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Modelling of Phase Boundariesviathe Gauss-Point M ethod

J. Kreikemeier

In this paper an evaluation of thBauss-point method to describe material boundaries is preseritéis numer-
ically based method uses the geometrical location of thegiation points of the finite elements to decide for one
material or another. In contrast to well established altatime approaches like, e.g., the conforming mesh method,
the GAuss-point method allows to use a fully structured finite elenreash. It is shown in this contribution that
the number of integration points used to describe the cpording constitutive phase is the fundamental param-
eter to control and to adjust the stiffness properties oht® real values. Numerical predictions of the effective
material properties of a single fibre embedded within a nxatniaterial are carried out for three different finite
element mesh densities and are compared to the referenkhe obhforming mesh method.

1 Introduction

Fibre reinforced composites are usually made from longitalty aligned fibres within a matrix material. The
mechanical properties of all of the constituents diffenireach other, e.g., thedUNG’'s modulus of a single glass
fibre is orders of magnitudes larger compared to a standaid meaterial and the fracture strain of the matrix
material should be twice as large as the fracture straineofitites to fully exploit the fibre strength capabilities,
Altenbach et al. (1996). Thus phase boundaries emerge éetarge material and another and the constitutive
description of heterogeneous materials is a challengisig thhe mathematical description of phase boundaries
can be treated principally by two different approaches. fiflseone assumes that the separation of the boundaries
at the interphases during deformation is allowed. Henca@ena like, e.g., crack opening and crack propagation
can be observed. The mathematical description is norma#gd on linear elastic fracture mechanics assumptions
or cohesive zone approaches. The second method assumdsa bending between the material phases, thus
there is no separation of the several materials allowechdfis interested in the constitutive description of a multi
phase material alone, the second approach is sufficient.i&dane in this paper.

For finite element based modelling approaches the use ofseffrundary conforming finite element mesh is the
most accurate possibility to take into account the hetereigies within a material. Each finite element consists
of just one material and there is no discontinuity within gigfness components of the element. In the work
of Lohnert (2004) the method of hanging nodes is introduced ¢owatt for phase boundaries. This method is
based on a mesh refinement in regions of phase boundariesdebinees of freedom of these hanging nodes
therefore depend on the degrees of freedom of the elemehttiging nodes are connected to. The definition of
an implicit level set curve to track moving interfaces waseby Osher and Sethian (1988). The phase boundary
is represented by an implicit level set curve of a higher pofdection. The big advantage of this method is the
possibility of an interface independent finite element nmeghsee, e.g. Sukumar et al. (2001) for an interface
modelling within the framework of extended finite elementineel. In this presentation the level set functions are
used as enrichment functions for the additional degreeeetibm. In Figure 1 the hanging node method as well
as the level set method are principally shown.

Beside the interface modelling strategies mentioned ghibeeGauss-point method enables the observance of
interfaces or phase boundaries by the use of structuredratistarted finite element meshes, Figure 2. Therefore
the meshing effort is very low but a single finite element mppear more complex, because the definition of
more than one material within it is possible, which leadsiszahtinuities within the stiffness values, Zohdi et al.
(1998). First of all in Steinkopff (1995) the use of multigledinite elements was proposed to account for a simple
finite element mesh for the adaption of the microstructueaingetry of Ag-Ni composites. It was pointed out that
the exact position of phase boundaries is lost, which magecan artificial change of constituent volume fraction.
To overcome this the use of very fine finite element meshes meg®pnded. In conclusion the obtained numerical
results were in a good agreement with respect to the rezalgwithm model at much less effort for model
generation and minimum cpu time. In Lippmann et al. (1996a)use of multiphase finite elements to study the
failure mechanisms in AlSi cast alloys with varying microstures is presented. Therefore experimental in-situ
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Figure 1: The hanging node methodjinert (2004), as well as the level set method, Osher andB€t088), to
build up phase boundaries (from left).

tensile tests in conjunction with scanning electron micopy were carried out a priori. The method of multiphase
elements is used to embed representative microstrucedtgiicto a 2D model of the in-situ tensile test specimens.
The results therefore were in qualitatively good agreem#htthe experiments. An exploitation to 3D multiphase
finite elements is given in Lippmann et al. (1996b) to simalbbth a single fibre within a matrix material as
well as complex microstructures, respectively. The molqin of real constituents is introduced into the finite
element model via digitized images of the microstructuréctviare superimposed on the finite element mesh. By
the geometrical location of the integration points thegrasient of the different materials is carried out. This was
the first 3D implementation of the multiphase finite eleménta commercial finite element code. In Wulf et al.
(1996) ductile failure of Al(6061)/SiC composites is simtgd by means of multiphase elements in conjunction
with automatic element elimination technique.

In conclusion the application of multiphase finite elemeetimod, which is called the & ss-point in this work,

is a promising modelling alternative to the conforming mesdthod or the hanging node method, respectively.

GAussian point

Phase boundary

/

Figure 2: The @uss-point method to define internal boundaries. By means of #gmargetrical location each
GAussian point can be assigned to one constitutive phase or andthe Gaussian points within the inner of the
circle belong to one phase, whereas the rest of thesaian points affiliate to the second phase, respectively.

Notation:

Throughout the text a direct tensor notation is preferrddnecessary an index notation using the summation
convention will be used to avoid the definition of new symbolectors are denoted by lowercase bold letters
a = a;e; Wheree; denote the orthonormal base vectors. A second order temgepliesented by an uppercase
bold letterA = A;;e; ®e;. Tensors of fourth order are symbolised likeA dot represents one scalar contraction,
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eg.,.a=A-bandA=C--B.

2 Evaluation of the GAuss-Point Method
2.1 TheRepresentative Volume Element Technology

The evaluation of the @uss-point method with respect to the conforming mesh methodl vélgiven for the
calculation of effective properties of a representativeine element (RVE). The RVE consists of a single fibre
which is embedded into a matrix material. The RVE technigueriethodology to obtain effective material prop-
erties both analytically and/or numerically. The foundasi of RVE modelling especially regarding the minimum
size which is necessary for the RVE to be representative edound in Bishop and Hill (1951a), Bishop and Hill
(1951b) or Hill (1952). Originally focused on the descmptiof polycrystalline aggregates the RVE is of sufficient
size, if it contains a sufficiently large number of grains &ritlis macroscopically homogeneous, Bishop and Hill
(1951a) and Bishop and Hill (1951b).

It is important to define the size of the RVE to be small enouhgared to the macroscopic material point and to
be large enough to contain a sufficient number of differemispls or constituents to be representative. Therefore
a possible criterion is the IHL condition which states the equivalence of the stress poaleulated by means of
the micro information and by the macro information. In lindgeory the volume average of the infinitesimal strain
tensor is equal to the infinitesimal strain tensor at the Hamnof the RVE. When using nonlinear strain measures,
e.g., the REEN strain tensotE, the stress and strain measures for homogenisation mustdze tHependent on
the displacement to fulfill the HL condition. Thus the deformation gradieAtin conjunction with the work
conjugated first ®LA-KIRCHHOFFstress tensdl’' " are often used for the homogenisation proceduélig
(2001) and Kreikemeier (2011).

One important requirement on the RVE is the periodicity efboundary surfaces, i.e., overlapping or gapping of
boundary surfaces must be prevented. In order to do so, adéspent of the form

w(X,t) = H(t) X +w(X,t) @)

is defined, whereH (¢) denotes the mean displacement gradighis the material position vector and( X, t) is

the local fluctuation vector, respectively. In the case ahbgeneous displacement boundary conditions spatially
constant or linear fields of displacement are prescribedldmoandaries of the RVE. In the case of a homogeneous
material this results in a deformation of the RVE which wolddconstant in space or homogeneaysX , ¢) = 0,
Bertram (2008). The most accurate results are normallyesetiby applying periodic boundary conditions, so it
is done here. The nodal displacemeatsandu” on opposing surface points and B of the RVE should be

u? =H - X" +w(X*)and 2)
uf =H - XP 4+ w(XP). (3)

Itis now assumed that(X“) = w(X?) must hold for periodicity reasons, thus
uwP=u+ H - (XP - XY =u'+H AX. (4)
Furthermore the equilibrium of the stress vector field onogite boundaries of the RVE is assumed, too
(X, t) = —tP(X,1). (5)

A sketch of periodic boundary conditions is shown in Figure 3

uA BZ’U,A—‘F]?['AX

Figure 3: Definition of periodic boundary conditions to eresthe periodicity of the RVE, Kreikemeier (2011).
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2.2 Numerical Model Adaption

As pointed out above the evaluation of the&s-point method with respect to the conforming mesh method is
carried out on a single fibre RVE with a square fibre arrangéniére intention is to estimate the corresponding
effective stiffness values for different fibre volume fiaas and different mesh sizes, respectively. The fibre
volume fractions range from = 0.1 to ¢ = 0.7 with an incrementation oAy = 0.1. The fibre is made from
isotropic glass with

E; = 70000 MPa, (6)

Vf = 0.4. (7)
As matrix material an isotropic and unsaturated polyestgnris assumed with

E,, = 3500 MPa, (8)

U = 0.3. )

On the surfaces of the RVE’s periodic displacement boundanditions are defined to ensure no overlapping
or gapping on neighboring RVE surfaces. When using long dlbss reinforced plastic materials the effective
material behaviour exhibits transverse isotropy, i.eerg¢hare five independent material parameters necessary to
describe the constitutive relation within a closed manmbe effective constitutive relation is then given by

T=C.-E, (10)

whereT denotes the effective secondoRA -KIRCHHOFF stress tensor. This relation can be simplified, if vector
matrix notation is used

Ty Cini Chzz Cuze 0 0 0 Ey
T Cozo2 Caz33 0 0 0 B
Ts3 Ca222 0 0 0 Es3
22 = . - 11
Ty Ci2i2 0 0 Eys (11)
Ty Ci212 0 Eqs
To3 3 (Ca222 — C233) Eas

It is pointed out here, that the use of a normalisation of thsi®dyads is always recommended to ensure an
orthonormal basis system. Due to use of vector matrix raigtist to represent the effective material parameters
a normalisation is omitted here. In order to identify thereleteristics of the Guss-point method three different
mesh densities with x 10 x 10, 1 x 20 x 20 as well asl x 30 x 30 finite elements of the RVE are investigated,
respectively. The longitudinal fibre direction is assunwbé thel-axis.
The assessment of the effective material properties aiddscarried out by means of the relative error
OGP _ ACM
Arel — Tk __ijkl (12)
CSM
whereC{7{; denote the effective material properties obtained by the <&-point method and’;;}}] are the effec-
tive properties estimated by the conforming mesh methapeaetively.

The finite element meshes of theaGss-point method and of the conforming mesh method for a fibremwe
fraction of ¢ = 0.10 ande = 0.70 are shown in Figures 4 and 5. As can be seen the finer the mesie of t
RVE defined by the Guss-point method the more @ussian points are used to build up the distinct constitutive
phases. A problem regarding thexGss-point method must be seen within the too stiff constitutiesponse on
outer loading especially in the transverse fibre directiarisch makes the use of this method always a challenging
task, Zohdi et al. (1998).

We will see below the regimes of validity with respect to thesim sizes compared to the conforming mesh method.

2.2.1 Comparison of the Effective Properties

In the following Figures the effective material propert@stained by the conforming mesh method and by the
Gauss-point method as well as the corresponding relative erneshown. The stiffness values on the left hand
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Figure 5: Two Qwss-point meshes and the conforming meshgos 0.70.

side of the Figures are given in [MPa]. As can be seen thera exeellent agreement of the effective stiffness
valuesC}11; in fibre direction with respect to the conforming mesh metfusé mesh size of x 30 x 30 elements
for all fibre volume fractions, Figure 6. The relative erreaiwaysA™! < 0.03. In the case of x 20 x 20 mesh
size the corresponding relative errorA$® < 0.03, too. Only for a fibre volume fraction @b = 0.70 there is a
notable deviation and the relative error raiseAts' > 0.15. As expected the mesh sizelok 10 x 10 delivers the
most sensitive results. Up to a fibre volume fractiogof 0.52 the predictions are within an excellent agreement.
Thereafter however the relative error raiseg\s’ ~ 0.30.

In contrast to the effective longitudinal stiffness valuediction the predictions of the effective transversd-stif
ness value€s92 andCsssz as well as the effective shearing componeitss, C1133, Caa33 and the components
C1212 andCi315 show large discrepancies for the RVE withx 10 x 10 meshing and fibre volume fractions of
p = 0.21 andy = 0.41, 7 to 10. The fibre geometry approximation in these casesatharrough one, i.e., the
geometry is not of circular cross section but appears margsdike, Figure 11, which obviously strongly influ-
ences the transverse material properties. Thus the gepapgiroximation is not that smooth and the constitutive
response is too stiff in transverse fibre direction and iraghg, respectively.

To overcome this phenomenon a finer mesh to define the RVE casdik One notices a slight overestimation
within all transverse effective stiffness values for a meigle of1 x 20 x 20 elements up tew = 0.6. If ¢ > 0.6

the effective stiffness value prediction differs from thHfeetive values obtained by the conforming mesh method.
As expected thé x 30 x 30 meshing delivers the best effective property predictiaidtie transverse stiffness
values as well as for the shearing components, again. Taveeerrors therefore are all"! < 0.03. This mesh-
ing seems to be the minimum discretisation which is necgssaredict effective stiffness values for a single fibre
RVE within a sufficient manner for all fibre volume fractions.
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Figure 6: Comparison af';;1; values predicted by @sss-point method and conforming mesh method, respec-
tively.

60000 — 1,6 4
| —®— Conforming mesh { —®—1x10x10 elements
< 50000 —@— Gauss point method, 10 elements ® 1,4—_ —A— 1x20x20 elements
o | —A— Gauss point method, 20 elements _ 124 —V—1x30x30 elements
—v— i A B
z 200004~V Gauss point method, 30 elements = 10
a 1 [ g ]
A 2 084
3 30000 | 2]
° 1 1 .:T:j 0.6
S 20000 '/ 04
Q ] = ]
- 0,24
R r/*ﬁ'/ﬁ' ] ﬁ\ —v—Y
l@) 1 0.0 x
0 T T T T T T T T T T T 1 T T T T T T
0,1 0,2 03 0,4 0,5 0,6 0,7 0,1 0,2 0.3 0‘4 0,5 0,6 0,7
Fibre volume fraction [-] Fibre volume fraction [-]

Figure 7:Ca220 andCs333 values predicted by 8uss-point method and conforming mesh method, respectively.
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Figure 8:C1 122 andC},33 values predicted by 8ss-point method and conforming mesh method, respectively.
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Figure 9:Cs33 values predicted by 8uss-point method and conforming mesh method, respectively.
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Figure 10:C1512 andC3;3 values predicted by @ss-point method and conforming mesh method, respectively.
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Figure 11: Fibre geometry approximation by different megbsforp = 0.21.

When using thd x 10 x 10 discretisation the fibre geometry strongly differs from tireular geometry (left). If
1 x 20 x 20 elements are used to discretise the RVE the fibre geometrp@pration narrows the real circular
fibre geometry in a more sufficient way.
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3 Conclusion and Outlook

In this paper an evaluation of theaBss-point method to describe phase boundaries was given. ditieemethod

is usually of less quality compared to the conforming mesthotkor other approaches, it can be advantageous to
apply.

For the evaluation of this method a representative volurament (RVE) was used to estimate the effective mate-
rial properties of a single glass fibre embedded within aimataterial for different fibre volume fractions as well
as different finite element mesh densities. The predictaiitbe effective material properties in fibre direction
were satisfying for all mesh sizes up to a fibre volume fractiby = 0.52. In contrast to this a strong dependence
on the mesh size was revealed for the effective propertitmitransverse fibre directions. Here the coarse meshes
of 1 x 10 x 10 and1 x 20 x 20 delivered very stiff predictions compared to the conforgninesh method. Just
the results obtained by tHex 30 x 30 RVE showed a very good agreement with respect to the configrmiesh
approach in the transverse fibre directions, too. The velairors were less than03. One concludes that the

1 x 30 x 30 meshing seems to be the minimum discretisation to predéctffiective material properties of a single
fibre RVE for all fibre volume fractions within a sufficient nmer.

Further work focuses on the investigation of theu@ s-point method in the case of more complex micro structures,
e.g., particle reinforced composites or short fibre reicédrcomposites in connection with multi scale modelling
strategies for the constitutive modelling.
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