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Deformation of an Elastic Spherical Shell under the Pressure of Viscous
Incompressible Fluid

N. V. Naumova, B. A. Ershov, D. N. Ivanov

The deformation of an elastic spherical shell under the pressure of viscous incompressible fluid is considered. An-
alytical formulas for calculating the components of normaland tangential deflections of the shell middle surface
are obtained. A new mathematical model of an elastic spherical shell is offered on the basis of introduction of the
Finite Element Method calculations. The comparison of the asymptotic and numerical results is performed.

1 Literature Review

The problem of flow of an absolutely rigid sphere by the viscous incompressible fluid has been solved by Stokes
in 1851. He used the approximate method of neglecting inertial terms and exterior forces in the basic equations of
motion. In the books by Kochin et al. (1965) and Landau et al. (1987) containing the classical solution of such
problem, the surface strains are not considered, and the fluid motion is carried out at low Reynolds numbers.

In reviewing the literature, it can be also seen that some works deal with the problem of a solid sphere moving in
stratified fluid (Greenslade (2000)), or with the problem of aspinning sphere that translates in the shear flow (Ben
Salem et al. (1998)).

In Mullin et al. (2005) there are results of investigation ofa novel dynamical system in which one, two or three
solid spheres are free to move in a horizontal rotating cylinder which is completely filled with a highly viscous
fluid. Prevailing part of the published papers concerning thin-shell structures (see, for example, Fung et al. (2000))
is devoted to investigation of the simplest case of strain ofa spherical shell under the action of uniform external
pressure.

Also, at present (see, for example, Kaplunov et al. (1992)) there are refined formulations of hydroelasticity prob-
lems that take into account, in particular, the influence of the fluid on the tangential motion of a shell caused by the
Poisson effect. This makes it also possible to define the no-fluid-loss condition more exactly.

In our article the problem of deformation of a thin elastic spherical shell is considered under non-uniform external
pressure from outside of a stream of the viscous incompressible fluid. A new mathematical model of an elastic
spherical shell is offered on the basis of Finite Element Method calculations. We consider the boundary condi-
tions that may occur in problems of penetrating micro-bodies into the blood vessels. In this analysis we consider
general factors such as the shell deflections magnitude in the normal and tangential directions. Analytical formu-
las for calculating the components of normal and tangentialdeflections of the shell middle surface are obtained.
A comparison of the asymptotic and numerical results is performed.

2 Introduction

We consider a viscous fluid flow about a sphere of radiusa, which is at rest and centred at the origin, at low
Reynolds numbers. In the case under consideration we takeR

R =
ρUa

µ̃

as the Reynolds number, whereρ is the fluid density,̃µ is the coefficient of dynamic viscosity. The fluid flow
has the velocityU that is constant in magnitude and direction at infinity. The direction of flow and the sphere are
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Figure 1: Spherical shell in the fluid flow.

shown in Fig. 1. The vector form of the Navier-Stokes equations, describing a motion of viscous fluid, is

∂v

∂t
+ (v · ∇)v = F− 1

ρ
∇p+ ν̃∇2v, div v = 0, (1)

wherev is the velocity vector or fluid,F is the vector of body force,∇p is the stress vector of surface force,ν̃ = µ̃
ρ

is the kinematic-viscosity coefficient. If the Reynolds numberR is sufficiently small, i. e. for a given fluid we have
either a quite low flow velocity, or a small radius of the sphere, then when integrating equation (1) one can neglect
the inertial forces as compared to the viscous forces and stress forces. Neither are the body forcesF taken into
consideration. Then a slow motion of viscous flow is defined bythe following equations

∇p = µ̃∇2v, div v = 0, (2)

Eqt. (2) should be complemented with the boundary conditions

vx = vy = vz = 0 for r = a, where r =
√
x2 + y2 + z2. (3)

Except conditions (3), the conditions at infinity

vx → U, vy → 0, vz → 0 for r → ∞ (4)

should be satisfied. Apart from the Cartesian coordinates(x, y, z) we introduce the spherical coordinates(r, θ, λ)
as follows

x = r cos θ, y = r sin θ cosλ, z = r sin θ sinλ.

Because of the symmetry of motion with respect to the axisOX, from which the angleθ is measured, we have

vr = vr(r, θ), vθ = vθ(r, θ), vλ = 0, p = p(r, θ).

In this case the equations of motion (2) appear as

∂p

∂r
= µ̃

(
∂2vr
∂r2

+
1

r2
∂2vr
∂θ2

+
2

r

∂vr
∂r

+
ctan θ

r2
∂vr
∂θ

− 2

r2
∂vθ
∂θ

− 2vr
r2

− 2 ctan θ

r2
vθ

)
,

1

r

∂p

∂θ
= µ̃

(
∂2vθ
∂r2

+
1

r2
∂2vθ
∂θ2

+
2

r

∂vθ
∂r

+
ctan θ

r2
∂vθ
∂θ

+
2

r2
∂vr
∂θ

− vθ

r2 sin2 θ

)
, (5)

∂vr
∂r

+
1

r

∂vθ
∂θ

+
2vr
r

+
vθ ctan θ

r
= 0.

Boundary conditions (3) will change to the following

vr(a, θ) = 0, vθ(a, θ) = 0, (6)

and conditions at infinity (4), as seen from Fig. 2, take the form

vr → −U cos θ, vθ → U sin θ for r → ∞. (7)
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Figure 2: Vector directions of external forcesprr, prθ and projections of fluid velocityvr, vθ.

Solutions of problem (5) — (7) are obtained in papers Kochin et al. (1965), Landau, Lifshits (1987), and are given
by

vr(r, θ) = − U cos θ

[
1− 3

2

a

r
+

1

2

a3

r3

]
,

vθ(r, θ) = U sin θ

[
1− 3

4

a

r
− 1

4

a3

r3

]
, (8)

p(r, θ) = − 3

2
µ̃
Ua

r2
cos θ.

Taking into account (8) one can calculate the components of the stress tensor. In the case under study, stresses
acting at the sphere surface from the approach flow directionare as follows

prθ = −3

2

µ̃U

a
sin θ, prr =

3

2

µ̃U

a
cos θ. (9)

3 Basic Equations

We summarize some information from Vintson (1991), Bauer etal. (1993) on the theory of elastic shells based
on the Kirchoff-Love hypothesis. Let the shell displacement along the normal to its middle surface be small as
compared to its thickness. In this connection the shell equations are linearized. Then, the equilibrium of a thin
elastic spherical shell under external pressurep = (p1, p3) is described by the dimensionless equations

dT1

dθ
+ ctan θ (T1 − T2) +N1 = p1, (10)

dN1

dθ
− (T1 + T2) +N1 ctan θ = p3, (11)

dM1

dθ
+ ctan θ (M1 −M2) = N1, (12)

the elasticity relations

M1 = µ4

(
dγ1
dθ

+ ν ctan θγ1

)
, M2 = µ4

(
ν
dγ1
dθ

+ ctan θγ1

)
, (13)

T1 = ε1 + νε2, T2 = ε2 + νε1, (14)

ε1 =
du

dθ
+ w, ε2 = u ctan θ + w (15)

and the deformation-displacement equations

γ1 = −dw

dθ
+ u. (16)
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In these equationsu andw are the components of the displacement vector,u is directed along the line tangent to
the shell generatrix andw is the component of normal displacement;T1, T2, N1, M1, M2 are the dimensionless
stress-resultants and stress-couples,p1 andp3 are the tangential and normal components of external forces, ε1, ε2
are the relative elongations,µ = h2/12 is a small parameter,h is the shell thickness,γ1 is the angle of rotation.
Tangential and normal components of external forcesp1 andp3 are obtained in papers Kochin et al. (1965), Landau
et al. (1987), and are given by

p1 = K sin θ, p3 = −K cos θ, K = −3

2

µ̃U(1− ν2)

Eha
, (17)

whereµ̃ is the dynamic viscosity coefficient,U is the velocity of fluid flow,ν is Poisson’s ratio,E is Young’s
modulus.

Between the dimensionless and the dimension variables there is the obvious connection

{Ti, N1} =
1− ν2

Eha
{T̂i, N̂1}, Mi =

1− ν2

Eha2
M̂i, {h, u, w} =

1

a
{ĥ, û, ŵ}, i = 1, 2.

Consider the problem-solving method on the interval0 ≤ θ ≤ π
2 . Further, the superscript(k), k = 1, 2, denotes

variables corresponding to the first(0 ≤ θ ≤ π
2 ) and second(π2 ≤ θ ≤ π) parts of the shell meridian, respectively.

Later, we shall omit the superscript in formulae which are valid for both parts. The expressions for (k = 2) are
obtained from (k = 1) by using the even and uneven properties of all functions. Naturally we shall assume that all
of the unknown functions are continuous and do not have exceptions in the poles.

We suppose that the shell equator (θ = π/2) is clamped so that the boundary conditions for system (10) —(16)
can be written as

u(1)(π/2) = u(2)(π/2) = 0, (18)

w(1)(π/2) = w(2)(π/2) = 0, (19)

M
(1)
1 (π/2) = M

(2)
1 (π/2) = 0, γ

(1)
1 (π/2) = γ

(2)
1 (π/2), (20)

u(1)(0) = u(2)(π) = 0, (21)

γ(1)(0) = γ(2)(π) = 0, (22)

N
(1)
1 (0) = N

(2)
1 (π) = 0. (23)

Thus, the mathematical formulation of the problem is the system of equations and conditions (10) — (16), (18) —
(23). In the zeroth-order approximation (by substitutingµ = 0 into (13)) we obtain momentless system (10) — (11)
from which one can find the tangential forcesT1 (θ) andT2 (θ)

T1 (θ) =
1

sin2 θ
(−K cos θ + C1), (24)

T2 (θ) = −T1 − p3 =
1

sin2 θ
(−K cos θ + C1) +K cos θ. (25)

HereC1 is an integration constant. The elimination of the functionw from system (15), taking into accout (14),
gives a first-order differential equation with respect to functionu

du

dθ
− ctan θ u =

1

1− ν

(
2

sin2 θ
(−K cos θ + C1)−K cos θ

)
. (26)

The solution of equation (26) has the form

u(k)(θ) =
sin θ

1− ν

[
K ctan2 θ −K ln sin θ + C

(k)
1

[
ln

[
tan

θ

2

]
− cos θ

sin2 θ

]
+ C

(k)
2

]
. (27)

The unknown constantsC(k)
1 andC(k)

2 can be found from boundary conditions (18), (21). The tangential compo-
nent of shell displacement is

u(1)(θ) =
K sin θ

1− ν

[ − cos θ

1 + cos θ
− ln [1 + cos θ]

]
, 0 ≤ θ ≤ π

2
. (28)
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The normal component of the shell displacementw taking into account (14), (15), (24), (25), (28) is

w(1) (θ) =
K

1− ν2
[1 + ν − cos θ [2 + ν + (1 + ν) ln [1 + cos θ]]] , 0 ≤ θ ≤ π

2
. (29)

It should be noted, that expression (29) forw(k) does not satisfy boundary conditions (19), because the nextterm of
the approximation is of the same order as the main termw(k). Therefore, we consider the influence of the boundary
disturbance near the clamped equator forθ = π/2.

4 Boundary Effect of the Problem

We introduce a vectorY which containes the unknown functions

Y = (u, w, T1, γ1, M1, N1)
T ,

then system (10) — (16) can be presented in vector form (30):

A(θ, µ)
∂Y(θ)

∂θ
+B(θ, µ)Y(θ) = P, (30)

whereP = (p1, p3, 0, 0, 0, 0)
T, and the matricesA(θ, µ) andB(θ, µ) take the forms

A(θ, µ) =




ctan θ(1− ν) 0 1 0 0 0
(1 + ν) 0 0 0 0 −1

0 0 0 ctan θµ4(1− ν) 1 0
1 0 0 0 0 0
0 0 0 µ4 0 0
0 1 0 0 0 0




,

B(θ, µ) =




b11 0 0 0 0 1
b21 2(1 + ν) 0 0 0 b26
0 0 0 b34 0 −1
b41 (1 + ν) −1 0 0 0
0 0 0 b54 −1 0
−1 0 0 1 0 0




.

Some elements of the matrixB(θ, µ) can be written as

b11 = − ctan2 θ(1− ν), b21 = (1 + ν) ctan θ, b26 = − ctan θ,
b34 = − ctan2 θµ4(1− ν), b41 = ν ctan θ, b54 = νµ4 ctan θν.

According to the procedure proposed by Goldenveizer (see, for example, Goldenveizer (1961)), the asymptotic
solution of the boundary value problem (30), (18) — (23), canbe expressed as

Y = Ya +Yb. (31)

The vectorYa describes the main stress-strain state and is also a solution of a momentless system obtained from

(30) whenµ = 0. In the problem we haveYa =
(
u
(k)
a , w

(k)
a , T

(k)
1a , γ

(k)
1a , 0, 0

)T
, whereu(k)

a andw
(k)
a are

obtained from (28), (29),T (k)
1a andγ(k)

1a are obtained from (14), (15)è (16).
The vectorYb describes a boundary effect near the clamped equator (θ = π/2). Following the boundary effect
method, one still requires that

Yb = Ỹ(θ) exp


 1

µ

θ∫

0

q dt


 , (32)

whereỸ = (ũ, w̃, T̃1, γ̃1, M̃1, Ñ1)
T . Substituting (31) into (30), one arrives at system (33) for the definition of

the vectorỸ

A(θ, µ)
∂Ỹ(θ)

∂θ
+

(
B(θ, µ) +

q

µ
A(θ, µ)

)
Ỹ(θ) = 0. (33)

The vectorỸ(θ) can be defined as
Ỹ(θ) = D · Ŷ(θ), (34)
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where the diagonal matrixD is given by

D =




µ1 0 0 0 0 0
0 µ0 0 0 0 0
0 0 µ1 0 0 0
0 0 0 µ−1 0 0
0 0 0 0 µ2 0
0 0 0 0 0 µ1




.

Neglecting high degrees of the small parameterµ, i. e. the valuesA(θ, µ)∂Ỹ(θ)
∂θ in system (33) can be dropped,

and taking into account (34), one has the system of homogeneous linear equations

T̂1 + ctan θ(1− ν)û = 0, ŵ(1 + ν) + ûq = 0, (35)

N̂1 + û(1− ν) = 0, M̂1 − qγ̂1 = 0, (36)

N̂1 − qM̂1 = 0, γ̂1 + qŵ = 0. (37)

Hence, the determinant of system (35) — (37) is∆ = q4 +
(
1− ν2

)
= 0, thus

q =
±1± i√

2

(
1− ν2

)1/4
, wherei is the imaginary unit. (38)

Solving system (35) — (37) one can find the eigenvectorŶ(θ). ThenỸ (θ) can be derived as

Ỹ (θ) =

(
−µ, − q

1 + ν
, ctan θ(1− ν)µ,

q2

1 + ν
µ−1,

q3

1 + ν
µ2,

q4

1 + ν
µ

)T

. (39)

Thus,wb (the second component of the vectorYb) is defined as

wb = − q

1 + ν
· exp


 1

µ

θ∫

0

q dt


 . (40)

Taking into account (38) expression (40) takes the form

wb = − 1

1 + ν

4∑

j=1

Gj · qj · exp


 1

µ

θ∫

0

qj dt


 . (41)

The numerical constantsGj can be derived by substitutingw = wa + wb into boundary conditions (19). The
substituting procedure and the definition of the constantsGj have been made in the software Mathematica 5.1
code. Then one obtains

wb(θ) = − K

1− ν
exp

((
1− ν2

)1/4 (
θ − π

2

)
√
2µ

)
cos

((
1− ν2

)1/4 (
θ − π

2

)
√
2µ

)
. (42)

5 Research Results: Comparison with Numerical Calculations

The presented numerical calculations were performed in ANSYS 13 for a spherical shell of radiusa = 0.2 m and
thicknessh = 0.002 m with the following material properties:E = 2.07 ·1011 N/m2 (Young’s modulus),ν = 0.3
(Poisson’s ratio). The velocity of fluid flow isU = 0.01 m/sec,̃µ = 1 Pa·sec is the dynamic viscosity coefficient.

Figure 3 shows the meridian-section of the spherical shell.The continous line shows the deformed shape, the
dashed one shows the undeformed shape of the shell.

The graphs of functionsu (θ) andw (θ) are presented in Fig. 4 and Fig. 5, respectively. The continous line
shows the approximate solution obtained by asymptotic formulas (28), (29), (31), (42). The dotted line shows the
numerical results obtained by using the Finite Element Method in ANSYS 13. As one can see, the shell deflections
computed by FEM (Bathe (1984)) amplify the asymptotic results.
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Figure 3: The shell shape under external pressure.

Figure 4: The graph of functionu (θ).

Figure 5: The graph of functionw (θ).
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Since the external normal to the shell is taken as the positive direction ofw, it follows from the graph (Fig. 5)
that the spherical shell is stretched. As follows from the graph,w is an uneven function (w(θ) = −w(−θ)) with
respect to the line passing across the pointθ = π/2. In the graph (Fig. 4) on can see, the problem considered is
symmetric with respect to the line passing across the pointθ = π/2 becauseu is an even function (u(θ) = u(−θ)).
These function properties were used in the numerical integrating of problem (10) — (16). For example, for the
even functions in the problem we havef(θ) = −f(π − θ), for uneven functionsf(θ) = f(π − θ). Thus, after
introducing a new variableξ = π − θ we get the system of equations identical to (10) — (16), in thevariableξ.
Therefore, we have considered the problem on the interval0 ≤ θ ≤ π

2 and used the even and uneven properties of
all functions mentioned to obtain a full solution.

6 Conclusion

As numerous calculations show, such an approximate solution obtained by using expressions (28), (29), (31), (42)
describes sufficiently accurately the shell deflections.

In conclusion we note that the simple approximation asymptotic formulas for the the shell deflections are derived.
A comparison of asymptotic and FEM results shows the reliability of the formulae presented. Besides, the ad-
vantage of the asymptotic formulas is their relative simplicity and effective applications compared with the finite
element method codes.
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