visco-Plastic Mechanisms

In this study, visco-elastic mechanisms are in the focus. However, it is possible to deal with 2M models having
a visco-elastic and a plastic (or visco-plastic) mechanism. The plastic mechanism requires a flow function (yield
function) involving a corresponding norm (von Mises, e.g.) of the deviator of the effective partial stress. We refer,
e.g. to Säı (2011), Wolff et al. (2011) for details Moreover, three- and multi-mechanism models are possible with
several visco-elastic and plastic mechanisms.

3 Numerical Simulations for a Rod with Special Viscoelastic Behavior

As a numerical example we present simulations for the longitudinal movement of a visco-elastic rod behaving like
two coupled Kelvin-Voigt bodies as in Subsection 2.2. Our aim is to show that simple two-mechanism models
with linear material behavior can produce a ratcheting effect. Thus, we consider the (isothermal) spatially one-
dimensional case. Moreover, we deal with the scalar case: The fourth-order tensorsE1, E2, H1 := V −1

1 and
H2 := V −1

2 (cf. (2.40)) are equal to scalars times the fourth-order unity tensor. In other words, we assume the
following non-dimensional (scalar) parameters:

E1 = 1, E2 = 2, H1 = 10, H2 = 1, % = 60. (3.1)

The coupling parameterE12 will vary in accordance with

−
√

E1E2 = −
√

2 ≤ E12 ≤
√

E1E2 =
√

2. (3.2)

In Kröger et al. (2012), the1d model has been described in detail and the arising mathematical problem has been
solved, using the theory of Sobolev spaces and weak solutions.
Here, for simplicity we let the parameters be constant. The simulations can be performed for varying parameters
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without difficulties. The length of the rod is 1. The left end is fixed, the right end undergoes a periodic stress with
non-zero mean value:

σ(t) = 0.2 sin(t − arcsin(0.25)) + 0.05. (3.3)

The simulations have been performed with the package COMSOLr. In Figure 5, the stress-strain curves at the
right rod’s end are given. While in the regular case of coupling (i.e.,|E12| <

√
E1E2 =

√
2) a shakedown occurs,

the singular case yields a clear ratcheting effect with unbounded strain. As reported in Cailletaud and Saı̈ (1995),
a similar behavior can be observed for a plastic two-mechanism model.

Figure 5: Stress-strain curves at the right end of the rod behaving like two coupled KV bodies: Regular case with
E12 = 0.99

√
2 leading to a shakedown (left), singular case withE12 =

√
2 with ratcheting (right).

Figure 6 shows the strain evolution in all points under the given stress (3.3) at the right end. In the regular case,
in each point, the strain evolves periodically. Moreover, due to the viscous effects the strain distribution over the
rod isnot homogeneous at the same time, even for constant material parameters (see (3.1)). In the singular case,
ratcheting effects can be observed in all points.

Figure 6: Strain evolution in all rod’s points: Regular case withE12 = 0.5
√

2, singular case withE12 =
√

2
(right).

Remark 3.1. Regarding the Kelvin-Voigt body as a connection in parallel of a spring and a damper, one gets
simple mathematical models consisting of ordinary differential equations (ODE). In this case, due to (2.39) and
(2.40) the coupling of two KV bodies leads to the following system of ODE with constant coefficients

ε̇1(t) = H1(σ(t) − E11ε1 − E12ε2), (3.4)

ε̇2(t) = H2(σ(t) − E12ε1 − E22ε2). (3.5)

In the regular case|E12| <
√

E1E2, the corresponding system matrix has two negative eigenvaluesλ1 andλ2.
Solving the system (3.4), (3.5) for initial valuesεi(0) = 0 (i = 1, 2) and for given stressσ, one gets

ε(t) = ε1(t) + ε2(t) = η1e
λ1t

t∫

0

σ(τ)e−λ1τ dτ + η2e
λ2t

t∫

0

σ(τ)e−λ2τ dτ. (3.6)
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(ηi are constants.) Therefore, bounded stress yields bounded strain. Contrary, in the singular case|E12| =
√

E1E2,
one eigenvalue is zero, and the strain evolves in accordance with

ε(t) = ε1(t) + ε2(t) = η1

t∫

0

σ(τ) dτ + η2e
λt

t∫

0

σ(τ)e−λτ dτ (3.7)

(λ < 0 is the second eigenvalue.) Now, a bounded stress may lead to an unbounded strain, for instance forσ given
by (3.3).

4 Conclusion

In this study, we have applied the two-mechanism approach to thermo-visco-elasticity with internal variables.
Some aspects of two- and multi-mechanism models and references are given in Section 1. Up to now, most
applications concern metal plasticity and ratcheting. In Section 2, after providing some thermodynamical basics, a
general visco-elastic two-mechanism model has been developed generalizing the material behavior of two Kelvin-
Voigt bodies connected in series. In difference to rheological models, the coupling between the internal variables
within the free energy gives more possibilities for modeling of complex material behavior.
In Section 3, we have presented simulations for a visco-elastic rod which behaves like two coupled Kelvin-Voigt
bodies. In the singular case, an applied periodic stress with non-zero mean value lead to a ratcheting effect similar
as in metal plasticity. Some polymers show a material behavior similar to ratcheting (cf. Tao and Xia (2007), Shen
et al. (2004)).
There remain further investigations,3d simulations, and comparison with experimental data for future work.
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