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Some New Aspects of the Invariants of the Rate of Deformation Tensor
and their Application on Viscoelastic Polymer Melts

A. Abid (Al-Baldawi), O. Wiinsch

Non-Newtonian fluids, such as polymer melts, are modeled with viscoelastic models. In this work the use of the
anisotropic mobility tensor of Giesekus and Phan Thien and Tanner in order to generalize the Maxwell model
is discussed. Similarities in one-dimensional flows are needed to reproduce real fluid behavior under shear and
elongation deformations. But the fact of different anisotropic mobility tensors in the models shows that there are
also differences in two and three-dimensional viscoelastic flows. Therefore, we introduce a flow type parameter,
using the invariants of the rate of deformation tensor. Here, the flow type is fully independent of the material
model and therefore universally deployable. The numerical framework is done with OpenFOAM a Finite Volume
based library. The stabilization of the simulations is carried out applying the Viscous Formulation and the Discrete
Elastic Viscous Stress Splitting methods. A 4:1 contraction benchmark is done over a wide range of the Deborah
number in order to show the stability of the methods used. Furthermore, the flow type parameter is applied on a
Cross-Slot geometry. Here, the influence of the elasticity on the Euler velocity field and the rate of deformation
tensor are shown to be dependent on the model used.

1 Introduction and Viscoelastic Modeling Approaches

In many fields of engineering processes, numerical simulations are used to predict the fluid flow in new designs
of technical apparatus. Along with the complex geometries, the behavior of highly viscous fluids complicates the
calculations. Fluids like polymer melts show not only viscous but also elastic properties which can influence the
flow pattern in a dramatic manner. For instance, the fabrication of polymer sheets is usually started in a screw
extruder, and the simulation is influenced if elasticity is taken into account, see Wiinsch (2009).

In order to describe the real material behavior it is necessary to use models that relate the polymer part of the extra
stress Tensor T, to the material time derivative of the Green’s strain tensor E, respectively the rate of deformation
tensor D. Most models in literature specify this relation in a phenomenological way, see Thien (1978); Thien and
Tanner (1977); Giesekus (1982); Bird et al. (1987); Bohme (2000).

In order to describe fluids with memory effects, an integral relationship over the time history is possible. Under
some assumptions (isotropic material behavior, incompressibility, linear relation in the stress tensor and fading
memory), a Walters Fluid A results. It can be written in the form

T, —/O.OOK(S)M ds. (1)

Ds

The relaxation function K (s) depends on the retarded time s. When a specified function K (s) = 27,/ Ae~*/* and
a point in the past time ¢ = ¢t — s depending of the current time ¢ are introduced, eq. (1) leads to

20y _ b ~ ~
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Here 1), and A are material parameters and F - Yand FgT denote the inverse of the relative deformation gradient and
its transpose. Derivating eq. (2) with respect to the current time leads to the differential form of the contravariant
Maxwell model, see Giesekus (1994). In order to expand the modeling possibilities of eq. (2), a generalized
Maxwell model can be introduced as

O (n) -V
T, + AT, + Q(Tp) Ty, = 2m,D 4+ AD. 3)
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Q is a non-linear tensor function of different order and is called the anisotropic mobility tensor, A is an addi-
0] v

tional material constant. A and A denote objective time derivatives of an arbitrary tensor A and are defined as a

Schowalter time derivative

A—A+¢AD+DA), ce0,2). @)

The upper convected Oldroyd time derivative, with £ = 0, is given by

X:E‘Fv-(V@A)—(VV)TA—AVV, %)
which is built with the gradient of the Euler velocity field (Vv)T and its transpose. The parameter ¢ controls
the form of the time derivative. For ¢ = 1, the Jaumann time derivative results and for £ = 2, we get the lower
convected Oldroyd time derivative. It is also possible to use a rational number inside the interval [0,2] for £&. Note
that the Newtonian fluid is also included in eq. (3) by setting A = A= (Q) =0.

Differential models are very comfortable to use with numerical implantation techniques. Differential models need
only the current time to calculate the actual stress. By contrast, the integral models, e. g. eq. (1), require the whole
time history to calculate the extra stress tensor. Nevertheless, using differential models leads to numerical diffi-
culties because of the hyperbolic nature of the differential viscoelastic models, see Keyfitz and Shearer (1990) and
Joseph and Yoo (1985). This leads to the formulations of splitting methods. In Rajagopalan et al. (1990); Joseph
et al. (1985); Guéntte and Fortin (1995), stress splitting in a Newtonian solvent and polymer solvent is introduced
(Viscous Formulation Method) in order to keep the ellipticity of the governing equations of continuity, momentum
and hyperbolic constitutive model. Further developments are the Elastic Viscous Stress Splitting Method (EVSS)
and Explicitly Elliptic Momentum Equation Method (EEME), that were introduced in Renardy (1985) and used in
Jin et al. (1991) for a special type of differential models. All of the works mentioned above use Finite Elements
Methods (FEM) to discretize the calculation domain. In recent literature the use of Finite Volume Methods (FVM)
is increasing, see Xue et al. (1998) and Muniz et al. (2008). One benefit of the FVM techniques is that they handle
the high element numbers in numerical meshes well. And a fine discretization is necessary to catch the elliptic
properties, see Rajagopalan et al. (1990). In Alves et al. (2003), the FVM is used successfully in conjunction
with the Viscous Formulation (VF). Two special material models (Oldroyd-B and Phan-Thien-Tanner (PTT)) are
benchmarked with results of the literature over a wide range of viscoelastic properties, e. g. the Deborah number
De.

The purpose of the present work is to provide numerical studies about the discretization methods that are used to
solve viscoelastic fluid flows. A benchmark to Alves et al. (2003), Aboubacar et al. (2002) and Wiinsch (2009)
is done and will be elucidated later. To show differences between Giesekus and PTT fluids, we present two and
three-dimensional simulations. In the case of 3D simulations, we used the invariants of the rate of deformation
tensor D to introduce a new property to visualize the flow type. Here the difference to the Newtonian case is shown
to be significant.

2 The Anisotropic Mobility Tensor Generalization

In the literature, many governing equations exist to describe the viscoelastic polymer part of the extra stress tensor
T}, as a function of the rate of deformation tensor D in a phenomenological way. Basically, the equations can be
classified in models which are linear or nonlinear in the extra stress tensor. By way of example, the Oldroyd eight
constant fluid Oldroyd (1950) and the Oldroyd with the Giesekus extension fluid (Giesekus (1994)) are mentioned.
Furthermore, previous linear models, such as Maxwell-, Oldroyd- or Jeffrey fluids, are able to reproduce some
rheological behavior. However, linear models show some weakness in decribing fluids like polymer melts. In order
to model real fluid behavior for high deformation rates, additional nonlinear quantities in eq. (3) are necessary.
Because of restrictions in the experimental identification, we prefer to describe material behavior with models
that include as few parameters as possible. In the present work, the models of Giesekus (1982) and two types of
Phan-Thien-Tanner-models (PTT) Thien (1978); Thien and Tanner (1977) are used with A = 0 in eq. (3). These

n
nonlinear additions (Q) (Tp) are described in Table 1. Note that for the Giesekus model, the additional function is
tensorial and a scalar quantity in case of the PTT fluids. Furthermore, for an arbitrary tensor A the product is given
by (AA)i; = AimAn;j and the trace of it is tr [A] = A;;. Here the new material parameter « is able to control
the influence of the nonlinearity, such as shear thinning and elongational hardening in case of the Giesekus and the
linear PTT fluids and even elongational softening for the exponential PTT fluids. The differences of the material
models are visible in the flow behavior under rheometrical conditions. In the case of one-dimensional elongational
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Table 1: Viscoelastic Fluid Modeling and the used anisotropic mobility tensors.
(n)
Non-linear tensor function Q
Giesekus

PTT linear
Q(Ty) = a%tr [T5]
PTT exponential
Q(Ty) = exp[a%tr[TpH -1

Parameter sets
Giesekus

Pg = (npv )‘7 57 Oé)

np>0NER;, A>0NeER; £€=0; ac(0,]1]
PTT linear

P = (Up» )‘7 f? a)

np >0ANER;, A>0NeR; £=€0,1; a€]0,2]
PTT exponential

PE = (npa )‘7‘57 CY)

np>0NER;, A>0AN€eR; (=€0,1; «a€l0,2]

flow, the elongational viscosity is given with

. Oxx — O . .
m(é) = ———= A limyp(é) = 3np. ©)
e £—0
with the first and second normal stress of the polymer part of the extra stress tensor oxx and oyy. In the limiting
case of evanescent elongation rate ¢, the elongational viscosity turns into the threefold shear viscosity, which is
known as Trouton phenomenon. The shear viscosity is given by
Txy

(V) = — A lim mp (%) = np. @)
v ¥—0

with the shear stress oy, and the shear rate . For vanishing shear rates the shear viscosity becomes a constant
value. The majority of viscoelastic fluids show normal stress differences, see Hasseger et al. (2006). The normal
stress coefficients are defined as

Oxx — Oyy A Oyy — ”zz. (8)

. Vg = -
42 42

It can be shown that the first and second normal stress coefficients of the PTT-fluids are related to each other:

vy =

Vo = —51/1, (9)
where ¢ is the interpolation term of the G. Schowalter derivative, see (4).
The similarities and differences of elongational viscosities eq. (6) for the above-mentioned models are exemplarily
shown for fixed nonlinear parameters (o and &) and normalized in Fig. 1. All curves start concertedly at small
elongation rates related to eq. (6). For increasing elongational rates, Giesekus and PTT linear fluids show a
hardening behavior and the elongational viscosity increases. For high elongation rates the elongational viscosity
tends towards a constant value that depends on the parameter a. Here the exponential form of the PTT fluid is
different, as the elongation viscosity shows softening behavior. For the case of adjusting the material parameters
to describe the elongational behavior, as shown in Fig. 1, shear behavior diverges, see Dhanasekharan et al.
(1999). This is due to the fact that the one-dimensional shear flow is set by four equations (oxx, Oyy, 0us, Oxy)
and this increases the differences between the models. In Fig. 1 and Fig. 2 the shear thinning behavior of the
shear viscosity is shown to be similar for small shear rates. Increasing the shear rate leads to a high shear thinning
behavior in case of the Giesekus fluid. The exponential PTT fluid is bonded by the Giesekus and linear PTT fluids.

3 Visualization of the Flow Type in 3D Simulations

The calculation of fluid flows with viscoelastic material behavior in three-dimensional complex geometries is diffi-
cult due to the increasing expectations placed on the material model. Above all, it is necessary to choose a material
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Figure 1: Normalized shear and elongational viscosity with the shear and elongation rate (Index: G - Giesekus, L - PTT linear,
E - PTT exponential). Note the color version is available online.
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Figure 2: Normalized normal stress coefficients with the shear rate. Note the second stress coefficient of the PTT fluids is zero
since £ is set to zero (Index: G - Giesekus, L - PTT linear, E - PTT exponential).

model as elementary as possible which is able to desribe the whole material behavior properly. Therefore, it is
helpful to know which kind of flow type dominates in the geometry.
In order to visualize the flow type, we use characteristic kinematic quantities: the invariants of the rate of defor-
mation tensor D. For a given fluid flow, the invariants are defined by the characteristic equation of the rate of
deformation tensor, see Wiinsch (2001) and Béhme (2000)

The first invariant is calculated by

—¢® +Ip¢* — lpp + 1 = 0.

ID = tr [D] =0,

which is zero for incompressible fluids. The second invariant is reduced to

The third invariant is given by

Iy = 5 tr[DD].

Il = det[D].

It is well known that symmetric tensors involve real eigenvalues ¢

D=DT — ¢ecR
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Table 2: Values of « for different flow types (e-f: elongational flow). Note that for uniaxial e-f the value of & is
positive and negative for biaxial e-f. Note that the with the sign we are able to differ between uniaxial and biaxial
e-f.

Flow Type  Eigenvaluesof D Il HIp &

. . . . . 3 .92 1-:3 2
uniaxial e-f &y, —€u/2, —€u/2 1€ 1%u 3V3
biaxial e-f  &p, —2&, & 3¢} —2¢) _%5
planare-f  &,,—¢,,0 £ 0 0
shear flow  %/2,—%/2,0 2 0 0

Now it is possible to introduce two new variables,

6= (@)_ o (15)

— (M)~ (_Ip
- () (p)

With (11), (15) and (16) we can rewrite (10) to

Wl

and

@3 + 2 = 3Yd. (17)

Form eq. (10) and (14) we know that @ needs to be as well element of R. This fact is only possible if eq. (16) is
limited with

Y > 0. (18)
Now eq. (11) and (12) leads to
Iy <0 (19)
and with eq. (16), (18) and (19) we can finally predict that the third invariant depends on the second:
2 3
1| < 35 (-LIp)*. (20)

Fig. 3 shows the possible region of incompressible flow (Iy = 0) in dependence on the second and third invariants.
On the edge of the domain, only uniaxial (red) or biaxial (green) elongational flows exist.
Defining the fraction of eq. (20), without the absolute value of the third invariant, leads to

Il
(-1Ip)

Now the parameter  is able to describe the elongation fraction of a 3D flow, whereas a 2D flow would generate a
zero value for . Typical values of basic flow types are listed in Table 2, see Béhme (2000) and Wiinsch (2001).

KR =

@h

4 Numerical Implementation Techniques

The numerical calculations of the flow of incompressible fluids are based on the equations of continuity and
momentum:
V-v=0, (22)
Dv
"Dt
where p describes the density of the fluid, Dv/D¢ = dv /0t + V - (v ® v) is the material time derivative of the
Eulerian velocity field v, p denotes the pressure, f are body forces and T denotes the total extra stress tensor. In
the following, we neglect the body force f without losing universality.
To include viscoelastic fluid behavior, we first split the extra stress tensor in a Newtonian solvent and a polymer
contribution. This is known under the concept of the viscous formulation (VF), see Rajagopalan et al. (1990),

=-Vp+V -T+f, (23)

T =T, +T,. (24)
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Figure 3: The third invariant of D as a function of the second invariant of D.

The Newtonian solvent T is described by a usual linear ansatz with the constant Newtonian viscosity 7s,
T, = 21D. (25)

The polymer contribution T, needs a nonlinear relation as shown in eq. (3). With the help of the dimensional-
less form of the momentum equation, we are now able to introduce the ratio of Newtonian solvent and polymer

contribution .
S

g s+ Mp (26
to quantify the fraction of viscoelastic stresses. For viscoelastic polymer melts, the parameter [ is small. Present
works set a value for ( that is small enough to describe polymer melts, e. g. 3 = 1/9, see Alves et al. (2003);
Wiinsch (2009).
In order to keep the ellipticity of the equation set (22), (23) and (3) and to guarantee the stability of the numerical
simulations using VF methods, (3 is always greater than zero. The request for numerical stability independent of
the parameter 5 (e. g. for a vanishing (3) leads to further developments: the EVSS method (Rajagopalan et al.
(1990)) and the Discrete Elastic Viscous Split Stress method (DEVSS), see Guéntte and Fortin (1995). A wide
range of modifications of these methods can be found in the literature, see Matallah et al. (1998).
The basic idea of the EVSS method is to further split the polymer contribution in a viscous and an elastic part:

T, =T, + T, 27)
where the viscous part of the polymer contribution follows an additional Newtonian ansatz
T, = 2, D, (28)

with a new viscous viscosity 7,. Including eq. (27) in the generalized Maxwell model eq. (3), with a PTT-L
nonlinearity and £ = 0 leads to

v A v ANy
T + ATe + a—tr[T] Te = 2 (n, — n) D — 220, D — 20t [T, ] D. (29)
b TIp
On the right side of eq. (29), we now get the upper convected time derivative of the rate of deformation tensor. This
leads to a further spatial derivative of the rate of deformation tensor D, viz. second order derivatives of the Euler
velocity field. This requires spazial care in numerical calculation methods, as shown in Fortin and Zine (1992).
The EVSS method leads to a modified form of the momentum equation
Dv 9
p(ﬁ) =Vp+ (nSJrnv)V v+ V. T (30)
In order to avoid the problems in calculating the time derivatives of the rate of deformations tensor, Guéntte and
Fortin (1995) introduced the rate of deformation tensor D as an additional unknown. With introducing the elastic
part as
T, =T, — 2¢D, (€2))
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Table 3: Characteristics of the computational meshes used
Mesh NC DOF Amnin

Mesh A 26000 156000 0.1
Mesh B 104000 624000  0.05
Mesh C 416000 2496000 0.025
Mesh D 310400 1862400 0.0125
MeshE 986240 5917440 0.00625

we can rewrite (30) to the DEVSS method form of the momentum equation with ¢ = 7,:

D
p(D—;’) =Vp+ (ns + 1) Vv + V- T, — 1, V3v. (32)

This null operation enhances the stability in numeric methods noticeably for a wide range of (3.

In the following, we use the VF and DEVSS methods implemented to a Finite-Volume simulation code, see Favero
(2009a,b); Favero et al. (2009, 2010), which is based on the open source code OpenFOAM, see OpenFOAM
(2008). In order to increase the calculation speed, we prefer to use multi-grid methods in case to precondition the
matrixes of the linear equation systems. We use the AMG solver, see Jasak et al. (2007). To ensure accuracy, the
code and methodology are benchmarked over a wide range of De numbers with the literature Alves et al. (2003);
Wiinsch (2009); Aboubacar et al. (2002).

5 Benchmark
5.1 Geometry

The contraction problem is often used as a benchmark geometry for non-Newtonian fluids. A viscoelastic fluid
passes from one channel or tube into another of smaller dimensions. This entry problem generates complex flow
behavior, despite to the simplicity of the geometry: The flow near the wall is dominated by strong shear flow and
a uniaxial extension flow is generated along the centreline. Here we have, in a single geometry, two main objects
of research in the flow of non-Newtonian fluids.

Because of the different properties of shear and elongation viscosities, the behavior of non-Newtonian fluids is
totally different from Newtonian fluids in both regions. In detail, we benchmark our numerical implementation on
a two-dimensional 4:1 contraction problem given in Fig. 4. The same conditions for the geometry and viscoelastic
models are used in Alves et al. (2003); Wiinsch (2009); Aboubacar et al. (2002).

L1 = 40H; Ly = 100H,

Y

g
g
N
-

g

h N \52 H
— y /v-n:O,txn:O p. outlet ~ Il
e o
jas)

Figure 4: Sketch of the contraction problem.

In order to discretize the calculation domain, we use a structured mesh with different refinements, see Fig. 5.
Table 3 represents the main information of the meshes, where NC is the number of cells, DOF the degree of
freedom and the minimum cell spacing is given with A, = AZ = Ay where & = 2/Hy and § = y/Ho.

To describe the character of the flow, we introduce the following dimensionless quantities. The Reynolds number
is defined as

_ pHgﬁQ

Re <1 (33)

)

and is held small and constant for all of the simulations in order to ensure creeping flow conditions. As a size for
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Mesh A \ Mesh B Mesh C

Mesh D

Figure 5: Sketch of the contraction problem and the meshes. Note that each of the refinements of the meshes is
four times larger.

the elasticity of a viscoelastic fluid we use the Deborah number

. Vg
De =My =A—"—. 34
1= (34
For the limiting case De = 0, the fluid has Newtonian behavior, elasticity increases as the De number is stepped
up. In the following simulations we use the relaxation time ) to set the desired De number.

5.2 Benchmark Results for the Linear and Exponential PTT Fluids

In order to condense the numerical results, first we look at the dimensions of the corner vortex. Fig. 6 show the
changes in the size X of the vortex defined in Fig. 4. For the PTT-linear model the size increases with increasing
De number due to the hardening behavior of the elongational viscosity. At this point, we need to mention that
some experimental visualization works show even much higher vortex sizes, see therefore Evans and Walters
(1986); Nigen and Walters (2002), and that the linear PTT fluid is not able to supply these Alves et al. (2003). A
different behavior is observed when the PTT-exponential model is used. Both the shear and the elongation viscosity
decrease at high De numbers and the vortex size decreases to below the Newtonian level following a short rise.

In comparison with the literature Alves et al. (2003), Aboubacar et al. (2002) and Wiinsch (2009), the confirmity
of the results is shown to be very good. As done in Alves et al. (2003), we average our results over the mesh
refinements. Here, only the linear PTT fluid shows big vortex sizes at high De-number. This is, due to the fact that
the linear PTT model is sensitive to mesh refinements for higher Deborah numbers.

Fig. 7 shows the development of the vortex size in dependence on minimum cell spacing of the meshes used for
our calculations. Fig. 7 shows that only for De = 100 (linear PTT) the result depends on the mesh size distinctly.
Note that the meshes used in Alves et al. (2003) have a cell spacing less than Ap;, < 0.014. Furthermore, an
excellent agreement is seen in the case of the exponential PTT fluid, see Fig. 7.

Fig. 8 and Fig. 9 show the maximum values of the velocity and stress at the centre line in normalized form:

Umax = UTAX’ (35)
To
max [
E;’g{ax — Oxx — 2 ) (36)
3nv2

All models shows similar behavior. For increasing Deborah numbers the values of the extra stress are vanishingly
small. The maximum values of the center line velocity show a minimum around a De number of 1. In the case
of the linear PTT fluids the refinment of the mesh shows enhancement in the maximum values of the stress and
therefore a better agreement with Alves et al. (2003). Finally we can say that the results show good conformity
with Alves et al. (2003) and Wiinsch (2009).

We also need to mention the well-known singularities at sharp corners as they are evident in the used 4:1 contraction
problem in this present work, see Hinch (1993) and Fontelos and Friedman (2000). Through the good stabilization
this singularities stays local. In Fiétier and Deville (2002) this problem is solved by rounding the sharp corner. But
this includes some changes in the velocity and stress field, see Aboubacar et al. (2002).
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Figure 6: The size of the vortex near the re-entrant corner with the De number (log-scale) for left: the linear and right: the
exponential PTT fluid with S = 1/9 and o = 0.25.
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Figure 7: The size of the vortex near the re-entrant corner with the minimum cell spacing (log-scale) for left: the linear and
right: the exponential PTT fluid with 8 = 1/9 and o = 0.25 and the VF method.

5.3 Further Results for Giesekus Fluids

Fig. 1 have shown that the Giesekus and PTT fluids are similar in the case of basic one-dimensional rheometrical
flows. Therefore, the Giesekus model is used for additional calculations in the benchmark geometry. Here, the
Giesekus fluid shows an impressive advantage in regard to decribing possible second stress coefficients, see Fig.
2. Furthermore, the accuracy during the numerical calculations over the whole De number, shown in Fig. 10, is
not negligible. The similarity to the linear PTT fluids is also demonstrated in Fig. 10 and 6. Fig. 11 show the
maximum values at the center line of the velocity and stress. In comparison to the linear PTT fluid we see a good
affinity.

The numerical cost related to CPU time is reduced by a factor of 0.4. Furthermore, the stability of the numerical
simulations at all Deborah numbers was very high and no additional relaxations where necessary.
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Figure 8: Maximum velocity value along the center line (symmetry axis) with the De number (log-scale) for left: the linear
and right: the exponential PTT fluid with 5 = 1/9 and o« = 0.25.
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Figure 9: Maximum value of the first extra normal stress along the center line (symmetry axis) with the De number (log-scale)
for left: the linear and right: the exponential PTT fluid with 3 = 1/9 and o = 0.25.
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Figure 10: The size of the vortex near the re-entrant corner with the De number (log-scale) and the minimum cell spacing
(log-scale) for the Giesekus fluid with 3 = 1/9 and o = 0.25 and the VF method.
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Figure 11: Maximum velocity value and the maximum first extra normal stress value along the center line (symmetry axis)
with the De number (log-scale) for the Giesekus fluid with 8 = 1/9 and o = 0.25.
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6 Flow in a Three Dimensional Cross-Slot Geometry

In order to demonstrate the application of the visualization technique explained in chapter 3, we investigate the
three dimensional flow in a Cross-Slot geometry. The fluid enters the geometry on two opposite sides and leaves
at two outlets in lateral direction. To save memory and computing time, we assume a symmetric fluid flow and use
symmetric boundary conditions on different planes. A sketch of the calculation domain is shown in Fig. 12.

The numerical results are visualized on four planes, see Fig. 12. The first visualization plane is the above-
mentioned symmetry plane. Behind the symmetry plane we introduce further planes as shown in Fig. 12. All
calculations were done at vanishing Re numbers and De = 10.

H
]
lane 4 v
pplane 3 U2
plane 2 H
plane 1 /
p. outlet

L, = 26H

H=4m
vy = 0.1m/s
A\

v-n=0,txn=0

L =11H

Figure 12: Sketch of the arborization with the boundary conditions used. The mesh is build with 2,304,000 cells.

6.1 Analysis of the Streamlines

First, we investigate the streamlines at the mentioned planes, which are shown in detail near the corner in Fig.
13. In order to demonstrate the influence of the viscoleastic fluid behavior, the Newtonian case is included. All
viscoelastic fluids shows similar behavior in the symmetric plane. Minor changes are visible near the change
of direction and at the outlet flow. With increasing distance from the symmetric plane, the differences at the
corner grows. Here, the influence of the corner becomes more noticeable, as showon also in Fig. 14 and Fig.
15. Furthermore, the streamlines of the exponential form of the PTT fluids are much closer to the Newtonian case.
Here, the increase in differences in three dimensions are due to the fact that different types of models have different
nonlinearity tensorial functions.

6.2 Visualization of the Flow Type

In order to discuss the flow type, we visualize the flow type parameter defined in eq. (21) at plane 2-4, see Fig. 12.
In Fig. 14, plane 3 is shown and the values of the flow type are listed in Table 2. In a Newtonian fluid, the fluid type
parameter shows an antisymmetric behavior. Coming from the left, the fluid is only sheared (green, x = 0) until
the arborization begins. Here a biaxial elongation flow (blue) develops near the center line and a small domain
with uniaxial elongation flow (red) appears near the wall. Then the flow merges to a planar elongation type (green)
near the crosspoints of the center lines. After crossing the antisymmetric line the flow type changes accordingly.

Viscoelastic fluids break the antisymmetry. Looking at the biaxial regions, the small region near the wall grows
in comparison to the Newtonian fluid and the lower region near the center line is more thronged to the left. The
uniaxial regions are swayed in the same way. First, the big region is moved to the right side and is warped to the
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Figure 13: Streamlines of the 3D Cross-Slot geometry at the planes 1-4 (Fig. 12).

Newton Giesckus
plane 3
K

0.0 0.38

—0.38

PTT-L

Figure 14: Flow type parameter x, at De = 10 using the VF method in plane 3.

downstream region. The small upper uniaxial region increases and now a big region appears on the left side even

before the big biaxial region.
Only minor differences in the flow type are visible between the linear PTT and Giesekus fluids. The flow type of

679



the exponential form of the PTT fluids looks similar to the Newtonian case. This can be explained by the different
viscosity behavior for shear and elongation flow. All viscoelastic models shows shear-thinning behavior for the
shear viscosity; in the case of elongation viscosity, the linear PTT and Giesekus fluids are of hardening nature, see
Fig. 1.
In contrast, the elongation viscosity of the exponential PTT fluid decreases for higher elongation rates. Obviously,
the different elongation viscosity behavior of the models at higher elongation rates is responsible for the break
of the antisymmetry. This is confirmed in Fig. 15, where the flow type parameter is shown for Newtonian and
Giesekus fluid in planes 2—4.

The use of different material models have not only an influence to the flow pattern, but also the pressure difference

Giesekus

—0.38 0.0 0.38

Giesekus

plane 3

Giesekus

plane 4

Figure 15: Using & to show the unsymmetric behavior of the uniaxial and biaxial regions of a Giesekus fluid. Note, that the
small uniaxial elongation flow region of the Giesekus Fluid (at the upper right corner in plane 2) gets bigger and merges, see
plane 3.

H
Ap= 2= (37)

nu1
between the in- and outlet of the geometry is different, see Table 4. Due to the shear thinning behavior of the shear
viscosity of all the viscoelastic models, the pressure difference is reduced in comparison with the Newtonian fluid.

7 Conclusions

The main idea of the work is to understand the influence of elasticity of viscoelastic fluids on the flow pattern
in technical apparatus. The flow types of Newtonian and highly viscoelastic fluids can be visualized in numerical
works with the help of the invariants of the rate of deformation tensor. The use of invarinats is attractive and helpful
because they are independent of any changes in the coordinate system. This method only requires knowledge of
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Table 4: Normalized pressure difference, see eq. (37)

Model Ap

Newton 4.29
Giesekus  0.65
PTT-L 0.71
PTT-E 0.84

the velocity field. It is universally deployable, because it is independent of the extra stress tensor or the model
used. With the help of the flow type parameter it is possible to show how the elasticity of a fluid changes the flow
type regions in comparison with the Newtonian case.

Knowing the real material behavior of viscoelastic fluids in shear flows and uniaxial and biaxial elongations is
important for choosing the right model to describe the viscoelastic properties of the fluid. In McLeish and Larson
(1998) and Isaki et al. (1991) it has been shown that the biaxial elongation viscosity is similar to the uniaxial
elongation viscosity. Hence, the material model can be chosen to describe one of these viscosities and the other is
done without more effort.

The flow type parameter can be applied effected in two steps. First, a simulation of the flow is made with a
Newtonian fluid. This is normally done without a lot of numerical efforts. By visualizing x we are able to predict
the regions of interest in a viscoelastic simulation.

This Newtonian simulation helps to provide assurance about the regions and the domination of elongation and
or shear flow type. With this knowledge, the right choice of the material model should be safer to make. For
the numerical calculation done in this work we conserve the ellipticity of the governing equations using VF and
DEVSS methods. The codes used have good conformity with the benchmark tests in literature over a wide range
of Deborah numbers.
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