TECHNISCHE MECHANIK, 32, 6, (2012), 649 — 657
submitted: February 02, 2011

Deformation of an Elastic Spherical Shell under the Pressure of Viscous
| ncompressible Fluid

N. V. Naumova, B. A. Ershov, D. N. Ivanov

The deformation of an elastic spherical shell under the gues of viscous incompressible fluid is considered. An-
alytical formulas for calculating the components of norraat tangential deflections of the shell middle surface
are obtained. A new mathematical model of an elastic spaksitell is offered on the basis of introduction of the
Finite Element Method calculations. The comparison of thaaptotic and numerical results is performed.

1 Literature Review

The problem of flow of an absolutely rigid sphere by the viscmecompressible fluid has been solved by Stokes
in 1851. He used the approximate method of neglecting adgeims and exterior forces in the basic equations of
motion. In the books by Kochin et al. (1965) and Landau et H987) containing the classical solution of such
problem, the surface strains are not considered, and tlierflation is carried out at low Reynolds numbers.

In reviewing the literature, it can be also seen that someésvdeal with the problem of a solid sphere moving in
stratified fluid (Greenslade (2000)), or with the problem spaning sphere that translates in the shear flow (Ben
Salem et al. (1998)).

In Mullin et al. (2005) there are results of investigationaofiovel dynamical system in which one, two or three
solid spheres are free to move in a horizontal rotating dginvhich is completely filled with a highly viscous
fluid. Prevailing part of the published papers concernimg-#nell structures (see, for example, Fung et al. (2000))
is devoted to investigation of the simplest case of straia spherical shell under the action of uniform external
pressure.

Also, at present (see, for example, Kaplunov et al. (199®)e are refined formulations of hydroelasticity prob-
lems that take into account, in particular, the influencédnefftuid on the tangential motion of a shell caused by the
Poisson effect. This makes it also possible to define theuid-bss condition more exactly.

In our article the problem of deformation of a thin elastibspcal shell is considered under non-uniform external
pressure from outside of a stream of the viscous incomnes8uid. A new mathematical model of an elastic
spherical shell is offered on the basis of Finite Elementhddtcalculations. We consider the boundary condi-
tions that may occur in problems of penetrating micro-bsdo the blood vessels. In this analysis we consider
general factors such as the shell deflections magnitudeeindhmal and tangential directions. Analytical formu-
las for calculating the components of normal and tangedegélections of the shell middle surface are obtained.
A comparison of the asymptotic and numerical results isqueréd.

2 Introduction

We consider a viscous fluid flow about a sphere of radiug/hich is at rest and centred at the origin, at low
Reynolds numbers. In the case under consideration weltake

r-rUe
m

as the Reynolds number, whesds the fluid densityu is the coefficient of dynamic viscosity. The fluid flow
has the velocity/ that is constant in magnitude and direction at infinity. Tirection of flow and the sphere are
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Figure 1: Spherical shell in the fluid flow.

shown in Fig. 1. The vector form of the Navier-Stokes equetiaescribing a motion of viscous fluid, is

%+(V.V)V:F—1Vp+ﬁvzv, divv =0, (1)
p

wherev is the velocity vector or fluidF is the vector of body forceyp is the stress vector of surface forde= £

is the kinematic-viscosity coefficient. If the Reynolds rhenR is sufficiently small, i. e. for a given fluid we have
either a quite low flow velocity, or a small radius of the sgheéhen when integrating equation (1) one can neglect
the inertial forces as compared to the viscous forces ardsstorces. Neither are the body fordesaken into
consideration. Then a slow motion of viscous flow is definedheyfollowing equations

Vp =nV3v, divv =0, (2)
Eqt. (2) should be complemented with the boundary condition
Vg =vy=v,=0 for r=a, where r:\/m. )
Except conditions (3), the conditions at infinity
vy — U, vy —0, v,—0 for r—o0 4)

should be satisfied. Apart from the Cartesian coordin@ateg, =) we introduce the spherical coordinatesd, \)
as follows
xr=rcosf, y=rsinfcosA, z=rsinfsin.

Because of the symmetry of motion with respect to the &5 from which the anglé is measured, we have
v =vp(r, 0), vg=vg(r, 0), vy=0, p=np(r 0).

In this case the equations of motion (2) appear as

@ . 0%v, . iBQUT n g% n ctan@% B 3% - 2& - 2 ctan 6
or ks or? r2 002 r or r2 00  r2 00 r2 72 vo )
10p 0%y 1 0%vg 20vy ctanf Ovy 2 Jv, Vg
we‘“(w*mmﬂaﬁﬁae*mo‘m ! ©)
ov, 10vy 2v, wvgctan® B
o v o 0
Boundary conditions (3) will change to the following
ve(a, 0) =0, wvg(a, ) =0, (6)
and conditions at infinity (4), as seen from Fig. 2, take threnfo
v, — —Ucosf, vy — Usinf for r — co. @)
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Figure 2: Vector directions of external forcgs., p,¢ and projections of fluid velocity,., v.

Solutions of problem (5) — (7) are obtained in papers Kochil.e(1965), Landau, Lifshits (1987), and are given
by

3a 1a®
vp(r, ) = — U cos® [1 -5t 27#3} ’
. 3a 1d
ve(r, 6’):Usm€[1—4r_117&}7 ®)
3 Ua
p(r, 0) = — AT cos 6.

Taking into account (8) one can calculate the componenthebtress tensor. In the case under study, stresses
acting at the sphere surface from the approach flow direatieras follows

pm:_%ﬂsine, pM:§ﬂcosﬂ. )
2 a 2 a

3 Basic Equations

We summarize some information from Vintson (1991), Bauealet(1993) on the theory of elastic shells based
on the Kirchoff-Love hypothesis. Let the shell displacetaong the normal to its middle surface be small as
compared to its thickness. In this connection the shell o are linearized. Then, the equilibrium of a thin
elastic spherical shell under external pressuee (py, p3) is described by the dimensionless equations

dT
g Tetand (Ty = To) + Ny = p, (10)
dN-
d—el — (T1 + T») + Ny ctan 0 = ps, (12)
dM
d91 + ctan (M7 — Ms) = Ny, (12)
the elasticity relations
_ oafdm _ o4 dm
My =p*( —— +vctanbvy, |, My =pu"|v—— +ctanfy |, (13)
db df
Ti = &1 +vey, Th=ceo9+ ey, (14)
d
51:d—g+w, €9 =uctanf + w (15)

and the deformation-displacement equations

Y1 = _e + u. (16)



In these equations andw are the components of the displacement veetas, directed along the line tangent to
the shell generatrix and is the component of normal displacemeht; T, Ny, My, Ms are the dimensionless
stress-resultants and stress-coupbesindps are the tangential and normal components of external fpeges,

are the relative elongationg, = h?/12 is a small parameteh, is the shell thicknessy, is the angle of rotation.
Tangential and normal components of external fofgeandps are obtained in papers Kochin et al. (1965), Landau
et al. (1987), and are given by

3pU(1 —v?)

p1 = Ksinf, p3=-—-Kcosf, K=-—=

2  FEha (17)

wherey is the dynamic viscosity coefficient] is the velocity of fluid flow,v is Poisson’s ratio£ is Young's
modulus.

Between the dimensionless and the dimension variables théne obvious connection

— 2 L 1—12 ~ 1
a

1 ~ 5.
{EaNl} = {E7N1}7 M; = WML {hauaw} = {h7u7w}7 i=1,2.

FEha

Consider the problem-solving method on the intetval 0 < 7. Further, the superscrigk), k£ = 1,2, denotes
variables corresponding to the fi(gt < 6 < 7) and second? < 0 < ) parts of the shell meridian, respectively.
Later, we shall omit the superscript in formulae which arkdvéor both parts. The expressions fdr & 2) are
obtained from £ = 1) by using the even and uneven properties of all functionsufd#ly we shall assume that all
of the unknown functions are continuous and do not have e¢xcepin the poles.

We suppose that the shell equatér=€ 7/2) is clamped so that the boundary conditions for system (1Q)L6}
can be written as

uV(1/2) = u@(7/2) =0, (18)

w (7/2) = w®(7/2) =0, (29)

M (r/2) = M{P (n/2) =0, W (7/2) = 1 (x/2), (20)
uM(0) = u®(7) =0, (21)

Y1 (0) =P (m) =0, (22)

NV ) = NP () =0. (23)

Thus, the mathematical formulation of the problem is théesysof equations and conditions (10) — (16), (18) —
(23). Inthe zeroth-order approximation (by substituting: 0 into (13)) we obtain momentless system (10) — (11)
from which one can find the tangential forcEs(¢) andT; (9)

T, (0) = e(fK cosf + C1), (24)

1
T5(0) = =Ty — ps = m(chosﬁJrCl) + K cos#. (25)

Here( is an integration constant. The elimination of the functiefrom system (15), taking into accout (14),
gives a first-order differential equation with respect todtionu

Z—Z—ctan@uz% <sm229 (—K0089+C1)—KC080>. (26)

The solution of equation (26) has the form

in ¢ . 0 0 |
u®) (0) = flf - {K ctan®0 — K Insin 6 + C\¥ [m {tan 2} S } +c§")] . @7)

The unknown constan@fk) andCé’“) can be found from boundary conditions (18), (21). The tatigecompo-
nent of shell displacement is

(28)

_ Ksinf [ —cosf

uM(9) = 1+COS€—1I1[1+C059}], 0<6<

1—v
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The normal component of the shell displacemenaking into account (14), (15), (24), (25), (28) is

K
1—v2

wb (9) = l+v—cosO24+v+(1+v)ln[l+cosb]]], 0<6< (29)

It should be noted, that expression (29)4dF) does not satisfy boundary conditions (19), because theteentof
the approximation is of the same order as the main tefth. Therefore, we consider the influence of the boundary
disturbance near the clamped equatorfet /2.

4 Boundary Effect of the Problem

We introduce a vectoY which containes the unknown functions
Y = (U, w, T17 Y1, Ml) Nl)Tv
then system (10) — (16) can be presented in vector form (30):

aY ()
0

whereP = (py, p3, 0, 0, 0, 0)2 and the matricesl (6, ) and B(6, ;1) take the forms

ctanf(l—v) 0 1 0 0 0
(1+v) 0 0 0 0 -1
- 0 0 0 ctanfu*(l—v) 1 0
A®, ) = 1 00 0 0 o |’
0 0 0 it 0 0
0 1 0 0 0 0
b1 0 0 0 0 1
b21 2(1 + l/) 0 0 0 626
o 0 0 by 0 -1
Bl =14, (1+v) -1 0 0 0
0 0 0 b4 —1 O
-1 0 0 1 0 0
Some elements of the matri(0, ;1) can be written as
bi1 = —ctan?6(1 — v), bo1 = (1 +v)ctanf, bog = — ctan b,
by = —ctan? Out(1 —v), by = vctand, bss = vu ctan Qu.

According to the procedure proposed by Goldenveizer (sgesXample, Goldenveizer (1961)), the asymptotic
solution of the boundary value problem (30), (18) — (23), barexpressed as

Y=Y,+Y, (31)
The vectorY, describes the main stress-strain state and is also a sohfteomomentless system obtained from
T 3
(30) wheny = 0. In the problem we hav&’, = (uff), w,(lk), Tl(ff), ’yﬁ), 0, 0), Whereuflk) and wflk) are

obtained from (28), (29)7\" and~!*’ are obtained from (14), (1%) (16).
The vectorY,, describes a boundary effect near the clamped equétet (/2). Following the boundary effect

method, one still requires that
0
= 1
Y, =Y (0)exp (M /th) ) (32)
0

whereY = (@, w, Ty, 71, My, N1)T. Substituting (31) into (30), one arrives at system (33) fierdefinition of
the vectorY ~
oY (0 ~
A0 5+ (B + L40.00) (0) 0. (33)

The vectorY () can be defined as
Y()=D-Y(6), (34)



where the diagonal matrik is given by

gt 0 0 0 0 0

0 0 0 0 0
o 0o 0o 0 o0
P=1o 0o 0o w4t 0 o0
0 0 0 0 u2 0

0 0 0 0 0 b

Neglecting high degrees of the small parameter. e. the valuesA (6, i) agée) in system (33) can be dropped,

and taking into account (34), one has the system of homogere®ar equations

T + ctanf(1 — v)u =0, w(l+v)+ug=0, (35)
Ny +6(1 —v) =0, M, — q71 =0, (36)
Ny — ¢M, =0, A+ qi = 0. (37)

Hence, the determinant of system (35) — (37Nis= ¢* + (1 — v?) = 0, thus

q= FlE (1-— u2)1/4 ., Wherei is the imaginary unit (38)
V2
Solving system (35) — (37) one can find the eigenve&qﬁ@). ThenY (¢) can be derived as
2 3 4 T
YO = (_pu -1 _ IS SR S
Y(9)—< I Hy,ctan@(l V)u71+yu T ’1+u“> : (39)

Thus,w, (the second component of the veci@) is defined as

0
q 1
— : - . 4
wy T+ exp (N/th) (40)
0

Taking into account (38) expression (40) takes the form

4 0
1 1
wp = =1 E Gj - qj-exp (,u/qj dt) . (41)
0

j=1

The numerical constants; can be derived by substituting = w, + w; into boundary conditions (19). The
substituting procedure and the definition of the constéhthave been made in the software Mathematica 5.1
code. Then one obtains

__K (L-)" -5\ (- 0-3)
wy(f) = — T, &xP ( N ) cos ( n . (42)

5 Research Results: Comparison with Numerical Calculations

The presented numerical calculations were performed inYABI$3 for a spherical shell of radius= 0.2 m and
thicknessh = 0.002 m with the following material properties? = 2.07-10'* N/m? (Young’s modulus)y = 0.3
(Poisson’s ratio). The velocity of fluid flow I8 = 0.01 m/sec, = 1 Pa-sec is the dynamic viscosity coefficient.

Figure 3 shows the meridian-section of the spherical shEfle continous line shows the deformed shape, the
dashed one shows the undeformed shape of the shell.

The graphs of functions (¢) andw (¢) are presented in Fig. 4 and Fig. 5, respectively. The consirime
shows the approximate solution obtained by asymptotic fikem(28), (29), (31), (42). The dotted line shows the
numerical results obtained by using the Finite Element eih ANSYS 13. As one can see, the shell deflections
computed by FEM (Bathe (1984)) amplify the asymptotic ressul
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Figure 3: The shell shape under external pressure.
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Figure 4: The graph of functioa (6).
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Figure 5: The graph of functiow (6).
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Since the external normal to the shell is taken as the peditirection ofw, it follows from the graph (Fig. 5)
that the spherical shell is stretched. As follows from thepdy,w is an uneven function{(6) = —w(—0)) with
respect to the line passing across the péiet 7/2. In the graph (Fig. 4) on can see, the problem considered is
symmetric with respect to the line passing across the Poiatr /2 because: is an even function(6) = u(—0)).
These function properties were used in the numerical iategy of problem (10) — (16). For example, for the
even functions in the problem we hayéd) = —f(x — ), for uneven functiong’ (6) = f(= — 6). Thus, after
introducing a new variable¢ = = — 6 we get the system of equations identical to (10) — (16), invdugablef.
Therefore, we have considered the problem on the intérvab < 7 and used the even and uneven properties of
all functions mentioned to obtain a full solution.

6 Conclusion

As numerous calculations show, such an approximate solotitained by using expressions (28), (29), (31), (42)
describes sufficiently accurately the shell deflections.

In conclusion we note that the simple approximation asytiptormulas for the the shell deflections are derived.
A comparison of asymptotic and FEM results shows the rditglof the formulae presented. Besides, the ad-

vantage of the asymptotic formulas is their relative sigipliand effective applications compared with the finite
element method codes.
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