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Modelling of Phase Boundaries via the GAUSS-Point Method

J. Kreikemeier

In this paper an evaluation of theGAUSS-point method to describe material boundaries is presented. This numer-
ically based method uses the geometrical location of the integration points of the finite elements to decide for one
material or another. In contrast to well established alternative approaches like, e.g., the conforming mesh method,
theGAUSS-point method allows to use a fully structured finite elementmesh. It is shown in this contribution that
the number of integration points used to describe the corresponding constitutive phase is the fundamental param-
eter to control and to adjust the stiffness properties onto the real values. Numerical predictions of the effective
material properties of a single fibre embedded within a matrix material are carried out for three different finite
element mesh densities and are compared to the reference of the conforming mesh method.

1 Introduction

Fibre reinforced composites are usually made from longitudinally aligned fibres within a matrix material. The
mechanical properties of all of the constituents differ from each other, e.g., the YOUNG’s modulus of a single glass
fibre is orders of magnitudes larger compared to a standard resin material and the fracture strain of the matrix
material should be twice as large as the fracture strain of the fibres to fully exploit the fibre strength capabilities,
Altenbach et al. (1996). Thus phase boundaries emerge between one material and another and the constitutive
description of heterogeneous materials is a challenging task. The mathematical description of phase boundaries
can be treated principally by two different approaches. Thefirst one assumes that the separation of the boundaries
at the interphases during deformation is allowed. Hence phenomena like, e.g., crack opening and crack propagation
can be observed. The mathematical description is normally based on linear elastic fracture mechanics assumptions
or cohesive zone approaches. The second method assumes a perfect bonding between the material phases, thus
there is no separation of the several materials allowed. If one is interested in the constitutive description of a multi
phase material alone, the second approach is sufficient. So it is done in this paper.
For finite element based modelling approaches the use of a phase boundary conforming finite element mesh is the
most accurate possibility to take into account the heterogeneities within a material. Each finite element consists
of just one material and there is no discontinuity within thestiffness components of the element. In the work
of Löhnert (2004) the method of hanging nodes is introduced to account for phase boundaries. This method is
based on a mesh refinement in regions of phase boundaries. Thedegrees of freedom of these hanging nodes
therefore depend on the degrees of freedom of the element thehanging nodes are connected to. The definition of
an implicit level set curve to track moving interfaces was done by Osher and Sethian (1988). The phase boundary
is represented by an implicit level set curve of a higher order function. The big advantage of this method is the
possibility of an interface independent finite element meshing, see, e.g. Sukumar et al. (2001) for an interface
modelling within the framework of extended finite element method. In this presentation the level set functions are
used as enrichment functions for the additional degrees of freedom. In Figure 1 the hanging node method as well
as the level set method are principally shown.
Beside the interface modelling strategies mentioned above, the GAUSS-point method enables the observance of

interfaces or phase boundaries by the use of structured and undistorted finite element meshes, Figure 2. Therefore
the meshing effort is very low but a single finite element may appear more complex, because the definition of
more than one material within it is possible, which leads to discontinuities within the stiffness values, Zohdi et al.
(1998). First of all in Steinkopff (1995) the use of multiphase finite elements was proposed to account for a simple
finite element mesh for the adaption of the microstructural geometry of Ag-Ni composites. It was pointed out that
the exact position of phase boundaries is lost, which may cause an artificial change of constituent volume fraction.
To overcome this the use of very fine finite element meshes was propounded. In conclusion the obtained numerical
results were in a good agreement with respect to the rezoningalgorithm model at much less effort for model
generation and minimum cpu time. In Lippmann et al. (1996a) the use of multiphase finite elements to study the
failure mechanisms in AlSi cast alloys with varying microstructures is presented. Therefore experimental in-situ
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Figure 1: The hanging node method, Löhnert (2004), as well as the level set method, Osher and Sethian (1988), to
build up phase boundaries (from left).

tensile tests in conjunction with scanning electron microscopy were carried out a priori. The method of multiphase
elements is used to embed representative microstructural cells into a 2D model of the in-situ tensile test specimens.
The results therefore were in qualitatively good agreementwith the experiments. An exploitation to 3D multiphase
finite elements is given in Lippmann et al. (1996b) to simulate both a single fibre within a matrix material as
well as complex microstructures, respectively. The morphology of real constituents is introduced into the finite
element model via digitized images of the microstructure which are superimposed on the finite element mesh. By
the geometrical location of the integration points the assignment of the different materials is carried out. This was
the first 3D implementation of the multiphase finite elementsin a commercial finite element code. In Wulf et al.
(1996) ductile failure of Al(6061)/SiC composites is simulated by means of multiphase elements in conjunction
with automatic element elimination technique.
In conclusion the application of multiphase finite element method, which is called the GAUSS-point in this work,
is a promising modelling alternative to the conforming meshmethod or the hanging node method, respectively.

GAUSSian point

Phase boundary

Figure 2: The GAUSS-point method to define internal boundaries. By means of the geometrical location each
GAUSSian point can be assigned to one constitutive phase or another. The GAUSSian points within the inner of the
circle belong to one phase, whereas the rest of the GAUSSian points affiliate to the second phase, respectively.

Notation:
Throughout the text a direct tensor notation is preferred. If necessary an index notation using the summation
convention will be used to avoid the definition of new symbols. Vectors are denoted by lowercase bold letters
a = aiei whereei denote the orthonormal base vectors. A second order tensor is represented by an uppercase
bold letterA = Aijei⊗ej . Tensors of fourth order are symbolised likeC. A dot represents one scalar contraction,
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e.g.,a = A · b andA = C · ·B.

2 Evaluation of the GAUSS-Point Method

2.1 The Representative Volume Element Technology

The evaluation of the GAUSS-point method with respect to the conforming mesh method will be given for the
calculation of effective properties of a representative volume element (RVE). The RVE consists of a single fibre
which is embedded into a matrix material. The RVE technique is a methodology to obtain effective material prop-
erties both analytically and/or numerically. The foundations of RVE modelling especially regarding the minimum
size which is necessary for the RVE to be representative can be found in Bishop and Hill (1951a), Bishop and Hill
(1951b) or Hill (1952). Originally focused on the description of polycrystalline aggregates the RVE is of sufficient
size, if it contains a sufficiently large number of grains andif it is macroscopically homogeneous, Bishop and Hill
(1951a) and Bishop and Hill (1951b).
It is important to define the size of the RVE to be small enough compared to the macroscopic material point and to
be large enough to contain a sufficient number of different phases or constituents to be representative. Therefore
a possible criterion is the HILL condition which states the equivalence of the stress power calculated by means of
the micro information and by the macro information. In linear theory the volume average of the infinitesimal strain
tensor is equal to the infinitesimal strain tensor at the boundary of the RVE. When using nonlinear strain measures,
e.g., the GREEN strain tensor̄E, the stress and strain measures for homogenisation must be linear dependent on
the displacement to fulfill the HILL condition. Thus the deformation gradientF̄ in conjunction with the work
conjugated first PIOLA -K IRCHHOFFstress tensor̄T

1PK
are often used for the homogenisation procedure, Böhlke

(2001) and Kreikemeier (2011).
One important requirement on the RVE is the periodicity of the boundary surfaces, i.e., overlapping or gapping of
boundary surfaces must be prevented. In order to do so, a displacement of the form

u(X, t) = H̄(t) ·X +w(X, t) (1)

is defined, wherēH(t) denotes the mean displacement gradient,X is the material position vector andw(X, t) is
the local fluctuation vector, respectively. In the case of homogeneous displacement boundary conditions spatially
constant or linear fields of displacement are prescribed on all boundaries of the RVE. In the case of a homogeneous
material this results in a deformation of the RVE which wouldbe constant in space or homogeneousw(X, t) = 0,
Bertram (2008). The most accurate results are normally achieved by applying periodic boundary conditions, so it
is done here. The nodal displacementsu

A anduB on opposing surface pointsA andB of the RVE should be

u
A =H̄ ·X

A +w(XA) and (2)

u
B =H̄ ·X

B +w(XB). (3)

It is now assumed thatw(XA) = w(XB) must hold for periodicity reasons, thus

u
B = u

A + H̄ · (XB
−X

A) = u
A + H̄ ·∆X. (4)

Furthermore the equilibrium of the stress vector field on opposite boundaries of the RVE is assumed, too

t
A(X, t) = −t

B(X, t). (5)

A sketch of periodic boundary conditions is shown in Figure 3.

u
A u

B = u
A + H̄ ·∆X

Figure 3: Definition of periodic boundary conditions to ensure the periodicity of the RVE, Kreikemeier (2011).
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2.2 Numerical Model Adaption

As pointed out above the evaluation of the GAUSS-point method with respect to the conforming mesh method is
carried out on a single fibre RVE with a square fibre arrangement. The intention is to estimate the corresponding
effective stiffness values for different fibre volume fractions and different mesh sizes, respectively. The fibre
volume fractions range fromϕ = 0.1 to ϕ = 0.7 with an incrementation of∆ϕ = 0.1. The fibre is made from
isotropic glass with

Ef = 70000 MPa, (6)

νf = 0.4. (7)

As matrix material an isotropic and unsaturated polyester resin is assumed with

Em = 3500 MPa, (8)

νm = 0.3. (9)

On the surfaces of the RVE’s periodic displacement boundaryconditions are defined to ensure no overlapping
or gapping on neighboring RVE surfaces. When using long glassfibre reinforced plastic materials the effective
material behaviour exhibits transverse isotropy, i.e., there are five independent material parameters necessary to
describe the constitutive relation within a closed manner.The effective constitutive relation is then given by

T̄ = C̄ · ·Ē, (10)

whereT̄ denotes the effective second PIOLA -K IRCHHOFFstress tensor. This relation can be simplified, if vector
matrix notation is used
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It is pointed out here, that the use of a normalisation of the basis dyads is always recommended to ensure an
orthonormal basis system. Due to use of vector matrix notation just to represent the effective material parameters
a normalisation is omitted here. In order to identify the characteristics of the GAUSS-point method three different
mesh densities with1× 10× 10, 1× 20× 20 as well as1× 30× 30 finite elements of the RVE are investigated,
respectively. The longitudinal fibre direction is assumed to be the1-axis.
The assessment of the effective material properties obtained is carried out by means of the relative error

∆rel =
C̄GP

ijkl − C̄CM
ijkl

C̄CM
ijkl

, (12)

whereC̄GP
ijkl denote the effective material properties obtained by the GAUSS-point method and̄CCM

ijkl are the effec-
tive properties estimated by the conforming mesh method, respectively.

The finite element meshes of the GAUSS-point method and of the conforming mesh method for a fibre volume
fraction ofϕ = 0.10 andϕ = 0.70 are shown in Figures 4 and 5. As can be seen the finer the mesh of the
RVE defined by the GAUSS-point method the more GAUSSian points are used to build up the distinct constitutive
phases. A problem regarding the GAUSS-point method must be seen within the too stiff constitutiveresponse on
outer loading especially in the transverse fibre directions, which makes the use of this method always a challenging
task, Zohdi et al. (1998).
We will see below the regimes of validity with respect to the mesh sizes compared to the conforming mesh method.

2.2.1 Comparison of the Effective Properties

In the following Figures the effective material propertiesobtained by the conforming mesh method and by the
GAUSS-point method as well as the corresponding relative errors are shown. The stiffness values on the left hand
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Figure 4: Two GAUSS-point meshes and the conforming mesh forϕ = 0.10.

Figure 5: Two GAUSS-point meshes and the conforming mesh forϕ = 0.70.

side of the Figures are given in [MPa]. As can be seen there is an excellent agreement of the effective stiffness
valuesC̄1111 in fibre direction with respect to the conforming mesh methodfor a mesh size of1×30×30 elements
for all fibre volume fractions, Figure 6. The relative error is always∆rel < 0.03. In the case of1× 20× 20 mesh
size the corresponding relative error is∆rel < 0.03, too. Only for a fibre volume fraction ofϕ = 0.70 there is a
notable deviation and the relative error raises to∆rel > 0.15. As expected the mesh size of1×10×10 delivers the
most sensitive results. Up to a fibre volume fraction ofϕ < 0.52 the predictions are within an excellent agreement.
Thereafter however the relative error raises to∆rel

≈ 0.30.

In contrast to the effective longitudinal stiffness value prediction the predictions of the effective transverse stiff-
ness values̄C2222 andC̄3333 as well as the effective shearing componentsC̄1122, C̄1133, C̄2233 and the components
C̄1212 andC̄1313 show large discrepancies for the RVE with1 × 10 × 10 meshing and fibre volume fractions of
ϕ = 0.21 andϕ = 0.41, 7 to 10. The fibre geometry approximation in these cases is a rather rough one, i.e., the
geometry is not of circular cross section but appears more cross like, Figure 11, which obviously strongly influ-
ences the transverse material properties. Thus the geometry approximation is not that smooth and the constitutive
response is too stiff in transverse fibre direction and in shearing, respectively.
To overcome this phenomenon a finer mesh to define the RVE can beused. One notices a slight overestimation
within all transverse effective stiffness values for a meshsize of1 × 20 × 20 elements up toϕ = 0.6. If ϕ > 0.6
the effective stiffness value prediction differs from the effective values obtained by the conforming mesh method.
As expected the1 × 30 × 30 meshing delivers the best effective property predictions for the transverse stiffness
values as well as for the shearing components, again. The relative errors therefore are all∆rel < 0.03. This mesh-
ing seems to be the minimum discretisation which is necessary to predict effective stiffness values for a single fibre
RVE within a sufficient manner for all fibre volume fractions.
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Figure 6: Comparison of̄C1111 values predicted by GAUSS-point method and conforming mesh method, respec-
tively.
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Figure 7:C̄2222 andC̄3333 values predicted by GAUSS-point method and conforming mesh method, respectively.
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Figure 8:C̄1122 andC̄1133 values predicted by GAUSS-point method and conforming mesh method, respectively.
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Figure 9:C̄2233 values predicted by GAUSS-point method and conforming mesh method, respectively.
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Figure 10:C̄1212 andC̄1313 values predicted by GAUSS-point method and conforming mesh method, respectively.

Figure 11: Fibre geometry approximation by different mesh sizes forϕ = 0.21.
When using the1× 10× 10 discretisation the fibre geometry strongly differs from thecircular geometry (left). If
1 × 20 × 20 elements are used to discretise the RVE the fibre geometry approximation narrows the real circular
fibre geometry in a more sufficient way.
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3 Conclusion and Outlook

In this paper an evaluation of the GAUSS-point method to describe phase boundaries was given. Indeed this method
is usually of less quality compared to the conforming mesh method or other approaches, it can be advantageous to
apply.
For the evaluation of this method a representative volume element (RVE) was used to estimate the effective mate-
rial properties of a single glass fibre embedded within a matrix material for different fibre volume fractions as well
as different finite element mesh densities. The predictionsof the effective material properties in fibre direction
were satisfying for all mesh sizes up to a fibre volume fraction ofϕ = 0.52. In contrast to this a strong dependence
on the mesh size was revealed for the effective properties inthe transverse fibre directions. Here the coarse meshes
of 1 × 10 × 10 and1 × 20 × 20 delivered very stiff predictions compared to the conforming mesh method. Just
the results obtained by the1× 30× 30 RVE showed a very good agreement with respect to the conforming mesh
approach in the transverse fibre directions, too. The relative errors were less than0.03. One concludes that the
1× 30× 30 meshing seems to be the minimum discretisation to predict the effective material properties of a single
fibre RVE for all fibre volume fractions within a sufficient manner.
Further work focuses on the investigation of the GAUSS-point method in the case of more complex micro structures,
e.g., particle reinforced composites or short fibre reinforced composites in connection with multi scale modelling
strategies for the constitutive modelling.
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